

The Book of CSS3
TABLE OF CONTENTS
Dedication
Foreword
Preface
Introduction
The Scope of This Book
A Quick Note About Browsers and Platforms
The Appendices and Further Resources

1. Introducing CSS3
What CSS3 Is and How It Came to Be
A Brief History of CSS3
CSS3 Is Modular
Module Status and the Recommendation Process
CSS3 Is Not HTML5

Let’s Get Started: Introducing the Syntax
Browser-Specific Prefixes
Future-Proofing Experimental CSS

Getting Started

2. Media Queries
The Advantages of Media Queries
Syntax
Media Features
Width and Height
Device Width and Height
Using Media Queries in the Real World
Orientation
Aspect Ratio
Pixel Ratio
Multiple Media Features
Mozilla-Specific Media Features

Summary
Media Queries: Browser Support

3. Selectors
Attribute Selectors
New Attribute Selectors in CSS3
Beginning Substring Attribute Value Selector
Ending Substring Attribute Value Selector
Arbitrary Substring Attribute Value Selector
Multiple Attribute Selectors

The General Sibling Combinator
Summary
Selectors: Browser Support

4. Pseudo-classes and Pseudo-elements
Structural Pseudo-classes
The nth-* Pseudo-classes
first-of-type, last-child, and last-of-type
only-child and only-of-type

Other Pseudo-classes
target
empty
root
not
UI Element States

Pseudo-elements
The selection pseudo-element

Summary
DOM and Attribute Selectors: Browser Support

5. Web Fonts
The @font-face Rule
Defining Different Faces
True vs. Artificial Font Faces

A “Bulletproof” @font-face Syntax
Using Local Fonts
Font Formats
The Final “Bulletproof” Syntax
The Fontspring Bulletproof Syntax

Licensing Fonts for Web Use
A Real-World Web Fonts Example
More Font Properties
font-size-adjust
font-stretch

OpenType Features
Summary
Web Fonts: Browser Support

6. Text Effects and Typographic Styles
Understanding Axes and Coordinates
Applying Dimensional Effects: text-shadow
Multiple Shadows
Letterpress Effect

Adding Definition to Text: text-outline and text-stroke
More Text Properties
Restricting Overflow
Resizing Elements
Aligning Text
Wrapping Text
Setting Text Rendering Options
Applying Punctuation Properties

Summary
Text Effects: Browser Support

7. Multiple Columns
Column Layout Methods

Prescriptive Columns: column-count
Dynamic Columns: column-width
A Note on Readability
Different Distribution Methods in Firefox and WebKit
Combining column-count and column-width

Column Gaps and Rules
Containing Elements within Columns

Elements Spanning Multiple Columns
Elements Breaking over Multiple Columns

Summary
Multiple Columns: Browser Support

8. Background Images and Other Decorative Properties
Background Images

Multiple Background Images
Background Size
Background Clip and Origin
background-repeat
Background Image Clipping

Image Masks
Summary
Background Images: Browser Support

9. Border and Box Effects
Giving Your Borders Rounded Corners

border-radius Shorthand
Differences in Implementation Across Browsers

Using Images for Borders
Multicolored Borders
Adding Drop Shadows
Summary
Border and Box Effects: Browser Support

10. Color and Opacity
Setting Transparency with the opacity Property
New and Extended Color Values

The Alpha Channel
Hue, Saturation, Lightness
HSLA
The Color Variable: currentColor

Matching the Operating System’s Appearance
Summary
Color and Opacity: Browser Support

11. Gradients
Linear Gradients

Linear Gradients in Firefox
Linear Gradients in WebKit
Using Linear Gradients
Adding Extra color-stop Values

Radial Gradients
Radial Gradients in Firefox
Radial Gradients in WebKit
Using Radial Gradients
Multiple color-stop Values
The WebKit Advantage

Multiple Gradients
Repeating Gradients in Firefox

Repeating Linear Gradients
Repeating Radial Gradients

Summary
Gradients: Browser Support

12. 2D Transformations
The transform Property
rotate

Position in Document Flow
transform-origin

translate
skew
scale
Multiple Transformations
Transforming Elements with Matrices
Reflections with WebKit
Summary
2D Transformations: Browser Support

13. Transitions and Animations
Transitions

Property
Duration
Timing Function
Delay
Shorthand
The Complete Transition Example
Multiple Transitions
Triggers

More Complex Animations
Key Frames
Animation Properties
The Complete Animations Example
Multiple Animations

Summary
Transitions and Animations: Browser Support

14. 3D Transformations
3D Elements in CSS
Transform Style
The Transformation Functions

Rotation Around an Axis
Translation Along the Axis
Scaling
The Transformation Matrix
Perspective

The perspective and perspective-origin Properties
The Transformation Origin
Showing or Hiding the Backface
Summary
3D Transformations: Browser Support

15. Flexible Box Layout
Triggering the Flexible Box Layout
The box Value in Firefox
Inline Boxes

Making the Boxes Flexible
Unequal Ratios
Zero Values and Firefox Layouts

Grouping Flexible Boxes
Changing Orientation
Changing the Order of Flexible Boxes
Reversing the Order
Further Control over Ordering

Alignment
Same-Axis Alignment
Multiple Rows or Columns
Cross-Browser Flex Box with JavaScript
Stop the Presses: New Syntax
Summary
Flexible Box Layout: Browser Support

16. Template Layout
Setting Up the JavaScript
Using position and display to Create Rows
Multiple Rows
Slots and the ::slot() Pseudo-element
Creating Empty Slots
Setting Height and Width on Rows and Columns

Width Keyword Values
Setting Both Row Height and Column Width

Default Content: The @ Sign
Summary
Template Layout: Browser Support

17. The Future of CSS
Mathematical Operations

Calculation Functions
Cycle

The Grid Positioning Module
Implicit and Explicit Grids
The Grid Unit (gr)
Extended Floats

Extending the Possibilities of Images
Image Fallback
Image Slices
Image Sprites

Grouping Selectors
Constants and Variables
WebKit CSS Extensions

CSS Variables
Extending Variables Using Mixins
CSS Modules
Nested Rules

Haptic Feedback
Summary
Future CSS: Browser Support

A. CSS3 Support in Current Major Browsers
Media Queries (Chapter 2)
Selectors (Chapter 3)
Pseudo-classes and Pseudo-elements (Chapter 4)
Web Fonts (Chapter 5)
Text Effects and Typographic Styles (Chapter 6)
Multiple Columns (Chapter 7)
Background Images and Other Decorative Properties (Chapter 8)
Border and Box Effects (Chapter 9)
Color and Opacity (Chapter 10)
Gradients (Chapter 11)
2D Transformations (Chapter 12)
Transitions and Animations (Chapter 13)
3D Transformations (Chapter 14)
Flexible Box Layout (Chapter 15)
Template Layout (Chapter 16)
The Future of CSS (Chapter 17)

B. Online Resources

CSS Modules
Browsers

WebKit
Firefox
Opera
Internet Explorer

Browser Support
When Can I Use . . .
Quirks Mode
Find Me By IP

Feature Detection and Simulation
Perfection Kills
Modernizr
CSS3 Pie

Code-Generation Tools
CSS3, Please!
CSS3 Generator
CSS3 Gradient Generator
Type Folly

Web Fonts
Typekit
Fontdeck
Fonts.com Web Fonts
Google Font API
Web FontFonts
Font Squirrel
Fontspring

Other Resources
CSS3.info
CSS3 Watch
CSS3 Cheat Sheet

C. About the Technical Reviewer
Index

The Book of CSS3

Peter Gasston

Published by No Starch Press

Dedication
To my wife, Ana, for her patience and support

Foreword
CSS3 used to be a topic for people who were in it for the long haul. Back in 2006, I started
CSS3.info, and Peter joined me in writing posts about the development of the standard and real-life
examples of what it looked like in browsers. Although I started the site, Peter was always the most
prolific writer, and it’s only fitting that while I wrote this foreword, he wrote the book.
CSS3 has finally gone mainstream. With the new age of browsers (such as Firefox 4, Google Chrome,
and Internet Explorer 9), we as a web design community are finally getting the power and flexibility
we’ve been waiting for. We can now manage media queries for different browsers, have smarter
background images, and handle fonts in a way that doesn’t drive us nuts.
If you plan on using CSS3, this book is the most hands-on guide you’ll find. It shows you what works
and what doesn’t, and no caveat is forgotten. Peter even provides a clear explanation for how
transitions and transformations work. This is no small feat; as you’ll see for yourself when reading
those chapters, the matrix functions are not for every user. Luckily you won’t have to use those when
you’re taking advantage of the other — far more accessible — functions in CSS3.
More is to come: CSS3 is an ever-expanding standard that promises to help web designers do great
things. I, for one, am very curious about where it will lead us. For now, though, this book is all you
need to start uncovering the treasures within CSS3.
Joost de Valk
CEO and Founder, Yoast.com

Preface
This book is the culmination of five years’ writing about CSS3, both on the Web and in print. The
browser and CSS landscape has changed a lot in that short time and continues to change today,
bringing new features and implementations at a rate that’s difficult to keep up with. The CSS3
specification is written in (often dense) technical language that’s intended for implementers rather
than end users, and my intent in writing this book was to bridge the gap between specification and
web developer.
I wrote about the CSS properties in the earlier chapters of this book with certainty, because they’re
well implemented and used on a daily basis. As I progressed through the book, I was able to learn
more from experimentation and the work of pioneers and early adopters. By the final few chapters I
had to rely on interpretation of the CSS3 specification to explain how future properties will behave. I
would hope that there are few mistakes, but I accept that any that exist are based on my own
misunderstanding.
In addition to the CSS3 specification itself, an invaluable resource was the Mozilla Developer
Network (https://developer.mozilla.org/), a peerless collection of articles about anything web related
— not least CSS — which is all the more amazing for being written by volunteers. The text used in
many of the code examples is taken from books in the public domain which are available at
http://www.gutenberg.org/. All images in the book that are not my own creations are credited in the
relevant chapters.
This book would not have been possible without the guidance of the team at No Starch Press,
especially Serena Yang and my editor, Keith Fancher, who made me write more clearly and helped
me transition from blogger to author. I’d also like to thank Joost de Valk, who not only acted as my
technical editor but also gave me my first opportunity to write about CSS3 when he created the
website http://www.css3.info/ five years ago.
I’d also like to thank my colleagues at Preloaded and Poke for their support and encouragement,
everyone at the many London web community meet-ups, my mum for teaching me the value of hard
work, and my dad for buying me my first computer some almost thirty years ago — I promised I’d pay
him back one day, and hopefully this book will go some way toward that debt.

https://developer.mozilla.org/
http://www.gutenberg.org/
http://www.css3.info/

Introduction

Let me tell you a little about who I think you are: You’re a web professional who’s been hand-coding
HTML and CSS for a few years; you’re pretty comfortable with creating complex layouts, and you
know not only your div from your span but also your bold from your strong; you’ve read a little
about CSS3 and may even have started experimenting with some of its more decorative features like
rounded corners, but you want to gain a deeper understanding of the fundamentals.
The Book of CSS3 helps you leverage the excellent knowledge you have of CSS2.1 in order to make
learning CSS3 easier. I won’t explain the fundamentals of CSS (except for the occasional reminder)
as I assume you know them already. I won’t talk you through step-by-step demonstrations of using
CSS to make a listed navigation or an image gallery because I assume you can apply the examples in
this book to anything you want to build on your own.
What I aim to do with this book is introduce you to what you can do with CSS3 now and what you’ll
be able to do with it in the future. I want to take the dense technical language of the CSS3
specification and translate it into language that’s plain and practical.
In short, I want to give you some new tools for your toolkit and let you make cool stuff with them.

The Scope of This Book
CSS can be used across many types of media; almost any device that’s capable of displaying HTML
or XML can also display CSS rules, albeit in a limited form sometimes. CSS3 has two modules
devoted exclusively to paged media, such as PDF or printed materials, and also supports braille,
handheld mobile devices (i.e., cellphones rather than smartphones), teletypes, and televisions. The
range and breadth of possibilities is so vast that I can’t cover them all.
What this book focuses on is CSS for the computer screen. All of the demonstrations were written for
(and tested in) the most common desktop browsers, and they’re optimized for users of desktop and
laptop computers. Although many of the new features in this book will still work if you’re developing
for other devices — especially smartphones and tablets — I make no guarantees or assurances that
everything will display exactly as shown in the examples contained herein.

A Quick Note About Browsers and Platforms
I wrote the majority of this book — and, therefore, the majority of the demonstrations and examples
— on a computer running Ubuntu 10.04 with Firefox, Chrome, and Opera installed. Other portions
were written on a MacBook Pro with Safari installed. Tests for Internet Explorer were performed
using Windows 7. (The exact versions of all of the browsers used can be found in the introduction to
Appendix A.)
Throughout this book, I mostly make reference to Firefox and WebKit. The perspicacious among you
will notice that Firefox is a type of browser, whereas WebKit is a type of layout engine, and wonder
why I don’t refer to the Gecko layout engine used by Firefox or to any WebKit-based browser by
name.
The reason is quite simple: Firefox is clearly the preeminent Gecko-based browser, whereas Chrome
and Safari dispute the eminence of WebKit between them. As a simple space-saving exercise, I will
say “WebKit” rather than “Chrome and Safari.” The exception to this rule is when a specific feature
or syntax only appears in one type of WebKit browser — such as hardware-accelerated 3D
transformations in Safari — in which case, I refer to the name of the browser in question.

The Appendices and Further Resources
At the end of this book are two appendices containing further information beyond what’s discussed in
the various chapters. The first provides a quick reference guide to the implementation of the features
included in this book across the different versions of browsers, and the second is a list of online
resources, useful tools, and interesting demonstrations.
A website accompanies this book at http://www.thebookofcss3.com/; here I’ll keep updated versions
of both appendices and all of the examples and demonstrations used in this book. God forbid I should
make any mistakes, but on the super-rare possibility that I do, I’ll also keep a full list of errata.
In addition to the accompanying website, I write more about CSS3 (and other emerging web
technologies) at my blog, Broken Links (http://www.broken-links.com/). Feel free to comment or get
in touch with me through either of these websites.

http://www.thebookofcss3.com/
http://www.broken-links.com/

Chapter 1. Introducing CSS3

In this first chapter, I’ll introduce a new CSS3 property in order to demonstrate the code conventions
used in this book, but before getting to that, I’ll explain a little about the history of CSS3. Obviously,
you don’t need to know its history in order to use CSS3, but I think having some context about the
current state of CSS3 is important.
CSS3 is a specification in flux. Some parts of the spec are considered stable and have been well
implemented in modern browsers; other parts should be considered experimental and have been
partially implemented to varying degrees; yet others are still theoretical proposals and have not been
implemented at all. Some browsers have created their own CSS properties that don’t belong in any
CSS3 specification and perhaps never will.
All of this means that knowing how the standardization process works and the levels of
implementation for each new property is vital to understanding how you can use CSS3 in your code
both now and in the future.

What CSS3 Is and How It Came to Be
First, I want to discuss what CSS3 is — and isn’t — and the form it takes. The W3C’s approach to
CSS3 is quite different from its approach to CSS2, so this overview should help you understand how
and when you can use CSS3 and why it has such varied implementation across different browsers.

A Brief History of CSS3
The version of CSS in current use is CSS2.1, a revision of the CSS2 specification that was originally
published in 1997. Despite ongoing development and review since that time, many people are
surprised to learn that CSS2 hasn’t actually become an “official” recommendation of the W3C yet.
(I’ll talk more about the recommendation process shortly.) More surprising still is the fact that
Internet Explorer 8 (IE8) — released in 2009 — lays claim to being the first browser to support the
entire CSS2.1 specification fully.
In the last few years, the talk has been about the new revision — CSS3. I say “new,” but in fact work
on CSS3 began back in 1998, the year after CSS2 was published. Browser implementation of CSS2
continued to be so frustratingly inconsistent, however, that the W3C decided to halt work on any new
revision and work on CSS2.1 instead, standardizing the way CSS had been implemented in the real
world. In 2005, all of the CSS3 modules were moved back to draft status, and the editing and review
process began all over again.
For many years, Internet Explorer dominated the ever-expanding market of Internet users and showed
no sign of wanting to implement CSS3. But int he last few years, a whole new range of browsers has
appeared to compete for users, and this plethora of choice has led to a features arms race. One
beneficiary of that arms race has been CSS3. Each of the browsers wants to offer developers and
users the latest in web technologies, and with the CSS3 spec already mostly written, implementing
and even adding new features has been a no-brainer.
So here we are today, with the CSS3 specification under active development, a broad range of
browsers working on implementing it, and a community of interested developers building with it,
studying it, and writing about it. A healthy situation, and one we couldn’t have foreseen just a few
years ago.

CSS3 Is Modular
Being the default styling language for every markup-based document in the world is an enormous
undertaking, and the W3C was aware that it would take many years to come to fruition. W3C
members, conscious that they didn’t want to hold up some of the more obvious, in-demand features
while they were considering and debating some of the more esoteric ones, made the decision to split
CSS3 into various modules. Each of the modules could then be worked on by different authors at
different paces, and the implementation and recommendation process — which I’ll discuss shortly —
could be staggered.
This is why, instead of a single, monolithic CSS3 specification document, you have CSS3 Basic User
Interface Module, Selectors Level 3, Media Queries, and so on. Some of these modules are revisions
of CSS2.1, and some are newly created, but all fall under the banner of CSS3.
One of the few things I find irritating (I’m an easy-going guy) is that on many blogs you’ll hear people
complaining, “I want to use CSS3, but it won’t be ready for years.” This is nonsense; some modules
of CSS3 already have very stable implementation in all modern browsers, and many more are just
months away from prime time. If you want to wait until all of the modules are 100 percent
implemented across every browser in existence, you’ll be waiting a long time.
But CSS3 is here, and some of it is ready to use right now — you just have to be mindful about how
you use it.

Module Status and the Recommendation Process
As I move through this book and discuss each of the different modules, I’ll also refer to that module’s
status. Status is set by the W3C, and it indicates the module’s progress through the recommendation
process; note, however, that status is not necessarily an indication of a module’s degree of
implementation in any browser.
When a proposed document is first accepted as part of CSS3, its status is designated Working Draft.
This status means that the document has been published and is now ready for review by the
community — in this case, the community being browser makers, working groups, and other
interested parties. A document may stay as a Working Draft for a long period, undergoing many
revisions. Not all documents make it past this status level, and a document may return to this status on
many occasions.
Before a document can progress from a Working Draft, its status changes to Last Call. This means the
review period is about to close and usually indicates the document is ready to progress to the next
level.
That next level is Candidate Recommendation, which means the W3C is satisfied that the document
makes sense, that the latest reviews have found no significant problems, and that all technical
requirements have been satisfied. At this point, browser makers may begin to implement the
properties in the document to gather real-world feedback.
When two or more browsers have implemented the properties in the same way and if no serious
technical issues have come to light, the document may progress to being a Proposed
Recommendation. This status means that the proposal is now mature and implemented and ready to
be endorsed by the W3C Advisory Committee. When this endorsement has been granted, the proposal
becomes a Recommendation.
To reiterate what I briefly touched on before, the recommendation process and the implementation
process do not always work in the same way. For example, later on in this book, I’ll introduce a set
of modules proposed by the WebKit team a few years ago, which includes 2D Transformations
(Chapter 12). Despite the proposal still having Working Draft status, the properties are already well
implemented in Firefox, Opera, and WebKit.
As I mentioned earlier in this chapter, not even CSS2.1 — which we’ve all been using for many years
now — has reached full Recommendation status. Although CSS2.1 is as good as finished, a few
matters of syntax and phrasing still need to be resolved. Obviously, that hasn’t stopped the browsers
from implementing it fully and moving on to CSS3.
As a result, I’ve written this book in a loose order of implementation, rather than recommendation
status. Earlier chapters discuss features that have full implementation across all browsers (or should
by the time this book is released), later chapters cover features that are implemented in some
browsers only — often with browser-specific prefixes — and chapters toward the end of the book
deal with potential, speculative, or partial implementations of properties.

CSS3 Is Not HTML5
One of the current buzzwords around the Internet is HTML5. HTML5 is, of course, a genuine (and
exciting) new technology that has somehow broken out of the technical press and through to the
mainstream media. Just about everywhere you turn people are discussing it. On that journey, however,
its correct meaning seems to have been lost.
Before I discuss what that real meaning is, I should point out that the media are not solely responsible
for obfuscating the true meaning of HTML5. Many developers are falling over themselves to make
flashy “HTML5 demos”; but if you look more closely at these demos (or view their source code),
more often than not you’ll find they involve few-to-no actual new HTML5 features and an awful lot of
CSS3 (yes, Apple, I’m looking at you: see http://www.apple.com/html5/).
Although HTML5 will bring a lot of cool new features to the Web, CSS3 is bringing the really fancy
visual stuff: rotating, scaling, and animating in two and three dimensions; dynamic and decorative text
effects; drop shadows; rounded corners; and gradient fill effects. All this is possible with CSS3 (and
I’ll show you how to do it all in this book).
What the media refers to as HTML5 is really that new revision of the markup language combined with
CSS3, SVG, and JavaScript — what many people (myself included) prefer to call part of the Web
Stack (or, Open Web Stack).

http://www.apple.com/html5/

Let’s Get Started: Introducing the Syntax
With the introductions and explanations out of the way, let’s get to the meat of CSS3. Throughout this
book, I use a certain syntactical convention to demonstrate each of the new rules and properties.
Rather than simply describe that convention, I thought you’d find it more interesting if I explain it at
the same time as I introduce the first new CSS3 property.
The property is box-sizing, which allows you to set how an element’s dimensions are calculated.
As you know, an element’s total width — without including its margin — is usually calculated from
its stated (or inherited) width value, plus its left and right padding, plus its border-width.
Let’s take as an example the following code, which should be very familiar to you.

div {
 border: 10px solid black;
 padding: 10px;
 width: 150px;
}

In this example, the div has a total width of 190px — 150px width plus 20px padding plus 20px
border. This code is fine and uncontentious when you’re using absolute values for width, but it
becomes problematic when you start mixing in percentages:

div {
 border: 10px solid black;
 padding: 10px;
 width: 15%;
}

Now the width has become a lot harder to calculate because you first need to know the width value
of the parent element before you can know how much 15 percent of that is and add the pixel values.
Calculations can become very complicated very quickly, making percentage-based layouts tricky to
manage properly.
At this point, the box-sizing property comes in handy. With this, you can set from which part of
the box model — the content itself or the border — the width of the element is calculated. So now
that I’ve covered the reason for the new property’s existence, I’ll begin the demonstration with a look
at its syntax, using the convention that will be standard in this book:

E { box-sizing: keyword; }

In this code example, the selector is represented with E. Of course, in HTML, this selector doesn’t
exist; I’m merely using it as an indicator that any selector can be used here. In the case of the
examples used at the beginning of this section, the E represents the div element.
Next, you have the property itself: box-sizing. This property is implemented in all major
browsers but with browser-specific prefixes in some: In Firefox, the property uses the -moz- prefix
— that is, the property is -moz-box-sizing; and in WebKit, it has the -webkit- prefix, so it
would be -webkit-box-sizing. Rather than obfuscate the code with all of the different
prefixes, I use only the correct property name according to the CSS3 specification and note in the text
when a prefix is required, as I’ve just done here. (I’ll explain more about these browser prefixes in
the following section.)
The value of the declaration is the word keyword, but again the value is only an indicator; it
represents a range of possible values. For box-sizing the permitted values are border-box

and content-box.
With all of that in mind, if you used actual values, one possible real-world application of this new
property might look like this:

div { box-sizing: content-box; }

So what does this property do? As mentioned, box-sizing sets the point of the element from
which the width is calculated. The default is content-box, which means the stated width of the
element applies to the content, and the padding and border values are added on as usual.
A value of border-box means the stated width value is the total width of the content, the
padding, and the border — in other words, the entire box (without the margin). To illustrate this, let’s
return to the previous example code and add the property:

div {
 border: 10px solid black;
 box-sizing: border-box;
 padding: 10px;
 width: 150px;
}

Now the width of 150px includes the padding and border. As each of those is 10px on both sides, the
content of the div element has a calculated width of 110px — 150px minus the 20px padding and
20px border.
Before illustrating the difference between the two values visually, I should also mention that Firefox
(with its -moz-box-sizing property) has an extra permitted value that other browsers don’t:
padding-box. Using this value, the width of the element is calculated from its padding and its
content and doesn’t include the element’s border. Here’s an example:

div {
 border: 10px solid black;
 -moz-box-sizing: padding-box;
 padding: 10px;
 width: 150px;
}

In this code, the 150px width includes the padding, so the width of the content itself would be 130px.
You can see the difference among the values when rendered in Firefox in Figure 1-1.
Moving through the examples from left to right: The first div has the default content-box value
for box-sizing, so the stated width — 150px — is the width of the content, and the border and
padding are added to the content. In the second example, the value is border-box, meaning the
150px width includes the border and padding, making the content 110px wide. Finally, the div on the
right uses Firefox’s own -moz-box-sizing property with the value of padding-box, so the
150px includes the content and padding but not the border, putting the content’s width at 130px.

Figure 1-1. The effects of different values on the box-sizingproperty

Please note that although I only discuss the width property in all of these examples, the exact same
rules apply to an element’s height property. (You may also note that this works in exactly the same
way as a browser that is put into “quirks” mode.)

NOTE
If you’re a younger developer you may not remember “quirks” mode. It’s a system that emulates the incorrect way that Internet
Explorer 5.5 used to lay out web pages; you can read more about it on Wikipedia (http://en.wikipedia.org/wiki/Quirks_mode).

I use the box-sizing property in a few examples throughout this book, so if the effects (and
benefits) aren’t immediately apparent right now, they should become clearer as you work through the
rest of the chapters.

http://en.wikipedia.org/wiki/Quirks_mode

Browser-Specific Prefixes
In the previous section, I briefly discussed using browser-specific prefixes on the box-sizing
property. As CSS3 is still in a state of change and revision, you’ll see these mentioned a lot
throughout the rest of this book, so I’ll take some time to talk about these in more detail.
When a module is still under active review, as much of CSS3 is, a lot is subject to change; the syntax
of a property may be revised, or properties may be dropped entirely. On occasion, even the wording
of the draft itself is perhaps a little nebulous and open to interpretation.
At the same time, browsers need to implement these features so we can see how they work in
practice. But consider the difficulties that would occur if two separate browsers implemented the
same property but interpreted it slightly differently: Your code would appear differently — perhaps
radically so — in each of the browsers. To prevent this from happening, each of the different browser
engines prefixes a short code to the beginning of experimental properties. Let’s imagine a property
called monkeys (I’ve always wanted a monkeys property), which is brand new in the
specification, and that all of the browsers have decided to implement it to see how it works. In this
case, you would use the following code:

E
 {
 -moz-monkeys: value ; /* Firefox */
 -ms-monkeys: value ; /* Internet Explorer */
 -o-monkeys: value ; /* Opera */
 -webkit-monkeys: value; /* WebKit */
}

The amount of repetition may seem somewhat unnecessary, but the repetition is for our own good; the
last thing you want is for all the browsers to implement the monkeys property differently, leading to
total chaos. (You’ll see a great example of the benefits of prefixes when I discuss gradients in
Chapter 11.)

Future-Proofing Experimental CSS
Quite often people will suggest that when using prefixed, experimental CSS properties, you also add
the unprefixed property at the end:

E {
 -moz-monkeys: value; /* Firefox */
 -ms-monkeys: value; /* Internet Explorer */
 -o-monkeys: value; /* Opera */
 -webkit-monkeys: value; /* WebKit */
 monkeys: value;
}

The theory is that this future-proofs the code; when the property is fully implemented in the browsers,
you don’t need to go back and add the property to your stylesheets. I used to agree with this technique,
but now I’m not so sure. I think future-proofing is okay if more than one browser has already fully
implemented the property in a compatible way, as that usually means the specification is stable.
However, if the spec is still under review, then the syntax is subject to change. Adding the unprefixed
property could cause problems when browsers actually implement the updated syntax — or, indeed, it
may not work at all.
Some properties in this book — such as background-size in Chapter 8 — are semi-
implemented, which is to say they are prefixed in some browsers, but unprefixed in others. In this
case, you will obviously have to use a mixture of the two states if you want to use those properties
across browsers. Others — like the aforementioned gradient properties in Chapter 11 — are
immature, still open to review, and far from final, so you should probably not use the future-proofing
method with them just yet.

Getting Started
That should be everything you need to get started with this book — except, of course, an inquisitive
nature. I have a lot of ground to cover in CSS3, so I’ll move fairly quickly, but each chapter should
give you the knowledge you need to build your own tests, demonstrations, and sites that take
advantage of the flexibility and rich features that CSS3 provides.
We’ll begin with a look at one of the simplest — and yet potentially the most disruptive (and I mean
that in a good way) — new features: Media Queries.

Chapter 2. Media Queries

Back when the World Wide Web was some thing you only accessed via a browser on your desktop or
laptop, writing CSS was fairly straightforward. Although you had to consider cross-browser and
cross-platform issues, at least you knew with reasonable certainty that everyone was using
fundamentally similar devices to view your website. Over the last few years, however, we’ve seen an
explosion of new devices for accessing the Web — from game consoles to mobile devices such as the
iPhone or iPad. Presenting your content to everybody in the same way no longer makes sense when
they could be viewing your website on a widescreen desktop monitor or a narrow handheld screen.
CSS has had a way to serve different styles to different media types for quite some time, using the
media attribute of the link element:

<link href="style.css" rel="stylesheet" media="screen">

But using this is like wielding a pretty blunt instrument when the screen in question can be between
3.5 inches and 32 inches in size. The CSS3 solution to this problem is the Media Queries Module
(http://www.w3.org/TR/css3-mediaqueries/). Media Queries extend the media types by providing a
query syntax that lets you serve styles far more specifically to your user’s device, allowing a tailored
experience. The description may sound quite dry, but this feature is actually one of the most
revolutionary in the entire CSS3 specification. Media Queries give you the freedom to make websites
that are truly device-independent and give your users the best possible experience no matter how they
choose to visit your site.
The Media Queries Module has Candidate Recommendation status so is considered ready for
implementation. The module is already well implemented in Firefox, WebKit, and Opera, and will be
in Internet Explorer from version 9.

http://www.w3.org/TR/css3-mediaqueries/

The Advantages of Media Queries
As a quick demonstration of the power and flexibility of Media Queries, I want to show an example
of how websites can be optimized for mobile browsers without requiring a great deal of extra
development.
People visiting your site on a mobile device may well struggle to use it: The text may appear too
small, and zooming in means a lot of scrolling to find navigational elements; those navigational
elements may involve drop-down functionality that is triggered by hovering over them, an action that
often doesn’t exist on mobile devices; large images may take a long time to download over a weak
data connection and use a substantial portion of your monthly bandwidth allowance. Some sites plan
for this by providing mobile-friendly versions, but these generally involve a lot of development work.
A subdomain has to be set up with stylesheets and HTML templates that differ from the parent site,
images have to be resized to better fit small screens, and a script has to be created to detect whether a
mobile browser is being used and to redirect to the mobile site accordingly. This approach can cause
problems: Your script has to be kept up to date with all mobile browser versions, and maintenance
often involves duplication to keep both mobile and desktop versions in sync.
Media Queries address many of these issues. For a start, they detect devices based on their attributes,
so no browser-sniffing scripts are required. They allow you to target stylesheets directly for a
device’s capabilities, so if a device with a small screen is detected, CSS rules will be tailored to that
screen size, removing extraneous elements from the screen, serving smaller images, and making text
clearer.
For example, take a look at the website of the dConstruct conference from 2010
(http://2010.dconstruct.org/), as shown in Figure 2-1.
When viewed in a desktop browser, the site features large images of the speakers, and text is
displayed in columns laid out horizontally. Through the power of Media Queries, when you see the
same site viewed in a narrower browser — as smartphones such as the iPhone would use — the
speaker images are removed, the links to the speakers’ pages are more prominent, and all of the text
on the page is moved into a single column, which is ideal for scrolling down.

http://2010.dconstruct.org/

Figure 2-1. The dConstruct website viewed in a desktop browser (left) and a mobile browser (right)

Of course, the Web is appearing on more than just desktop and smartphone devices, and we really
need to be working toward an era of websites optimized for any device. I urge you to read Ethan
Marcotte’s article, “Responsive Web Design” (http://www.alistapart.com/articles/responsive-web-
design/), which provides a great introduction to this new paradigm of web design.
And if you want to see what other people have been doing with Media Queries there’s a great gallery
online at http://www.mediaqueri.es/, which showcases some of the better examples of what’s
possible.

http://www.alistapart.com/articles/responsive-web-design/
http://www.mediaqueri.es/

Syntax
A Media Query sets a parameter (or series of parameters) that displays associated style rules if the
device used to view the page has properties that match that parameter. You can use Media Queries in
three ways, all of which match the different ways that CSS can be applied to a document. The first is
to call an external stylesheet using the link element:

<link href="file" rel="stylesheet" media="logic media and (expression)">

The second is to call an external stylesheet using the @import directive:
@import url('file') logic media and (expression);

The third is to use Media Queries in an embedded style element or in the stylesheet itself with the
extended @media rule:

@media logic media and (expression) { rules }

This method is the one I’ll use throughout the rest of this chapter, as it’s clearer for demonstration
purposes. Which method you use will largely depend on your own preference and the demands of
your existing stylesheet structure.
Now that I’ve introduced the declaration methods, let’s explore the syntax. You should already be
familiar with the media attribute — it declares the media types that the styles are applied to, just as
in the HTML link tag:

<link href="style.css" rel="stylesheet" media="screen, projection">

As with the current syntax, you can use a comma-separated list to choose multiple media types.
The first new attribute for the @media rule is logic. This optional keyword can have the value of
either only or not:

@media only media and (expression) { rules }
@media not media and (expression) { rules }

The only value is used if you want to hide the rule from older browsers that don’t support the
syntax; for browsers that do support it, only is effectively ignored. The not value is used to negate
the Media Query; you use not to apply the styles if the parameters you set are not met.
The next attribute is expression, which is where the main selection takes place. You declare
expression by using the and operator and use it to set parameters beyond the media type. These
parameters are known as Media Features, and they’re critical to the power of Media Queries. That
being the case, let’s explore them in detail.

Media Features
Media Features are information about the device that’s being used to display the web page: its
dimensions, resolution, and so on. This information is used to evaluate an expression, the result
of which determines which style rules are applied. That expression could be, for example,
“apply these styles only on devices that have a screen wider than 480 pixels” or “only on devices that
are orientated horizontally.”
In Media Queries, most Media Feature expressions require that a value be supplied:

@media media and (feature:value) {rules}

This value is required to construct the example expressions I just mentioned. In a few cases, however,
the value can be left out and just the existence of the Media Feature itself tested against:

@media media and (feature) {rules}

Expressions will become clearer as I talk through the Media Features and explain when values are
required or optional.
With the syntax covered, let’s meet some of the more prominent Media Features. The ones I introduce
next are the most applicable to color display screens used for accessing the Web and are the ones
you’re most likely to use on a day-to-day basis. Other Media Features are available, but they’re more
likely to be used for alternative devices such as TVs or fixed-grid terminals.

Width and Height
The width Media Feature describes the width of the rendering viewport of the specified media type,
which, in practice, usually means the current width of the browser (including the scroll bar) for
desktop operating systems. The basic syntax requires a length value:

@media media and (width:600px) { rules}

In this case, the rules are applied only to browsers that are set to be exactly 600px wide, which is
probably far too specific. width also accepts one of two prefixes, however, max- and min-,
which allows you to test for a minimum or maximum width:

@media media and (max-width:480px) {rules}
@media media and (min-width:640px) {rules}

The first query applies the rules in browsers that are no wider than 480px, and the second in
browsers that are at least 640px wide.
Let’s look at a practical example. Here, I’ll take advantage of browser window sizes by providing a
decorative header for wider windows:

@media screen and (min-width: 400px) {
 h1 {
 background: black url('landscape.jpg') no-repeat 50% 50%;
 color: white;
 height: 189px;
 margin-bottom: 0;
 padding: 20px;
 }
}

This Media Query is testing for browser windows that are at least 400px wide and applying a
background image to the h1 element when that is the case. If my browser window is at least 400px
wide, I see the image; if I resize it to be narrower, only a text header is shown. You can see this
example illustrated in Figure 2-2.

Figure 2-2. Different style rules applied with the width Media Query

The height Media Feature works in the same way, except that it targets browsers based on their
height instead of width. The syntax is the same as width and also permits using max- and min-
prefixes:

@media media and (height:value) {rules}
@media media and (max-height:value) {rules}
@media media and (min-height:value) {rules}

Because of the prevalence of vertical scrolling, however, height is used much less frequently than
width.

Device Width and Height
The device-width Media Feature functions in a similar way, but it describes the width of the
device that is rendering the page. When dealing with web pages, the device width is the width of the
screen that’s displaying the page rather than the width of the browser window. As with width and
height, the basic syntax requires a length value and can be prefixed in the same way:

@media media and (device-width:1024px) {rules}
@media media and (max-device-width:320px) {rules}
@media media and (min-device-width:800px) {rules}

device-width becomes most useful when designing for mobile devices, which have smaller
display areas. Using this feature, you can cater your designs to those smaller devices without having
to create a whole new version of the site designed for the mobile web.
For example, I’ll optimize some content for display on two different devices. I’ll use two boxes of
content that, by default, will be floated to sit next to each other on the horizontal plane. For smaller
devices (I’ll use an iPhone in this example) the boxes will not be floated and, instead, will sit one on
top of the other, making better use of the narrower device. Here’s the code:

.container { width: 500px; }

.container div {
 float: left;
 margin: 0 15px 0 0;
 width: 235px;
}
@media only screen and (max-device-width: 320px) {
 .container { width: auto; }
 .container div {
 float: none;
 margin: 0;
 width: auto;
 }
}

By default, I have a 500px container element, with two floated div elements inside it that are 235px
wide and have horizontal margins of 15px. Then I create a Media Query (using the only operator to
hide it from older browsers) that applies only to devices with a maximum width of 320px (the default
iPhone width). This query sets rules that remove the explicit values from the width and margin
properties and prevents the boxes from floating. You can see the results in Figure 2-3. The content is
more appropriately formatted for its target device, without losing any readability or requiring a
special “mobile version.”

Figure 2-3. The device-width Media Query displays content differently on a desktop (left) and iPhone (right).

NOTE
iOS (iPhone, iPad, etc.) and Android devices measure device-width by the shorter pair of the four screen sides; that is, given a
device with dimensions of 320×480, the device-width will be 320px, regardless of whether you're viewing it in portrait or
landscape mode.

The device-width feature also has a counterpart device-height, which operates as
height does to width. Once more, device-height uses a similar syntax, also with max-
and min- prefixes:

@media media and (device-height:value) {rules}
@media media and (max-device-height:value) {rules}
@media media and (min-device-height:value) {rules}

Much like height, device-height is used less frequently than device-width because
vertical scrolling is easier than horizontal scrolling.

Using Media Queries in the Real World
In the examples thus far, I’ve tended to create a site that is optimized for larger browsers or devices
first, with Media Queries used to provide different styles for smaller (mobile) devices. This has been
useful for demonstration purposes, but in your own sites you’ll probably want to do this the other way
round.
The reason for this is because of the way that some browsers load page assets, such as images, that
are included in stylesheets. Some early adopters of Media Queries would write their code the way
we’ve seen in my examples, using large background images and then setting a value of display:
none to hide them from mobile devices. However, those background images can still be downloaded
and held in the cache even though they aren’t displayed. This increases the page’s load time and can
consume bandwidth allowances — neither of which is good for mobile device users without wireless
connections.
A better way to create your pages is to make a basic stylesheet for your mobile audience first and then
one with larger assets for desktop or tablet users that is loaded using a Media Query such as
device-width:

<link href="basic.css" rel="stylesheet" media="screen">
<link href="desktop.css" rel="stylesheet"
 media="screen and (min-device-width: 480px)">

When the stylesheets are separated in this way, the file desktop.css won’t be loaded for devices with
a screen width of less than 480px, so none of those large assets will be downloaded in the
background.
This will work for the great majority of browsers from the past few years; any really old browsers
will get the basic stylesheet instead, which is probably better for them as they won’t be able to cope
with the advanced features I’ll be teaching throughout the rest of this book.
The big exception to this is Internet Explorer (get used to that sentence; you’ll be reading it a lot).
While IE9 does have Media Query support, previous versions don’t. To get around that you just need
to load the desktop file using a conditional comment that only Internet Explorer recognizes:

<link href="basic.css" rel="stylesheet" media="screen">
<link href="desktop.css" rel="stylesheet" media="screen
 and (min-device-width: 480px)">
<! — [if lt IE 9]>
 <link href="desktop.css" rel="stylesheet" media="screen">
<![endif] — >

This simply means: “If you’re using Internet Explorer below version 9, load the file desktop.css.” It’s
a small bit of repetition, but it will solve this problem and let you build your websites in a
progressive way.

Orientation
If you’re less concerned with the actual dimensions of the viewing device but want to optimize your
pages for either horizontal (like a typical web browser) or vertical (like an ebook reader) viewing,
the Media Feature you need is orientation. Here is its syntax:

@media media and (orientation:value) {rules}

value can be one of two options: landscape or portrait. The landscape value applies
when the width of your browser is greater than its height, and the portrait value applies when the
opposite is true. Although orientation can certainly be applied to desktop browsers, you’ll find
it most useful when dealing with handheld devices that the user can easily rotate, such as the new
generation of smartphones and tablets.
For example, you can use orientation to display a navigation menu hori zontally or vertically,
depending on the visitor’s browser orientation. The code looks like this:

ul { overflow: hidden; }
li { float: left; }
@media only screen and (orientation: portrait) {
 li { float: none; }
}

By default, the li elements have a float value of left, making them stack horizontally across the
page. If the same page is viewed in a portrait orientation — either by resizing the browser to be
taller than it is wide or by viewing the page in a device with a portrait orientation — the float is
removed and the li elements stack vertically instead. You can see the result in Figure 2-4.

Figure 2-4. The orientation Media Query on an Android browser: landscape (left) and portrait (right)

As only two values are possible for the orientation feature, if you apply differentiating rules
using one value, then the other tacitly becomes the opposite. In this example, I only used the
portrait value, so, by default, all of the rules outside of that function apply to the landscape
orientation.

Aspect Ratio
You can also create queries that apply when a certain width-to-height ratio is met. Use aspect-
ratio to test the browser’s aspect ratio or device-aspect-ratio to test the device’s aspect
ratio. Here is the syntax for these two features:

@media media and (aspect-ratio:horizontal/vertical) {rules}
@media media and (device-aspect-ratio:horizontal/vertical) {rules}

The horizontal and vertical values are positive integers that represent the ratio of the width and
height (respectively) of the viewing device’s screen, so a square display would be 1/1 and a
cinematic widescreen display would be 16/9.
Selecting by aspect ratio is potentially fraught with caveats. For example, some device manufacturers
define widescreen as 16:9, some as 16:10, and some as 15:10. This variation means you have to
include all of these as parameters if you want to apply a “widescreen” set of rules.

Pixel Ratio
In general, the CSS Pixel unit (px) is a measurement of a single pixel on the computer screen — if
your screen is 1024×768 resolution and you give an element a width of 1024px, you expect it to fill
the screen horizontally. This is not always the case with smartphone and mobile devices, however.
Reading websites on their small screens often involves zooming in, and this magnification causes a
screen pixel to be larger than a CSS pixel. For example, magnifying a page by 100 percent means 1
CSS pixel is displayed on the screen by 4 device pixels (2×2).
Magnification is fine for scalable content such as text and vector graphics, but bitmap images can
suffer badly from a loss of quality when magnified. To get around this problem, many devices now
have screens with higher pixel density ratios, which allow for the display of high-resolution content
without any loss of quality. The iPhone 4, for example, has a pixel density of 2, meaning every CSS
pixel is displayed on screen by 4 device pixels (as in the example in the previous paragraph),
allowing for 100 percent zoom without any loss of detail.
A Media Feature is available that lets you target devices based on their pixel density. The feature is
device-pixel-ratio, and it’s implemented in Mobile WebKit with the -webkit- prefix:

@media media and (-webkit-device-pixel-ratio: number) {rules}

The number is a decimal that represents the device’s pixel density. For example, the Samsung
Galaxy S has a pixel density of 1.5; to target screens similar to that, you would use:

@media screen and (-webkit-device-pixel-ratio: 1.5) {rules}

As with the other Media Features, you can also detect maximum and minimum pixel ratios:
@media media and (-webkit-max-device-pixel-ratio: number) {rules}
@media media and (-webkit-min-device-pixel-ratio: number) {rules}

This flexibility makes serving higher-resolution images to browsers with higher pixel density easier,
as you can see in this code:

 E { background-image: url('image-lores.png'); }
 @media screen and (-webkit-min-device-pixel-ratio: 1.5) {

 background-image: url('image-hires.png');
 background-size: 100% 100%;

}

The first rule () means browsers on devices with a “standard” (or low-resolution) pixel ratio will
use the standard image (image-lores.png), whereas devices with a pixel ratio of at least 1.5 will use
the high-resolution image (image-hires.png) instead (). Note the use of the background-size
property here (); this property should be used with high-resolution images to ensure they aren’t
displayed larger than the element they are applied to (I introduce background-size fully in
Chapter 8).
Pixel ratio detection should also be available in the Firefox Mobile browser (which is still in beta at
the time of this writing), albeit with a different syntax for the maximum and minimum media features:

@media media and (-moz-device-pixel-ratio: number) {rules}
@media media and (max — moz-device-pixel-ratio: number) {rules}
@media media and (min — moz-device-pixel-ratio: number) {rules}

Multiple Media Features
You can chain multiple queries together on the same media type by adding expressions with the and
operator:

@media logic media and (expression) and (expression) {rules}

This syntax tests that both expressions are matched before applying the selected rules. For example,
to make sure all permutations of widescreen are covered, as mentioned in the previous section, you
would create this query:

@media only screen and (aspect-ratio: 15/10) and (aspect-ratio: 16/9) and
(aspect-ratio: 16/10) {rules}

You can also set different expressions on multiple media types:
@media logic media and (expression), media and (expression) {rules}

Here a different expression would be used for each media type, for example, setting some rules to all
landscape devices and portrait projection devices:

@media all and (orientation: landscape), projection and (orientation: portrait) {rules}

You can also, of course, create any combination of the above syntaxes.

Mozilla-Specific Media Features
As part of the work on Firefox Mobile, the Mozilla team has introduced a number of proprietary new
media features, many of which are very specific to Gecko (the Firefox rendering engine), but some of
which may be proposed to the W3C as official features. You can see all of these at
https://developer.mozilla.org/En/CSS/Media_queries#Mozilla-specific_media_features.
Perhaps the most interesting is -moz-touch-enabled, which allows you to apply rules to
elements specifically on touchscreen devices, for example, for making buttons bigger to suit fingers
rather than a stylus or mouse. Here’s the syntax:

@media media and (-moz-touch-enabled) {rules}

A device is either touch enabled, in which case it has a value of 1, or isn’t, in which case the value is
0. As such, you don’t need to state a value parameter and can use the feature keyword only.

https://developer.mozilla.org/En/CSS/Media_queries#Mozilla-specific_media_features

Summary
Their syntax may be simple, but Media Queries have the capacity to be extraordinarily powerful.
With the mobile web explosion of recent years, designers and developers are beginning to realize
they have the power to tailor their content to the user without employing the old techniques of
browser sniffing or separate (and completely different) mobile versions of their sites.
Media Queries are already being recognized and hailed by some of the leading lights of web
development, and talks are being given about their use at all of the big web conferences. This
enthusiasm is largely due to the desire to overcome the constraints of browsing the Web on handheld
devices with small screens but is now also being driven by the excitement of early iPad adopters.
With careful consideration and clever use of Media Queries, you can create websites that scale
perfectly for users, however they access the Web.

Media Queries: Browser Support
 WebKit Firefox Opera IE

Media Queries Yes Yes Yes No (expected in IE9)

Chapter 3. Selectors

Selectors are the heart of CSS, and although the original CSS1 specification had only 5 or 6, CSS2
expanded the range with 12 more. CSS3 goes further still, roughly doubling the number of available
selectors.
Selectors can be broadly separated into two categories. The first are those that act directly on
elements defined in the document tree (p elements and href attributes, for example); this category
contains class, type, and attribute selectors. For the sake of expediency, I’ll group these together
under the banner of DOM selectors. The second category contains pseudo-selectors that act on
elements or information that sits outside of the document tree (such as the first letter of a paragraph or
the last child of a parent element). I’ll cover pseudo-selectors in the next chapter — here I’ll discuss
DOM selectors.
CSS3 provides three new attribute selectors and one new combinator — that is, a selector that joins
other selectors together, such as the child combinator (>) from CSS2. These are defined in the
Selectors Level 3 Module (http://www.w3.org/TR/css3-selectors/), which currently has the status of
Proposed Recommendation. This status means the module already has widespread and stable
implementation across most browsers (with the current exception of Internet Explorer, though full
support is planned for IE9). The Selectors Level 3 Module is also expected to be one of the first to
obtain Candidate Recommendation status. As long as you make provisions for Internet Explorer’s
lack of support, you can start using CSS3 selectors right away — many sites already do.

http://www.w3.org/TR/css3-selectors/

Attribute Selectors
Attribute selectors were introduced in CSS2, and, as you may expect from the name, they allow you to
specify rules that match elements based on their attributes — such as href or title — and the
values of those attributes. The four selectors defined in CSS2 are:

E[attr] {} /* Simple Attribute Selector */
E[attr='value'] {} /* Exact Attribute Value Selector */
E[attr~='value'] {} /* Partial Attribute Value Selector */
E[attr|='value'] {} /* Language Attribute Selector */

Before moving on to the new selectors in CSS3, a quick recap of how each selector is utilized is
worthwhile. For this, I’ll use the following markup, which is a (very short) contact list:

 Peter
 Pedro
 Pancho

The Simple Attribute Selector applies rules to elements that have the specified attribute defined,
regardless of that attribute’s value. So given the following code:

a[rel] { color: red; }

all of the a elements in my markup have a rel attribute, despite their having different values. In this
case, therefore, all elements have the rule applied. If you want to be more specific, you can use the
Exact Attribute Value Selector to define a value:

a[rel='friend'] { color: red; }

This code applies the rule only to the second a element in our markup () because it selects only
elements that have the exact value of friend. If you want to select both of the elements that contain
the value of friend, you would use the Partial Attribute Value Selector:

a[rel~='friend'] { color: red; }

This code looks for the value of friend as part of a space-separated list (in most cases, a word) in
any rel attribute and so applies the rule to elements and .
The final selector, the Language Attribute Selector, applies rules to elements based on their lang
attribute. The example markup has two Spanish names, although one is from Spain and the other is
from Mexico. To select both of these, you use this code:

a[lang|='es'] { color: red; }

This code selects all lang attributes whose value begins with es, regardless of their country values
— that is, elements and .

New Attribute Selectors in CSS3
You’ve seen how useful attribute selectors can be for finding exact or partial values in selectors, but
what if you want even more flexibility? CSS3’s new selectors provide it with the power to match
substrings within an attribute value. This feature makes them especially useful for applying rules to
XML documents, which have more arbitrary attributes than HTML — though they are still quite useful
for HTML developers as well.

Beginning Substring Attribute Value Selector
The first new attribute selector — which, to avoid having to repeat that mouthful of a title, I’ll refer to
as the Beginning Selector — finds elements whose chosen attribute begins with the string supplied to
it as an argument. It uses the caret (^) symbol to modify the equals sign in the property. Here’s the full
syntax:

E[attr^='value'] {}

This code looks for the supplied value at the beginning of the specified attribute. For example, if you
use the following rule:

a[title^='image'] {}

and apply it to this markup:
<p>Lorem ipsum</p>
<p>Lorem ipsum</p>

the rule will be applied to the a element in the first paragraph since the title attribute string begins
with the word image. However, the rule will not be applied to the a element in the second
paragraph because its title attribute string contains those characters but does not begin with them.

NOTE
In HTML documents, the attribute selector value is case insensitive; for XML documents, however, the value is case sensitive.

The Beginning Selector is especially useful when you want to add visual information to hyperlinks.
Here’s an example of a typical hyperlink to an external website:

<p>This is a hyperlink.</p>

When you see this link in your browser, you can’t immediately tell whether it’s a link to a page on the
same website or to an external URI. With this new attribute, however, you can pass the protocol
(http) as the argument and add an icon to signify external links clearly:

a[href^='http'] {
 background: url('link-go.png') no-repeat left center;
 display: inline-block;
 padding-left: 20px;
}

The result is shown in Figure 3-1.

Figure 3-1. An icon applied with the Beginning Selector

Of course, you can extend this to cover many other web protocols, some of which are used in this
example:

a[href^='mailto'] { background-image: url('email_go.png'); }
a[href^='ftp'] { background-image: url('folder_go.png'); }
a[href^='https'] { background-image: url('lock_go.png'); }

With the different protocols provided as values for the selector, you can apply it to this example

markup:
<p>Lorem ipsum dolor email sit amet.</p>
<p>Nulla lacus metus FTP server luctus eget.</p>
<p>Etiam luctus tortor secure server quis.</p>

The results of the output are shown in Figure 3-2.

Figure 3-2. More examples of link icons with the Beginning Selector

Of course, the Beginning Selector also has many applications with attributes that accept more verbose
values, such as alt, cite, and title. And with the introduction of HTML5 and a whole range of
new form elements and attributes, this selector and its soon-to-be-introduced siblings will become
much more flexible.
Consider, for example, the proposed datetime attribute. This attribute accepts date-string values
such as 2010-03-11, so you could use the Beginning Selector to apply styles to all elements meeting a
supplied year value, which is very handy for calendar or archiving applications.

Ending Substring Attribute Value Selector
The Ending Selector, as I’ll call it, works exactly like the Beginning Selector — just the other way
around! That is, you use it to select attributes that end with the supplied value. The syntax differs by
just one character: This time you use the dollar character ($) to modify the equal sign (=). Here’s the
full syntax:

E[attr$='value'] {}

Let’s return to the first example in this chapter, which used this markup:
<p>Lorem ipsum</p>
<p>Lorem ipsum</p>

And apply the new rule to it with a new value:
a[title$='library'] {}

This time the rule applies to both a elements because they both end with the word library.
As with the Beginning Selector, you can use this selector to provide visual clarity to hyperlinks. But
this time, instead of using the protocols at the beginning of the href attribute, you use the file types at
the end. The code here shows rules for many popular file-type extensions:

a[href$='.pdf'] { background-image: url('pdf.png'); }
a[href$='.doc'] { background-image: url('word.png'); }
a[href$='.rss'] { background-image: url('feed.png'); }

And here’s a markup snippet containing a list of links to files:

Lorem ipsum dolor PDF sit amet.
Lorem ipsum dolor MS Word sit amet.
Nulla lacus metus RSS Feed luctus eget.

When the stylesheet is applied to the markup, an appropriate icon is applied to each of the a
elements, as shown in Figure 3-3.

Figure 3-3. Link icons applied with the Ending Selector

To achieve this effect using CSS2, you would have to apply set class values to the markup
(class="pdf", for example). The advantage of using the Ending Selector is that links to files can
be detected automatically, without an end user having to apply a particular class. The disadvantage is
that sometimes the file-type suffix is not at the end of the URI. However, the next new selector helps
get around that shortcoming.

Arbitrary Substring Attribute Value Selector
The final new attribute selector — which I’ll call the Arbitrary Selector — works in the same way as
the previous two, but it searches for the provided substring value anywhere inside the specified
attribute string. This selector uses the asterisk (*) character. Here’s the new syntax:

E[attr*='value'] {}

To demonstrate this selector, I’ll once again use the markup from my first example:
<p>Lorem ipsum</p>
<p>Lorem ipsum</p>

and provide a value to the new selector:
a[title*='image'] {}

As with the Ending Selector, the rule applies to both a elements. However, this time it’s applied
because they both contain the word image in their title attributes, even though the word appears in
a different position in each example.
You may notice that this selector is somewhat similar to the Partial Attribute Value Selector from
CSS2, and, indeed, in this example they are interchangeable. But the two selectors differ in a major
way. In the example markup, with CSS3, I can also use just a small piece of the string:

a[title*='im'] {}

And the rules are still applied. The Partial Attribute Value Selector requires that the user enter a
value that matches a full item in a space-separated list — in the example that would be either free,
image, or library — so the im value would not be found anywhere in the markup in CSS2.
To continue with the examples provided for the first two attribute selectors, the Arbitrary Selector is
also useful for adding file-type icons to URIs that have parameters at the end. Consider this fairly
typical URI:

Lorem

If you use the Ending Selector with a value of pdf, this element would not be recognized as a valid
target, even though the file type is a PDF, because the value does not appear at the very end of the
string. Providing the same value using the Arbitrary Selector does the trick, however:

a[href*='.pdf'] { background-image: url('pdf.png'); }

The .pdf substring value occurs within the specified attribute, so the icon is applied. You can see
this illustrated in Figure 3-4.

Figure 3-4. Link icon applied with the Arbitrary Selector

This selector is the most flexible of the three new attribute selectors as it takes a more wildcard
approach to searching within strings. But the extra flexibility means you must take more care when
defining the values provided to the selector; simple combinations of letters are far more likely to
occur when you can match anywhere within a string.

Multiple Attribute Selectors
You can also chain multiple selectors together, which allows you to be very specific. Using multiple
selectors, you can create rules to apply to attributes with values defined for the start, end, and
anywhere in between. Imagine, for example, that you had links to two files with identical names but
that were located in different folders:

<p><a href="http://example.com/folder1/file.pdf"Lorem ipsum</p>
<p><a href="http://example.com/folder2/file.pdf"Lorem ipsum</p>

If you want to specify a rule to apply to only the second p element, you can chain some selectors
together:

a[href^='http://'][href*='/folder2/'][href$='.pdf'] {}

This code looks for a elements that have an href attribute beginning with http://, ending with
.pdf, and with /folder2/ in the middle. Very specific!

The General Sibling Combinator
Our final new DOM selector in CSS3 is a combinator, which you’ll recall means that it joins together
more than one selector. The General Sibling Combinator is an extension of the Adjacent Sibling
Combinator, which was introduced in CSS2. The syntaxes differ by just a single character:

E + F {} /* Adjacent Sibling Combinator */
E ~ F {} /* General Sibling Combinator */

The difference between the two is subtle but important: Adjacent Sibling selects any element (F) that
is immediately preceded by element (E) on the same level of the document tree, but General Sibling
selects any element (F) that is preceded by element (E) on the same level of the tree, regardless of
whether it is immediately adjacent.
If that still sounds confusing, I’ll try to explain with an example. Let’s start with this CSS:

h2 + p { font-weight: bolder; } /* Adjacent Sibling */
h2 ~ p { font-style: italic; } /* General Sibling */

And apply it to the following markup (truncated for clarity):
 <p>Next we're going to discuss...</p>

 <h2>René Descartes</h2>
 <p>A highly influential French philosopher...</p>
 <p>He once famously declared:</p>

 <blockquote>
 <p>I think, therefore I am.</p>

 </blockquote>
 <p>However, this presumes the existence of the speaker.</p>

You can see the outcome in Figure 3-5. In the CSS, I’m using the Adjacent Sibling Combinator to bold
the p element immediately adjacent to the h2 element — that is, element . I’m using the General
Sibling Combinator to italicize all the p elements following the h2 element, which applies to
elements and .
Elements and have no rules applied to them. Why not? Element precedes the h2 element, and
element is inside a blockquote element and, therefore, on a different level (the level below) in
the document tree, so neither is affected by the rules.
To achieve the desired effect of only italicizing the paragraphs on the same level as the h2 element in
CSS2, without the General Sibling Combinator, you would need to set all p elements to display in
italics and then add an extra rule for the p inside the blockquote to overrule the inheritance:

p { font-style: italic; }
blockquote p { font-style: normal; }

Figure 3-5. Showing the difference between the Adjacent Sibling and General Sibling Combinators

You probably won’t need to use the General Sibling Combinator often because much of its function
overlaps with the basic DOM selectors. That said, you will still discover plenty of occasions where
this can save you a little bit of code (and time).

Summary
Although attributes are a key feature of HTML4, most of them accept only a limited range of values,
so many of them do not really require the use of the attribute selectors I’ve introduced in this chapter.
Aside from the href attribute, only a handful of attributes accept more verbose values (alt, class,
id, rel, and title are the ones that spring to mind). But, as I mentioned before, HTML5 is on the
horizon and is set to introduce new attributes like datetime and pubdate that will allow you to
be more creative with selectors.
The new selectors introduced in this chapter, along with those from previous versions of CSS,
provide ways to traverse the document tree based on defined elements and attributes. Of course, on
occasion the markup alone isn’t sufficient for your purposes, and then you need to add classes or
nonsemantic elements to act as hooks to hang your styles on. In the next chapter, you’ll discover how
CSS3 removes that need.

Selectors: Browser Support
 WebKit Firefox Opera IE

Attribute Selectors Yes Yes Yes Yes

General Sibling Combinator Yes Yes Yes Yes

Chapter 4. Pseudo-classes and Pseudo-
elements

The very first CSS specification, CSS1, introduced the concepts of pseudo-classes and pseudo-
elements. These are selectors that act upon information about elements that extends (or sits outside
of) the document tree, such as the state of a link or the first letter of a text node. A pseudo-class
differentiates among an element’s different states or types; these include — but are not limited to —
those that provide information about link states: :hover, :visited, :active, and so on. A
pseudo-element provides access to an element’s subpart, which includes those pseudo-elements that
select portions of text nodes, for instance, :first-line and :first-letter.
Though the selectors just mentioned have been around since CSS1, CSS2.1 added a handful more —
although pseudo-element support has not been well implemented, if at all, until recently. CSS3 builds
on these foundations with an expanded range of pseudo-classes, as well as a (slightly) tweaked syntax
to differentiate pseudo-elements.
The advantage of having more methods for traversing documents should be clear: Fewer styling hooks
are required. Markup like this is most likely familiar to you:

 <li class=" first odd"> Lorem ipsum
 Lorem ipsum
 <li class="odd">Lorem ipsum
 <li class=" last">Lorem ipsum

The markup contains class names to describe each element’s position in the document tree: first (
) and last () show that the li elements are the first and last children of the ul element, and

odd () is used for the odd-numbered li elements. An extra span () is included around the first
letter of the first li element.
You mark up code like this when you want to add styles to alternating elements, set different values on
the first and last elements, or add special formatting to the first letter of a text node. This markup
detracts from the clarity and semantic meaning of your code, but in many cases you need it to provide
the hooks to hang your styles on.
CSS3’s new methods allow you to achieve the same visual results without muddying the markup with
unnecessary classes and nonsemantic elements:

 Lorem ipsum
 Lorem ipsum
 Lorem ipsum
 Lorem ipsum

This change takes CSS a big step closer to achieving its stated goal: the separation of content and
presentation.

Structural Pseudo-classes
As I stated in the introduction to this chapter, a pseudo-class provides a way to select an element
based on information that is not specified in the document tree. Various subtypes are available, the
most common of which is the structural pseudo-class. These subtypes are used to select elements
that are not accessible using simple selectors. Take, for example, the following markup:

<div>
 <p>Lorem ipsum.</p>
 <p>Dolor sit amet.</p>
</div>

The first of the two p elements is the first child of the div element. That’s obvious from the
document tree, but the document tree doesn’t provide any information that would allow you to apply a
rule to that element only. CSS2 introduced the :first-child pseudo-class for exactly that reason:

E:first-child {}

This pseudo-class allows you to make a selection based on information that exists but isn’t provided
as an attribute of the element — the exact purpose of a pseudo-class. Since :first-child was
introduced in CSS2, it has been the only pseudo-class of its type. But CSS3 extends the range greatly
with the introduction of 11 new structural pseudo-classes.

The nth-* Pseudo-classes
Four of the new pseudo-classes are based on a count value used to find an element’s position in the
document tree; for this count, you use the syntax nth-*. Note that I’ve used the asterisk here in place
of a number of different values, each of which I’ll introduce throughout the rest of this chapter.
The basic syntax of the nth-* pseudo-classes is quite straightforward. By default, n represents a
number that begins at 0 and increments by 1 (1, 2, 3, etc.). Another integer can be passed into it as a
multiplier. For example, 2n is every multiple of 2 (2, 4, 6, etc.), 3n is every multiple of 3 (3, 6, 9,
etc.), and so on:

E:nth-*(n) {}
E:nth-*(2n) {}
E:nth-*(3n) {}

The first example uses the default value n, so all elements of type E would be selected; in practice,
this is the same as using a simple element selector. The next example selects every other E element,
and the final example selects every third element of type E.
You may also use the mathematical operators for plus (+) and minus (−). So 2n+1 would be every
multiple of two plus one (1, 3, 5, etc.), 3n-1 would be every multiple of three minus one (2, 5, 8,
etc.):

E:nth-*(n+1) {}
E:nth-*(2n+1) {}
E:nth-*(3n-1) {}

The first example selects every element of type E except for the first instance; the count for this would
be 2, 3, 4, 5, etc. The next example selects every odd-numbered E element (1, 3, 5, etc.). The final
example, as mentioned above, selects elements in the sequence 2, 5, 8, etc.
Two special keyword values, even and odd, are also available; these can be used to replace 2n
and 2n+1, respectively:

E:nth-*(even) {}
E:nth-*(odd) {}

With the basic syntax out of the way, let’s move on to the pseudo-classes themselves.

nth-child and nth-of-type
Most of the new structural pseudo-classes allow you to select elements based on either their position
in the document tree in relation to their parent element (-child) or their classification (-of-
type). Often these definitions overlap, but there are crucial differences between them.
The simplest examples of these pseudo-classes are nth-child and nth-of-type. The first,
nth-child, selects an element based on its position in a count of the total number of children in its
parent element; nth-of-type bases its count not on the total children, but only those of the
specified element type.

 E:nth-child(n) {}
 E:nth-of-type(n) {}
 E:nth-child(2n) {}
 E:nth-of-type(2n) {}

In this example, rules and are equivalent because the count value (n) is left at the default; both

of these simply select all child elements of type E. The difference reveals itself in the later examples:
in , nth-child(2n) selects all elements of type E from a count that includes all its siblings but
only where those elements are even-numbered. In , by comparison, nth-of-type(2n) selects
all even-numbered elements of type E from a count that includes only those elements.
These rules are much easier to demonstrate than they are to explain. Take a look at these two rules:

 p:nth-child(2n) { font-weight: bolder ; }
 p:nth-of-type(2n) { font-weight: bolder; }

I’ll demonstrate the difference between them using this markup (text has been truncated for clarity):
<div>
 <h2>The Picture of Dorian Gray</h2>
 <p>The artist is the creator...</p>
 <p>To reveal art and conceal the artist...</p>
 <p>The critic is he who can translate...</p>
</div>

The div element has a total of four children: one h2 element and three p elements. The result of my
first example rule () is shown in Figure 4-1. The nth-child(2n) selector makes bold every
second child (the first and third paragraphs). Compare that to the result of my second example rule (

) in Figure 4-2. The nth-of-type(2n) selector ignores the h2 and applies a bold weight to
every second instance of the three elements of type p — that is, only the second paragraph.

Figure 4-1. The result of using the nth-child selector

Figure 4-2. The result of using the nth-of-type selector

As I mentioned before, and as you can no doubt deduce from the previous examples, nth-child
and nth-of-type have a fair bit of overlap, and you can often use them interchangeably, as I do in
the following example.
Figure 4-3 is a table showing the five-day weather forecast for London (so temperatures are given in
degrees Celsius; 0°C equals 32°F). These figures were taken in January — it’s not always this cold
here! All of the information I want to convey is in the table, but without any kind of visual formatting
the table is difficult to read.

Figure 4-3. HTML table of a weather forecast

Now compare this table to the one shown in Figure 4-4. Here, I used zebra striping to aid the eye
along the row and center-aligned the numeric values below their column headings for legibility.

Figure 4-4. Weather forecast table formatted for readability

All of the formatting was done with a few CSS3 declarations:
tbody tr:nth-of-type(even) { background-color: #DDD; }
thead th, tbody td { text-align: center; }
thead th:nth-child(-n+2), tbody td:first-of-type { text-align: left; }

An extract of markup for this table appears next; so as not to obfuscate the example, I’m only showing
the heading row and one row of the table proper:

<table>
<thead>
<tr>
 <th>Day</th>
 <th>Weather</th>
 <th>Max. Day (°C)</th>
 <th>Min. Night (°C)</th>
 <th>Wind (mph)</th>
</tr>
</thead>
<tbody>
<tr>
 <th>Sun</th>
 <td>Sunny</td>
 <td>8</td>
 <td>4</td>
 <td>8</td>
</tr>
</tbody>
</table>

I achieved the zebra striping using nth-of-type to change the background color of the even rows
to a light gray. (I could also have used nth-child for this, as in my table markup, all of the tr
elements are the only siblings on the same level of the document tree.) Then I used standard element
selectors to center-align all of the head and body elements, before using nth-child (with a
negative value) and first-of-type (which I’ll discuss shortly) to left-align the cells containing
text.
The negative value (-n) increments the count negatively — it starts at 0 and then counts down to −1,
−2, and so on. This technique is useful when used with a positive second value — I’ve used +2 here
— so the count effectively begins at 2 and counts down, allowing me to select the second and first
elements that are children of the thead element.
I’ll use this technique again in the first example of the next section.

nth-last-child and nth-last-of-type
The nth-last-child and nth-last-of-type pseudo-classes accept the same arguments as
nth-child and nth-of-type, except they are counted from the last element, working in
reverse. For example, say that I want to use some visual shorthand to show in my weather table that
the forecasts for days four and five are less certain than for the preceding days, as in Figure 4-5.

Figure 4-5. Extra formatting using nth-last-child

In Figure 4-5, I italicized the characters in the last two rows by using the nth-last-child

pseudo-class (although, once again, nth-last-of-type would serve just as well in this
example), passing an argument of −n+2:

tbody tr:nth-last-child(-n+2) { font-style: italic; }

I used the negative value (-n) here to increment the count negatively, which has the effect of acting in
reverse. Because nth-last-child and nth-last-of-type count backward through the tree,
using a negative value here makes the count go forward! The count starts at the last tr element in the
table and counts up in reverse order, so the last and penultimate lines are the first two counted and
are, therefore, italicized. This may seem counterintuitive, but it’ll become second nature as you
traverse the document tree.

first-of-type, last-child, and last-of-type
In the example code I used for Figure 4-4, I introduced first-of-type. This is similar to
first-child, which was introduced in CSS2, and indeed, for the example I provided, you could
use them in the same way. In practice, however, they are as different as nth-child and nth-of-
type.
As you’re no doubt aware, the first-child pseudo-class is a selector used to apply rules to an
element that is the first child of its parent. As with nth-of-type, however, first-of-type is
more specific, applying only to the element that is the first child of the named type of its parent. A pair
of counterpart pseudo-classes is also available, last-child and last-of-type, which — as
you might have guessed — select the last child element or the last child element of that type,
respectively, of the parent.
I’ll show two examples to demonstrate the difference. Both of the examples will be applied to the
same chunk of markup (I’ve truncated the text for clarity):

<div>
 <h2>Wuthering Heights</h2>
 <p>I have just returned...</p>
 <p>This is certainly...</p>
 <p>In all England...</p>
 <h3>By Emily Bronte</h3>
</div>

In the first example I’m going to use first-child and last-child, as shown here:
first-child { text-decoration: underline; }
last-child { font-style: italic; }

The result is shown in Figure 4-6. The h2 element is the first child of the div, so it has an underline
applied to it. The last child of the div is the h3 element, so that is italicized. All quite
straightforward.

Figure 4-6. Applying the first-child and last-child selectors

Now let’s see the difference when we use the first-of-type and last-of-type selectors:
:first-of-type { text-decoration: underline; }
:last-of-type { font-style: italic; }

Take a look at the result in Figure 4-7. You’ll notice that three elements — h2, h3, and the first p —
are underlined. This is because they are the first instance of that element type. Likewise, the h2, h3,

and last p are all italicized. Again, this is because they are all the last element of that type; the h2 and
h3 are both the first and last of their type, and so both rules are applied to them.

Figure 4-7. Applying the first-of-type and last-of-type selectors

As with all of the *-type and *-child pseudo-classes, the distinction is subtle, and sometimes the
last child element is also the last of its type, so the selectors are interchangeable. But as I’ve just
shown, at times, they have different applications.

only-child and only-of-type
These two pseudo-classes are used to select elements in the document tree that have a parent but
either no sibling elements (only-child) or no siblings of the same element (only-of-type).
As with many of the previous pseudo-classes, these two overlap substantially in function, but the
following example should illustrate the difference between them. Take the following style rules:

p:only-of-type { font-style: italic; }
p:only-child { text-decoration: underline; }

And then apply them to this markup:
<h2>On Intelligence</h2>
<p>Arthur C. Clarke once said:</p>
<blockquote>
 <p>It has yet to be proven that intelligence has any survival value.</p>
</blockquote>

You can see the result in Figure 4-8.

Figure 4-8. Comparing only-child and only-of-type

Both p elements are the only elements of their type in their level of the document tree, so the only-
of-type rule selects both and italicizes them. The p element inside the blockquote, however, is
also the only child in its level, so it’s also subject to the only-child rule that applies the
underline.
Using only-of-type allows you to pick an element from among others, whereas only-child
requires the element to sit alone.

Other Pseudo-classes
In addition to the structural pseudo-classes discussed so far in this chapter, CSS3 introduces a number
of pseudo-classes that allow you to select elements based on other criteria. These include link
destinations, user interface elements, and even an inverse selector that permits selection based on
what an element isn’t!

target
On the Web, sites don’t just link between pages but also provide internal links to specific elements. A
URI can contain a reference to a unique ID or a named anchor. For example, if you had the following
markup in a page:

<h4 id="my_id">Lorem ipsum</h4>

you could refer to it with the following link:
Lorem

The target pseudo-class allows you to apply styles to the element when the referring URI has been
followed. If you want to apply styles to the example element when the example URI is clicked, you
would use:

#my_id:target {}

A popular style is to highlight the subject of an internal link visually to provide a clear cue to the user.
Consider, for example, the standard pattern for blog comments, which are somewhat like this
simplified markup:

<div class="comment" id="comment-01">
 <p>Thanks for this scintillating example!</p>
 <p class="author">N.E. Boddy, April 13</p>
</div>

And another fairly common pattern is to include links to individual comments:
<p>Latest comment</p>

Using the target pseudo-class, you can easily highlight the comment that the user wants to read:
.comment:target { background-color: #DDD; }

Figure 4-9 shows a list of comments in two states: on the left, as they appear before the referring link
has been clicked, and on the right, after clicking the link the element that the link refers to has had its
background color changed by the target selector.

Figure 4-9. Highlighting applied with the target pseudo-class

empty
The empty pseudo-class selects an element that has no children, including text nodes. Consider this
markup:

<tr>
<td></td>
<td>Lorem ipsum</td>
<td></td>
</tr>

If you apply this CSS rule:
td:empty { background-color: red; }

the rule would be applied to only the first td element, as the other two contain a text node and a child
element, respectively.

root
The root pseudo-class selects the first element in a document tree, which is only really useful if
you’re adding a stylesheet to XML documents — in HTML, the root will always be the html
element. One small advantage of using root in HTML is that you can use it to give a higher
specificity to the html element, which could be useful if you need to override the simple type
selector:

html {} /* Specificity: 1; */
html:root {} /* Specificity: 2; */

Let’s say you’re creating a base stylesheet and want to set a property on the html element, which
shouldn’t be altered; in this case, you would use something like this:

html:root { background-color: black; }

The higher specificity gives precedence over any other properties applied to the html element, such
as:

html { background-color: white; }

It’s unlikely that you’ll need to use this in most situations, however.

not
The negation pseudo-class (not) selects all elements except those that are given as the value of an
argument:

E :not(F) {}

This rule selects all children of element E except for those of type F. For example, to color all the
immediate child elements of a div, except for p elements, you would use this:

div > :not(p) { color: red; }

To see how useful not is, consider a situation where you have the following markup:
<div>
 <p>Lorem ipsum dolor sit amet...</p>
 <p>Nunc consectetur tempor justo...</p>
 <p>Nunc porttitor malesuada cursus...</p>
</div>

Now imagine you want to italicize all of the child p elements except for the first one.
To do this with CSS2, you would apply a style to all the p elements and then apply a further style to
reset the first element back to its previous state:

p { font-style: italic; }
p:first-child { font-style: normal; }

With not, you can reduce that to a single rule:
p:not(:first-child) { font-style: italic; }

The argument that’s passed into not must be a simple selector — therefore combinators (such as +
and >) and pseudo-elements (which I’ll discuss later in this chapter) are not valid values.

UI Element States
UI element states are used to select user interface (UI) elements based on their current state.
Although HTML5 proposes a new range of UI elements (such as command), in HTML4, only form
elements are able to have states:

<textarea disabled="disabled"></textarea>
<input checked="checked" type="checkbox">

The textarea has a disabled attribute, and the input of type checkbox has a checked
attribute. No enabled attribute exists — elements that are not disabled are, by definition, classed as
enabled, so an enabled pseudo-class is also available, giving you three user-state pseudo-class
selectors:

:checked {}
:disabled {}
:enabled {}

To see the effect of these, consider the following style rules:
input[type='text']:disabled { border: 1px dotted gray; }
input[type='text']:enabled { border: 1px solid black; }

I’m going to apply these rules to a form that has two text input elements, one of which has a
disabled attribute (the form isn’t valid as I don’t have labels for the inputs, but that only clouds the
issue in this demonstration):

<form action="">
<fieldset>
<legend>UI element state pseudo-classes</legend>
<input type="text" value="Lorem ipsum" disabled>
<input type="text" value="Lorem ipsum">
</fieldset>
</form>

You can see the results in Figure 4-10.

Figure 4-10. Disabled and enabled element states

As you can see, the disabled form element has grayed-out text (which is done automatically by the
browser) and a gray dotted border (which I set in the stylesheet). I set a solid black border around the
enabled element.
I haven’t given a demonstration of the checked state here, as most browsers have very different
interpretations of which style rules can be applied to checkbox inputs. For a comprehensive
overview of cross-browser styling of form elements, I highly recommend “Styling Form Controls
with CSS” from the blog 456 Berea Street (http://www.456bereastreet.com/lab/styling-form-
controls-revisited/).
The specification notes that an idea is under consideration by the W3C to feature a fourth UI element

http://www.456bereastreet.com/lab/styling-form-controls-revisited/

state of indeterminate, which would be used in the occasional circumstance in which an
element could be either enabled or disabled or has not yet been set into one of these states. At the
time of writing, indeterminate is not an official part of the CSS3 specification.

Pseudo-elements
Like pseudo-classes, pseudo-elements provide information that is not specified in the document tree.
But where pseudo-classes use “phantom” conditions such as an element’s position in the tree or its
state, pseudo-elements go further and allow you to apply styles to elements that don’t exist in the tree
at all.
In CSS2, the four pseudo-elements are :first-line and :first-letter, which select
subelements in text nodes, and :after and :before, which allow the application of styles at the
beginning and end of existing elements. CSS3 doesn’t introduce any new pseudo-elements, but it
refines the definitions slightly and introduces a new syntax to differentiate them from pseudo-classes.
In CSS3, pseudo-elements are prefixed with a double colon (::), like so:

::first-line {}
::first-letter {}
::after {}
::before {}

NOTE
The single colon syntax is still accepted for reasons of backward compatibility, although it is deprecated and you shouldn’t use it going
forward.

The selection pseudo-element
At one stage in the formation of the CSS3 Selectors module, a proposal was made for a selection
pseudo-element, which could be used to apply rules to an element that the user had selected in the
browser (for example, a portion of a text node):

::selection {}

Only a limited number of properties can be applied with selection: color, background-
color, and the background shorthand (although not background-image). Using
selection, you can do something like this:

p::selection {
 background-color: black;
 color: white;
}

Figure 4-11 shows a comparison of the system-native selection colors (top) and the colors I’ve
applied with the selection pseudo-element (bottom).

Figure 4-11. Custom colors applied with the selection pseudo-element

Although at the time of writing selection has been dropped from the specification and its future
would appear to be unknown, Opera and WebKit have already implemented it, Firefox has
implemented it with the -moz- prefix, and it’s expected to appear in IE9 — so despite it no longer
being part of the specification, you can continue to use it.

Summary
The new range of pseudo-classes (and any pseudo-elements that may be defined in the future) makes
document traversal far more flexible and powerful with CSS3 than it ever was with its predecessors.
Some debate has arisen about whether the expanded range of pseudo-class selectors is really
necessary, but I believe much of this debate comes from developers who weren’t familiar with them,
as they weren’t yet implemented across all browsers. Internet Explorer is now the only browser to
not have implemented pseudo-class selectors, but with IE9 promising to rectify this, I think the new
selectors will shortly prove worthwhile.

DOM and Attribute Selectors: Browser Support
 WebKit Firefox Opera IE

Structural pseudo-classes Yes Yes Yes No (expected in IE9)

:target Yes Yes Yes No (expected in IE9)

:empty Yes Yes Yes No (expected in IE9)

:root Yes Yes Yes No (expected in IE9)

:not Yes Yes Yes No (expected in IE9)

Pseudo-elements (new syntax) Yes Yes Yes No (expected in IE9)

UI element states Yes Yes Yes No (expected in IE9)

:selection Yes Yes Yes No (expected in IE9)

Chapter 5. Web Fonts

The features covered in this chapter are the oldest in this book, having been introduced in CSS2 many
years ago — only to be dropped from the 2.1 spec due to a lack of implementation by browser
makers. Now a new generation of browsers has revived interest in improving the typographical
options available to web designers, and I, for one, welcome the return of these features in CSS3.
Chief among them is the ability to specify fonts that don’t already exist on the user’s system — by
utilizing the @font-face method — which frees designers from the yoke of the standard palette of
“web-safe” system fonts that have been used for many years. Surprisingly, however, this capability
has been available in Internet Explorer since 1997!
IE4 was the first browser to allow web fonts, but it did so with a proprietary format that prevented
other browsers from following suit. Microsoft has since submitted its format to the W3C for
consideration as a standard, but now that Firefox, Safari, Chrome, and Opera are all backing different
formats, it’s unlikely that anything will come from this.
The CSS Fonts Module Level 3 (http://www.w3.org/TR/css3-fonts/) currently has Working Draft
status and probably won’t become a recommendation any time soon. Most of the spec has already
been implemented in modern browsers (with a couple of exceptions, which I’ll cover later), so you
can consider it pretty safe to use.

http://www.w3.org/TR/css3-fonts/

The @font-face Rule
To display web (or nonsystem) fonts on your pages, you need to use the @font-face rule. This rule
defines the font and provides the browser with the location of the file to use. Here’s the basic syntax:

@font-face {
 font-family: name;
 src: local('fontname'), url('/path/filename.otf') format('opentype');

}

I’ll break this down a little. First, I give the font a name with the font-family property (). This
property is one you should be familiar with, although it serves a slightly different purpose here; I’m
using it to declare a font name, not to refer to one. Just like the font-family property in CSS2.1,
you can use multiple, space-separated words as long as you enclose them within single quote
characters.

NOTE
When you define your font’s name with font-family, you can use the same name multiple times — in fact, sometimes you’ll
need to. I’ll discuss why shortly, in Defining Different Faces in Defining Different Faces.

Next is the src property (), which tells the browser the location of the font file. This property
accepts a few different values: local () uses the name of the source font to check if the font is
already installed on the user’s machine, url () provides a path to the font if it’s not available
locally, and format () specifies the font type. In this example, I’ve used OpenType, but more
types are available, and I’ll discuss those later in Font Formats in Font Formats.
I can supply many different values for the src property by separating the values with commas, as
I’ve done in the code example. This utilizes the power of the cascade to allow different fall-back
values, which will come in handy in a later example.
To use the font I just defined, I call only its name in the font stack, as I’d normally do:

E { font-family: FontName; }

For a real-world example, I’ll apply the Chunk font (available to download for free from
http://www.theleagueofmoveabletype.com/fonts/4-chunk/) to an h2 element using @font-face.
Here’s the code I’ll use in my stylesheet:

@font-face {
 font-family: Chunk;

 src: local('ChunkFive'), url('ChunkFive.ttf')
format('truetype');
}
 h2.webfont { font-family: ChunkFive, sans-serif; }

The first step is to name my font; I’ve chosen Chunk () because I can remember it easily, but I could
use any name. Next I provide values to the src property: local uses the true name of the font,
'ChunkFive' (), to check if it's available on my system. Following that I enter a relative path to
the font file I want to use (), and finally, I assign an argument of truetype to the format value (

).

http://www.theleagueofmoveabletype.com/fonts/4-chunk/

NOTE
You can usually find a font’s true name by using a font management application or by right-clicking the font file to view the font
information.

In the last line of CSS (), I give my new font name as a value to the font stack to be applied to h2
elements with a class of webfont. To see how that displays, here’s a quick comparison using the
following markup:

<h2>Alas, poor Yorick!</h2>
<h2 class="webfont">Alas, poor Yorick!</h2>

You can see the output in Figure 5-1.

Figure 5-1. The Chunk Five font (the bottom row), called using the @font-face rule, compared to a system font (the top
row)

Defining Different Faces
The @font-face syntax we’ve seen so far in this chapter is pretty straightforward, but it only
defines one font face — that is, permutation of weight, slope, and so on. If you want to use a different
face, such as a bolder weight or an italic type, you have to define each font face individually. You can
use one of two methods to do this. The first method re-uses the same name and adds extra descriptors
to the @font-face rule:

@font-face {
 font-family: 'Museo Sans';

 src: local('Museo Sans'), url(' MuseoSans_500.otf') format('opentype');
}
@font-face {
 font-family: 'Museo Sans';
 font-style: italic;

 src: local('Museo Sans'), url('
MuseoSans_500_Italic.otf') format('opentype');
}
h2 { font-family: 'Museo Sans', sans-serif; }

Here, you can see that the first @font-face rule defines the font name as Museo Sans () and
gives the URL of the regular face (). The second @font-face rule uses the same font name ()
but adds the font-style property with the italic value (), and the URL points at the font’s
italic face (). The advantage of this approach is that the italic style is applied automatically and
appropriately, without your having to define it in the CSS, as in this example markup:

<h2>I knew him, Horatio</h2>
<h2>I knew him, Horatio</h2>

The second h2 element uses the italic font face defined in the previous rules (you can see the result in
Figure 5-2).

Figure 5-2. Museo Sans Regular (top) and Italic (bottom) applied using @font-face

The second method uses unique names for each font style and calls them individually in the font stack:
 @font-face {

 font-family: 'Museo Sans';
 src: local('Museo Sans'), url('MuseoSans_500.otf') format('opentype');
 }
 @font-face {

 font-family: 'Museo Sans Italic';
 src: local('Museo Sans'), url('MuseoSans_500_Italic.otf') format('opentype');
 }
 h2 { font-family: 'Museo Sans', sans-serif; }
 h2 em {
 font-family: 'Museo Sans Italic', sans-serif;
 font-style: normal;

}

In this example, the first @font-face rule () is named Museo Sans, and the URL points to the

regular font face. The second @font-face rule () is named Museo Sans Italic, and the
URL points to the italic face. The font stack for the h2 element () uses the regular face, whereas the
font stack for the em element, which is a child of h2 (), uses the italic face.
You’ll notice that I also added a font-style property with the value of normal (), as
otherwise Firefox artificially italicizes the italic — giving you a double italic!
Which method you use is up to you; popular opinion on the Web seems to be swinging toward the
second, but you should experiment and see which one most suits your purposes. In some situations,
you may have no choice; for example, Safari doesn’t recognize the CSS2.1 font-variant
property (used for applying small caps) when using the first method.
Regardless of which method you choose, Figure 5-2 shows the effect of using the italic style.

True vs. Artificial Font Faces
One thing to be aware of is that no matter which method you utilize, if you want to apply a different
font face — for example, italic — make sure you define a link to the relevant file in your @font-
face rule. If you don’t, some browsers (notably Firefox) will attempt to re-create the face
artificially, often with ugly results.
Here’s an example of how not to define an italic weight:

@font-face {
 font-family: GentiumBookBasic;
 src: local('Gentium Book Basic Regular'), url('GenBkBasR.ttf') format('truetype');
}
h2 {
 font-family: GentiumBookBasic, sans-serif;
 font-style: italic;
}

You can see that my @font-face rule uses the regular face of the Gentium Basic font, but the h2
element has an italic style declared on it. Before I show you how that renders, here’s the way I should
have done it:

@font-face {
 font-family: GentiumBookBasicItalic;
 src: local('Gentium Book Basic Italic'), url('GenBkBasI.ttf') format('truetype');
}
h2 { font-family: GentiumBookBasicItalic, sans-serif; }

In this code, the @font-face rule defines the italic face of Gentium Basic, which is then applied to
the h2 element. You can compare the two different approaches in Figure 5-3.

Figure 5-3. Comparing an artificial italic (top) with a (true) italic font face

As you can see, the two examples are quite different. The first is the default font slanted to fake an
italic (using the first code example); the characters are larger, slightly distorted, and spaced
inconsistently. The second is the true italic font face (using the second code example), which uses
characters designed specifically for this purpose.
Be aware of this issue when using Firefox and Internet Explorer; in situations where the “bad” code
example is applied, WebKit ignores the font-style property and displays only the regular font
face. The same warning applies for all the different font faces: bold, italic, bold italic, small caps,
condensed, and so on.

A “Bulletproof” @font-face Syntax
The @font-face rule carries with it some unfortunate legacy issues. I explained at the beginning of
this chapter that the rule has been around for quite a while, having been implemented in Internet
Explorer as far back as 1997. Also, although the current Fonts Module was updated in 2009, it had
not been revised in seven years. These two facts alone account for some issues, but modern browsers
also implement @font-face differently.
These issues mean you need a workaround to ensure that @font-face works correctly across all
browsers. Luckily, some clever developers have done just that. But before I introduce the fully cross-
browser “bulletproof” @font-face syntax, let me discuss briefly some of the problems it
addresses.

Using Local Fonts
The local() value for the src property is used to check whether a user already has the defined
font installed on his or her system — if the user does, the local copy can be applied rather than
download a new copy. local()is a good idea, but it suffers from three drawbacks. The first
drawback, and not least, is that local() isn’t supported by any versions of Internet Explorer below
9!
The workaround for this drawback depends on IE8 and below only allowing the Embeddable Open
Type (EOT) font format (see Font Formats in Font Formats for more on EOT). Because of EOT, you
can declare the src property twice:

@font-face {
 font-family: name;
 src: url('filename.eot');
 src: local('fontname'), url('filename.otf') format('opentype');

}

The first instance () has no local() value, and the EOT font format is used. In the second
instance (), the local() value has the name of the required font, and the OTF (OpenType) format
is used. This instance will be ignored by IE8 and below, which doesn’t recognize local(), but will
take precedence in all other browsers.
The next drawback is that, at the time of writing, the Safari browser for Mac OS X (currently version
5.03) requires a different font-name argument for the local() value. Fonts generally have two
names: a full name and a PostScript name. Safari on Mac requires the Postscript name, whereas every
other browser accepts the full name. (This requirement is explained further in the Mozilla Hacks blog
at http://hacks.mozilla.org/2009/06/beautiful-fonts-with-font-face/.) Working around this is easy: Just
specify two local() values with a different argument in each:

@font-face {
 font-family: name;
 src: local('fontname'), local
('altfontname'),
 url('filename.otf') format('opentype');
}

For the first local() value (), you can use the PostScript name, and in the second (), you can
use the family name (though the order you list them in actually doesn’t matter). Again, a font
management program will help you find the different names to specify in your stylesheets.
Font management programs can cause the third drawback, however. In some cases, the @font-
face rule doesn’t play nicely with font management software, displaying incorrect characters or
opening a dialog to ask for permissions to use a font. The only way around this drawback is to add a
“null” value to local(), forcing a download of the defined font. This null value need only be a
single character and has become, by convention, a smiley face; it doesn’t have to be a smiley face, but
it works and it’s friendly to look at!
So if you put together all the workarounds in this section, you end up with code that looks like this:

@font-face {
 font-family: name;
 src: url('filename.eot');
 src: local('☺'), url('filename.otf') format('opentype');

http://hacks.mozilla.org/2009/06/beautiful-fonts-with-font-face/

}

Font Formats
The next problem comes in the shape of different, and competing, formats. As I already mentioned,
IE8 and below support only the proprietary EOT format. The new wave of interest in web fonts has
come about because modern browsers — first Safari and then Firefox and then others — allowed the
use of the more common TrueType and OpenType formats.
Many commercial font foundries won’t allow their fonts to be used in this way as it makes illegal
copying of their fonts a little easier (see Licensing Fonts for Web Use in Licensing Fonts for Web
Use). For this reason, Mozilla consulted with some font makers and created the Web Open Font
Format (WOFF), which is supported from Firefox 3.6 onward and should also be supported in IE9
and forthcoming versions of Chrome and Opera (no official word yet from Safari, but I’m sure it’ll be
close behind). Some browsers also accept the Scalable Vector Graphics (SVG) font type. This font
type is a vector re-creation of the font and is considerably lighter in file size, making it ideal for
mobile use. As such, this format is the only one that older versions (4.1 and below) of Safari for
iPhone allow.
Because the @font-face spec allows multiple values for the src property, you can create a stack
to make sure the widest possible range of browsers is supported:

@font-face {
 font-family: name;
 src: local('☺'),
 url('filename.woff') format('woff'),
 url('filename.otf') format('opentype'),
 url('filename.svg#filename') format('svg');
}

The stack in the code collection of src values checks if the browser supports the WOFF, OpenType,
and SVG formats (in that order) and displays the correct font accordingly.

The Final “Bulletproof” Syntax
In order to have your chosen font display the same in every browser on every platform, the required
code looks something like this:

@font-face {
 font-family: 'GentiumBookBasicRegular';
 src: url('GenBkBasR.eot');
 src: local('☺'),
 url('GenBkBasR.woff') format('woff'),
 url('GenBkBasR.ttf') format('truetype'),
 url('GenBkBasR.svg#GentiumBookBasic') format('svg');
}

For this to work, the major requirement is that your chosen font be available in three or four different
formats. To make this easier, I strongly recommend using the @font-face Generator by Font
Squirrel (http://www.fontsquirrel.com/fontface/generator/). Simply upload the font file you want to
use and @font-face Generator converts it into all the relevant formats — as well as generates the
CSS you need to use in your pages. It’s an invaluable tool. Font Squirrel also has a library of fonts
that are ready to use with @font-face embedding, saving you the task of converting.
To read more about the “bulletproof” @font-face syntax, visit the site of developer Paul Irish who
is largely responsible for creating this syntax. He explains in detail why each part of it is necessary
(http://www.paulirish.com/2009/bulletproof-font-face-implementation-syntax/).

http://www.fontsquirrel.com/fontface/generator/
http://www.paulirish.com/2009/bulletproof-font-face-implementation-syntax/

The Fontspring Bulletproof Syntax
As this book was going to press a new, supposedly more bulletproof syntax was announced. This is
simpler than the syntax shown above and relies on just a simple question mark (?) character applied
to the EOT font source:

@font-face {
 font-family: name;
 src: url('filename.eot?') format(eot),
 url('filename.woff') format('woff'),
 url('filename.otf') format('opentype'),
 url('filename.svg#filename') format('svg');
}

To understand how the Fontspring syntax works, you should read the original blog post that announced
it (http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax/). While this new syntax
does seem to work, it has already changed a few times since it was announced and probably needs to
be more fully tested before it becomes the new default, so I hesitate to endorse it fully.

http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax/

Licensing Fonts for Web Use
As mentioned previously in Font Formats in Font Formats, many font foundries expressly forbid
embedding their web fonts in your pages using @font-face. They forbid this because linked
OpenType or TrueType fonts are easy to locate and download and can then be used illegally in both
on- and offline applications. The new WOFF file type was created in response to this; WOFF is a
web-only format and can contain licensing information to help track down copyright infringers. Many
foundries have already committed to selling this format, and I hope many more will follow.
In general, the best policy is to check that the font you choose has a license explicitly allowing you to
use it for web embedding; don’t assume that because a font is free to download, it is free to use
online. That said, many good-quality free fonts that do allow embedding are available online; some
examples are given in Appendix B.
While the licensing situation is in a state of flux, many web font service providers have created
mechanisms to embed fonts legally in your pages. By adding JavaScript to your pages, the provider is
authorized to serve the font files from their network, so you can call the font families in your stacks.
The method is known as Fonts as a Service (FaaS).
Some of these services are provided by the foundries themselves — Typotheque
(http://www.typotheque.com/webfonts/) is one example — but probably the best known at the
moment is Typekit (http://www.typekit.com/), a third-party provider serving fonts from many different
foundries and creators. Typekit has a limited font set available for free, so you can use it on your
personal website if you want to experiment.
I’ve provided many more links to font tools and services in Appendix B and will update the list on
the website that accompanies this book.

http://www.typotheque.com/webfonts/
http://www.typekit.com/

A Real-World Web Fonts Example
Having discussed the intricacies and niceties of fonts, licensing, and multiple syntaxes, let’s put
everything we’ve learned so far together and see @font-face in action. I’ll use an example that
compares text displayed in a standard sans-serif font (Arial) to the same text displayed in three
different font families (all from Font Squirrel).
Here’s the CSS for this example. Bear in mind that, for the sake of clarity, I’ve simplified this
example to show only a single font format (TrueType):

@font-face {
 font-family: 'Candela';
 src: local(''), url('CandelaBook.ttf') format('truetype');
}
@font-face {
 font-family: 'Candela';
 font-style: italic;
 src: local(''), url('CandelaItalic.ttf') format('truetype');
}
@font-face {
 font-family: 'Candela';
 font-weight: bold;
 src: local(''), url('CandelaBold.ttf') format('truetype');
}
@font-face {
 font-family: 'ChunkFiveRegular';
 src: local(''), url('Chunkfive.ttf') format('truetype');
}
@font-face {
 font-family: 'AirstreamRegular';
 src: local(''), url('Airstream.ttf') format('truetype');
}
.font-face h1 { font-family: ChunkFiveRegular, sans-serif; }
.font-face h2 { font-family: AirstreamRegular, cursive; }
.font-face p { font-family: Candela, sans-serif; }

I also left out some color and size adjustments to keep the code as readable as possible. Here’s the
markup I used:

<h1>Great Expectations</h1>
<h2>By Charles Dickens</h2>
<p>My father's family name being Pirrip, and my Christian name
Philip, my infant tongue could make of both names
 nothing longer or more explicit
 than Pip. So, I called myself Pip, and came to
 be called Pip.</p>

You can see the output in Figure 5-4.

Figure 5-4. Text using a standard system font (left) and using different web fonts (right)

In the example on the right, I mixed three fairly distinctive font families — many designers will
probably tell you mixing isn’t a good idea on a production site, but it works well to illustrate my
point. Whatever you think of my font choices, I hope you’ll at least agree that the text looks more
dynamic and enticing with those choices applied.
Despitec the long and winding route we’ve had to take to get a cross-browser syntax, using @font-
face isn’t complicated; you’ll expend some overhead in the form of extra setup time to declare the
font faces and variants you want to use, but after that you can call them in your font stacks and style
them in exactly the same way as system fonts.

More Font Properties
The CSS3 Web Fonts Module doesn’t just re-introduce the @font-face rule; it also revives two
other font properties that were first proposed for CSS2. These properties are potentially very useful
for giving you granular control over your fonts — I say potentially because, as of this moment, they
aren’t widely implemented.

font-size-adjust
The only drawback to using font stacks in CSS is that fonts can vary so much in size; your first choice
font may look great at 16px, but if that font’s not available, the next fallback may be a lot smaller and
harder to read. To combat this, you can use font-size-adjust. font-size-adjust lets you
dynamically alter the font-size property to ensure a regular font size no matter which font is used
from the stack. font-size-adjust takes a single decimal value. Here’s the syntax:

E { font-size-adjust: number; }

The number value is the proportion of the total height that is occupied by a lowercase x character
(known as the x-height). In other words, a font might be 16px high in total, but the height of the
lowercase x might be half that (8px), which gives an x-height ratio of 0.5 (8 divided by 16):

p { font-size-adjust: 0.5; }

By using font-size-adjust, you can ensure that no matter what font is displayed, the x-height
always has the same value and legibility does not suffer. To illustrate, consider the following code:

h2 { font: 360%/1 Georgia, serif; }
h2.adjusted { font-size-adjust: 0.5; }
h2.impact { font-family: Impact, serif; }

In the following example, I have three h2 elements, all with the same values for font-size. I
apply different values to them using their class names, which you can see in this markup:

<h2>Of most excellent fancy</h2>
<h2 class="impact">Of most excellent fancy</h2>
<h2 class="adjusted impact">Of most excellent fancy</h2>

The first h2 is rendered in the Georgia font, the second in Impact, and the third in Impact but with the
font-size-adjust property applied. You can see the results in Figure 5-5.

Figure 5-5. The effect of font-size-adjust on the Impact font (third line)

You can clearly see the difference between the Georgia (first line) and Impact (second line) fonts in
the first two h2 elements. (Of course, you are unlikely to ever use these two in the same font stack,
but because they have quite different x-heights, they’re good for these purposes.) Georgia has an x-
height ratio of approximately 0.5, which means the lowercase x is half the height of the font. By
contrast, Impact has an x-height ratio of 0.7, which means less contrast in height between upper- and
lowercase letters.
The first two lines in the example are not adjusted in any way, so Impact’s lowercase characters in
the second line are considerably taller than Georgia’s in the first line. In the third line, however, I set
the font-size-adjust value to 0.5 to match Georgia’s:

h2.adjusted { font-size-adjust: 0.5; }

That adjusts the font size so Impact displays at a lower size — the x-height is 12px, half of the full
24px height. You can see this more clearly if I directly compare the two elements, as shown in
Figure 5-6. Here, the characters without ascenders (lines that rise above the x-height) — that is, e, x,
c, and n — of the adjusted Impact font are the exact same height as those of the Georgia font.

Figure 5-6. Characters from the Georgia font (left) compared to characters from the Impact font adjusted with font-size-
adjust (right)

Unfortunately, a font’s x-height ratio isn’t easily available; you can either use a graphics package to
measure it manually or try to find an online resource. (I found an estimation tool at
http://www.cs.tut.fi/~jkorpela/x-height.html; the site also lists values for common web fonts.)
At the time of writing, only Firefox supports this property.

http://www.cs.tut.fi/~jkorpela/x-height.html

font-stretch
Some font families contain condensed or expanded variants, and the font-stretch property was
proposed to allow access to these. As of this writing, font-stretch has not been implemented in
any released browser, although it is in the Beta of IE9.
Here’s the syntax:

E { font-stretch: keyword; }

According to the specification, the keyword value can be any one of the following: normal (the
default), ultra-condensed, extra-condensed, condensed, semi-condensed,
semi-expanded, expanded, extra-expanded, and ultra-expanded. Each keyword
relates to a font variant within a family, such as Frutiger Condensed or Nova Ultra Expanded. A pair
of relative keywords, narrower and wider, were listed in the 2002 revision of the specification,
and although removed since then, they have been implemented in IE9 Beta.
Let’s see an example using the IE9 Beta. In this example, I’ll use font-stretch to display two
different faces of the font PT Sans, using the following code:

h2 { font: 360%/1 'PT Sans', sans-serif; }
h2.narrow { font-stretch: narrower; }

The h2 element is displayed twice, both times using the font PT Sans at 360 percent (36px) size. In
the second instance, I’ve used the font-stretch property with the value narrower, which tells
the browser to display any face that is narrower than the current one, without being specific about
exactly which width I want. You can see the results in Figure 5-7.
Despite this property not having wide browser support yet, you can replicate the effect with the use of
the @font-face rule (introduced at the beginning of this chapter) to specify a condensed or
expanded face in your font stack.

Figure 5-7. The second example uses the narrow font face due to the effect of the fontstretch property in IE9.

OpenType Features
Although web typography takes a great leap forward in CSS3, it still just scratches the surface of the
possibilities of type. If you compare the options available to you in a browser with what’s available
in a desktop application such as Adobe Illustrator, you’ll see that the latter is much richer than the
former.
Font formats such as OpenType are capable of much more than face or weight variations; they have a
range of ligatures, swashes, special numeric characters, and much more. (If none of those terms makes
any sense to you, I recommend Magnet Studio’s Beginners Guide to OpenType at
http://www.magnetstudio.com/words/2010/opentype-guide/).
The latest nightly builds of Firefox have an experimental new property that allows you to explore the
extra features afforded by OpenType and other similar formats. The new property is called -moz-
font-feature-settings. Here’s its syntax:

E { -moz-font-feature-settings: "parameters"; }

The parameters value is a string that contains one or more comma-separated binary values — that
is, the values are either 0 or 1. Here’s an example:

E { -moz-font-feature-settings: "kern=1"; }

The parameter kern has a value of 1. kern enables OpenType kerning and, in this case, is actually
redundant as Firefox already sets this by default. If you want to disable kerning, you use the
alternative binary value:

E { -moz-font-feature-settings: "kern=0"; }

You can, as I mentioned, have more than one parameter — just create a comma-separated list:
E { -moz-font-feature-settings: "kern=0,liga=1"; }

This property is very much in development, and there’s no guarantee that the final syntax will take this
form.
Let’s look at some examples that show the advantage of using OpenType features. Earlier in the
chapter in True vs. Artificial Font Faces in True vs. Artificial Font Faces, I showed why you should
always use a true italic font rather than letting the browser create one artificially. In this example,
you’ll see that the same principle holds when using the small caps font variant. Here are the relevant
style rules:

h2.smallcaps { font-variant: small-caps; }
h2.ot-smallcaps { -moz-font-feature-settings: "smcp=1"; }

Here, I use two h2 elements: I apply the font-variant property with the small-caps value to
the first; for the second, I use the new property, -moz-font-feature-settings, with the
parameter used to toggle small caps, smcp. You can see the difference in Figure 5-8.

Figure 5-8. The lower example uses OpenType’s own small caps feature

http://www.magnetstudio.com/words/2010/opentype-guide/

In the first h2 element, which uses simulated small caps, the proportions are off; the difference
between the large and small capitals is barely notice able. Compare that with the second h2 element,
which has more obvious proportions and looks more pleasing to the eye.
Now I’ll demonstrate the use of ligatures, which are used to join certain pairs of characters to make
them appear more harmonious. As with kerning, Firefox automatically uses common ligatures unless
instructed not to, so in this example, I’ll compare text with no ligatures, common ligatures, and
discretionary — that is, more decorative — ligatures.
Here’s the code:

h2.lig-none { -moz-font-feature-settings: "liga=0"; }
h2.lig-common { -moz-font-feature-settings: "liga=1"; }
h2.lig-disc { -moz-font-feature-settings: "dlig=1"; }

This code is applied to three h2 elements. The first has the parameter string liga=0, so common
ligatures are disabled. The second uses the same parameter string except the value is 1, so common
ligatures are enabled (I could have left this out as it’s the default state). The third has the string
dlig=1, which enables discretionary ligatures. Figure 5-9 compares the three.

Figure 5-9. Comparing OpenType ligatures: (from top) none, common, and discretionary

Pay attention to the character pairs Th, ft, and ct. In the first h2 element, without ligatures, they are
rendered as separate characters. In the second, with common ligatures, the Th and ft are joined
together at the point where the characters almost meet. In the third h2 element, the ligatures are
discretionary, so the ft is now joined in two places, and the ct pair is also joined with an extravagant
flourish.
You can see more examples of this property’s possibilities at http://hacks.mozilla.org/2009/10/font-
control-for-designers/. Although something like this is being discussed for inclusion in CSS3,
whether this proposal will end up being the recommended syntax is not yet clear. This property is
currently only available in Firefox nightly builds (and only on OS X and Windows) and is not
guaranteed to make it into any full release of Firefox in the future.

http://hacks.mozilla.org/2009/10/font-control-for-designers/

Summary
While font-size-adjust and font-stretch will surely come in handy in the future, for
now @font-face is the killer feature of the Web Fonts Module. However, @font-face is not
without its drawbacks. For a start, bear in mind that every extra font you use adds to the page’s load
time, and a slight “flash” will occur as your new fonts take effect — that flash is the gap between the
DOM loading and the fonts loading, and different browsers deal with it in different ways. Also,
remember that misuse or overuse of different typefaces can lead to decreased legibility. Choose your
fonts carefully, and check them closely across different browsers.
Despite those caveats, however, you can use this simple rule to amazing effect. In the next chapter, I’ll
show you some ways to further enhance your typography.

Web Fonts: Browser Support
 WebKit Firefox Opera IE

@font-face Yes Yes Yes Yes

font-size-adjust No Yes No No

font-stretch No No No No (expected in IE9)

OpenType features No No (expected in Firefox 4) No No

Chapter 6. Text Effects and Typographic
Styles

Text content has been the backbone of the Web since its creation, yet for years we’ve had to make do
with a very limited set of tools. CSS3 hugely expands its typographic toolset by introducing a range of
new and updated features in the Text Module.
Chief among these features is the ability to add shadows to text. Although this addition doesn’t sound
particularly revolutionary — print typographers have been able to use shadows for a long time — the
new syntax is flexible enough to allow for some very nice effects. A similar feature is text-outlining
(or text-stroking), which, although not widely implemented, does increase the variety of options
available when creating decorative headlines. In addition to these are some less flashy effects but
ones that can really do wonders for the readability of your text.
The CSS Text Level 3 Module (http://www.w3.org/TR/css3-text/) hadn’t been updated since 2007
(although a new version was released during the writing of this book) and was incomplete in some
places. However, some elements of it are quite well implemented and ready for you to begin using
straightaway.
Before I introduce the first new property in this module, however, I’m going to briefly introduce the
concepts of coordinates and axes. If you’re already familiar with these, feel free to skip this section;
otherwise, read on.

http://www.w3.org/TR/css3-text/

Understanding Axes and Coordinates
One syntax concept that’s new to CSS3 is that of the axis (or axes when you have more than one). You
may know all about axes if you remember your math lessons, but if you’re reading this section, I’ll
assume you need a refresher.
CSS uses the Cartesian coordinate system, which consists of two lines, one horizontal and one
vertical, that cross each other at a right angle. Each of these lines is an axis: The horizontal line is
known as the x-axis, and the vertical line is known as the y-axis. The point where the two lines meet
is called the origin. You can see this illustrated in Figure 6-1.

Figure 6-1. The x and y axes and the point of origin

For onscreen items, you measure the lengths of these axes in pixels. In Figure 6-1, you can see the
axes and origin are overlaid on a grid. Imagine that each square corresponds to a single pixel. You’ll
also notice positive (+) and negative (−) labels at either end of each axis; these tell you that the
distance away from the origin will be measured either positively or negatively in this direction.
Now that you understand this concept, you can find the coordinates of any point relative to the origin.
The coordinates are a pair of values — one for each axis — which indicate the distance from the
origin. The origin has coordinates (0, 0). For example, given the coordinates (4, 5) you would find
the point by moving 4 pixels along the x-axis, and 5 pixels along the y-axis. Likewise, the coordinates
(−3, −1) indicate a point 3 pixels in a negative direction away from the origin along the x-axis and 1
pixel away from the origin in a negative direction along the y-axis. You can see both of these values
plotted on the chart in Figure 6-2.

Figure 6-2. Two sets of coordinates

If this all sounds terribly complicated, don’t worry — you’ve been using the Cartesian coordinate
system already with properties like background-position; you just didn’t realize it yet.
In CSS, all elements have a height and a width, each of which is a stated number of pixels in length
(even when using other length units such as em or a percentage). The height and width together creates
a pixel grid; for example, an element that is 10px by 10px in size has a pixel grid of 100px. If you
consider that the origin of the element is at the top-left corner, then the two positional values for
properties like background-position correspond exactly to the x and y coordinates.

NOTE
In CSS, the default origin is the top-left corner of an element, but that isn’t always fixed; some CSS properties allow you to change
the origin's position. For instance, you could set the origin at the dead center of an element or at the bottom-right corner or anywhere
you wish. We’ll see this later in this book.

Applying Dimensional Effects: text-shadow
The ability to apply drop shadows to text using the text-shadow property has been around for a
long time; Safari first implemented it in version 1.1, which was released in 2005. So you might be
wondering why I am discussing it in a book on CSS3. As with the font properties in the previous
chapter, text-shadow was dropped from CSS2.1 due to lack of implementation, but this property
has been reinstated in the CSS3 spec and recently implemented in Firefox and Opera.
The position of the shadow is set using the x and y coordinates that I just introduced. The simplest
form of the syntax accepts two values: x to set the horizontal distance from the text (known as the x-
offset) and y to set the vertical distance (the y-offset):

E { text-shadow: x y; }

By default, the shadow will be the color that it inherited from its parent (usually black), so if you
want to specify a different color, you need to provide a value for that, such as:

E { text-shadow: x y color; }

Here’s an example of a gray (hex code #BBB) drop shadow located 3px to the right and 3px down
from the original image:

h1 { text-shadow: 3px 3px #BBB; }

You can see the output of this code in Figure 6-3.

Figure 6-3. Simple text-shadow

You don’t have to provide positive integers as offset values; you can use both 0 (zero) and negative
numbers to get different effects. Here are a few examples:

.one { text-shadow: −3px −3px #BBB; }

.two { text-shadow: −5px 3px #BBB; }

.three { text-shadow: −5px 0 #BBB; }

You can see the output of these examples in Figure 6-4.
The first (top) example uses negative values for both axes, so the shadow is rendered above and to
the left of the text. The next (middle) example uses a negative value for the x-axis and a positive value
for the y, so the shadow renders below and to the left. The final (bottom) example has a negative
value for the x and a value of 0 for y, so the shadow renders to the left and on the same baseline.

Figure 6-4. Different axis offset values for text-shadow

The text-shadow property also has a fourth option: blur-radius. This option sets the extent
of a blur effect on the shadow and must be used after the offset values:

E { text-shadow: x y blur-radius color; }

The blur-radius value is, like the two offset values, also an integer with a length unit; the higher
the value, the wider (and lighter) the blur. If no value is supplied (as in the examples shown in
Figure 6-4), the blur-radius is assumed to be zero. Here are a couple of examples:

.one { text-shadow: 3px 3px 3px #BBB; }

.two { text-shadow: 0 0 3px #000; }

You can see the output of these examples in Figure 6-5.

Figure 6-5. Different blur values for text-shadow

In the first example, I set the same offset values as in Figure 6-1, but with a blur-radius value of
3px. The result is a much softer, more “natural” shadow. In the second example, I’ve set 0 values for

the offsets and a 3px blur-radius, matching the text to the background and creating the illusion
that the text is raised.

Multiple Shadows
You don’t have to limit yourself to a single shadow — text-shadow’s syntax supports adding
multiple shadows to a text node. Just supply extra values to the property, using commas to separate
them, like so:

E { text-shadow: value, value, value; }

The shadows will be applied in the order you supply the values. Figure 6-6 shows two examples of
multiple shadows in action.

Figure 6-6. Using multiple values with text-shadow

The CSS for these examples is shown here. The first example has a class of one, and the second has
a class of two. Note that I’ve indented them for clarity.

.one {
 text-shadow:
 0 −2px 3px #FFF,
 0 −4px 3px #AAA,
 0 −6px 6px #666,
 0 −8px 9px #000;
}
.two {
 color: #FFF;
 text-shadow:
 0 2px rgba(0,0,0,0.4),
 0 4px rgba(0,0,0,0.4),
 0 6px rgba(0,0,0,0.4),
 0 8px 0 rgba(0,0,0,0.4);
}

In the first example, I’ve kept the x-offset at 0 while increasing the y-offset’s negative value from
−2px to −8px. The blur-radius increases from 3px to 9px, and the color gets gradually darker,
creating a ghostly pale outline behind the characters, which becomes a darker shadow as it gets
further from the characters.
In the second example, the x-offset also remains consistent, but this time the y-offset increases its
value positively. Because the blur-radius isn’t specified, it stays at zero. Here I’ve used the
rgba() color function (which I’ll explain in Chapter 10), so the color stays the same but is partially

transparent, creating an overlapping effect.
Although the value changes are fairly small, the visual difference between the two elements is quite
profound.

Letterpress Effect
An effect that’s very popular at the moment is the letterpress style. This style gives the illusion that the
characters are impressed slightly into the background, as if they’d been stamped into a material (like
on a letterpress). This effect is easy to achieve with CSS3.
To create this effect, you need four tones of a color: dark for the characters, medium for the
background, and lighter and darker for the shadow. Then you add text-shadow with multiple
values — a dark (or black) and a light, as in this example:

body { background-color: #565656; }
h1 {
 color: #333;
 text-shadow: 0 1px 0 #777, 0 −1px 0 #000;
}

The body has a background-color value of #565656, which is a fairly medium-dark gray, and
the text is a darker tone. The text-shadow has two values: black to give a shadow effect and a
lighter gray as a highlight; the combination of the two creates the illusion of depth. You can see how
this appears in Figure 6-7.

Figure 6-7. A “letterpress” effect using text-shadow

Be aware, however, this effect probably isn’t very accessible to some users with visual impairments
such as colorblindness or partial vision, as the contrast between the text color and background color
may not sufficient to make out the shapes of the characters clearly. You should use an online tool (such
as http://www.checkmycolours.com/) to test your colors for accessibility, but I’ll leave you to make a
judgment on that.

http://www.checkmycolours.com/

Adding Definition to Text: text-outline and text-stroke
As I demonstrated previously, you can stroke the outline of a character using text-shadow. Using
this method is a bit of a hack, however. The Text Module provides a better way to control outlines:
the text-outline property. This property accepts three possible values:

E { text-outline: width blur-radius color; }

For example, here’s the CSS to provide text with a 4px blur-radius in blue:
h1 { text-outline: 2px 4px blue; }

The text-outline property is currently not implemented in any browsers, but WebKit browsers
offer something similar — and more flexible: the proprietary text-stroke property.
Actually, text-stroke has four properties in total: two control the appearance of the stroke itself,
one is a shorthand property for the previous two, and one controls the fill color of the stroked text.
The syntax of those properties is shown here:

E {
 -webkit-text-fill-color: color;
 -webkit-text-stroke-color: color;
 -webkit-text-stroke-width: length;
 -webkit-text-stroke: stroke-width stroke-color;
}

The first property, text-fill-color, seems a little unnecessary at first glance, as it performs the
same function as the color property. Indeed, if you don’t specify it, the stroked element will use the
inherited (or specified) value of color. This property allows your pages to degrade gracefully,
however. For example, you could set color to be the same as background-color and use the
stroke to make it stand out. But if you did this, your text would be hidden in browsers that don’t
support text-stroke. Using text-fill-color overcomes this problem.
The other text-stroke-* properties are more obviously useful, and their definition is mostly
straightforward: text-stroke-color sets the color of the stroke, and text-stroke-width
sets its width (in the same way as border-width from CSS2). Finally, text-stroke is the
shorthand property for text-stroke-width and text-stroke-color.
Here’s a real-world example of text-stroke syntax:

h1 {
 color: #555;
 -webkit-text-fill-color: white;
 -webkit-text-stroke-color: #555;
 -webkit-text-stroke-width: 3px;
}

Figure 6-8 shows these properties applied to a text element (and how the text appears in browsers
with no support). The first example shows its native, nonstroked state for comparison, while the
second example shows some text with text-stroke applied.

Figure 6-8. Comparison of text without (top) and with (bottom) text-stroke properties applied

I could have achieved the same results with less code by using the text-stroke shorthand:
h1 {
 color: #555;
 -webkit-text-fill-color: white;
 -webkit-text-stroke: 3px #555;
}

One thing to bear in mind: High width values for text-stroke-width can make your text look
ugly and illegible, so use this property with caution.

More Text Properties
As mentioned at the start of this chapter, CSS3 also offers a few new text effects that, although less
impressive, can make a subtle difference to the legibility and readability of your content. Not all of
these features have been implemented yet — indeed, as the spec is so uncertain, some of them may
never be — but mentioning them here is worthwhile, so you can see the kind of thinking that’s going
into improving text on the Web.

Restricting Overflow
Under certain circumstances — perhaps on mobile devices where screen space is limited — you’ll
want to restrict text to a single line and a fixed width; perhaps when displaying a list of links to other
pages, where you don’t want the link text to wrap onto multiple lines. In these circumstances, your
text being wider than its container and getting clipped mid-character can be quite frustrating.
A new property called text-overflow is available in CSS3 for just those circumstances. It has
this syntax:

E { text-overflow: keyword; }

The permitted keyword values are clip and ellipsis. The default value is clip, which acts in
the way I just described: Your text is clipped at the point where it flows out of the container element.
But the new value that’s really interesting is ellipsis, which replaces the last whole or partial
character before the overflow with an ellipsis character — the one that looks like three dots (. . .).
Let’s look at an example using the following CSS:

p {
 overflow: hidden;
 text-overflow: ellipsis;
 white-space: nowrap;
}

On this p element, I’ve set the overflow to hidden to prevent the content showing outside of the
border, the white-space to nowrap to prevent the text from wrapping over multiple lines, and a
value of ellipsis on the text-overflow property. You can see the result in Figure 6-9.

Figure 6-9. The text-overflow property with a value of ellipsis

The last word in the sentence has been truncated and an ellipsis used in place of the removed
characters, signifying that the truncation has taken place.
The text-overflow property was dropped from the last draft of the Text Module, but has been
reinstated in the editor’s draft and is expected to be back in the next working draft. This property is
already implemented in Internet Explorer and WebKit, and in Opera with the -o- prefix.
The Text Module also offers a third value, which is a string of characters to be used instead of the
ellipsis, like so:

E { text-overflow: 'sometext'; }

However, this value remains unimplemented in any browser to date.

Resizing Elements
Although not actually in the Text Module, another new property is useful for elements whose contents
are wider than their container. The resize property gives users control over an element’s
dimensions, providing a handle with which a user can drag the element out to a different size.
The property has the following syntax:

E { resize: keyword; }

The keyword values state in which direction the element can be dragged: horizontal or
vertical, both, or none. In the following example, I’ll show a p element with the value of
both on the resize property, using this code:

p {
 overflow: hidden;
 resize: both;
}

In Figure 6-10, you can see this in action. The first example shows the element with the resize
property applied — you can tell by the striped handle in the lower-right corner. The second example
uses the same element, but it has been dragged out so you can see a lot more of the text.

Figure 6-10. A resizeable text box shown at default size (top) and expanded (bottom)

All WebKit browsers currently support resize, and it’s also planned for inclusion in Firefox 4. In
supporting browsers it has the value both set on textarea elements by default.

Aligning Text
The text-align property has been around for a long time, but CSS3 adds two new values to it:
start and end. For people who read left-to-right, they are equivalent to the values left and
right (respectively). However, their real usefulness is on internationalized sites that may also use
right-to-left text. You can use these new values in Firefox and Safari.
New to CSS3 is the text-align-last property, which allows you to set the alignment of the last
(or only) line of text in a justified block. This property accepts the same values as text-align but
is currently implemented in only one browser — Internet Explorer, using the proprietary -ms-
prefix:

E { -ms-text-align-last: keyword; }

So if you wanted to justify a block of text but also align the last line to the right, you would use:
p {
 text-align: justify;
 -ms-text-align-last: right;
}

Wrapping Text
An issue that’s frequently encountered when working with dynamic text is line wrapping in
inappropriate places. For example, if providing details about an event you would want the start time
and end time to appear next to each other on the same line, but with a dynamic line break, the end time
may be pushed to the subsequent line. The Text Module aims to provide more control over these kinds
of issues with a pair of properties that lets you define more clearly how you want your content to
wrap.

word-wrap
The first property is word-wrap, which specifies whether the browser can break long words to
make them fit into the parent element. The syntax for it is very simple:

E { word-wrap: keyword; }

This property allows the keyword values normal or break-word. The former allows lines to
break only between words (unless otherwise specified in the markup), and the latter allows a word to
be broken if required to prevent overflow of the parent element.
So, for example, if I want to allow long words to be wrapped instead of overflowing their containing
element, I might use:

p.break { word-wrap: break-word; }

Figure 6-11 shows this effect. The left block doesn’t use word wrapping, and the right block does.

Figure 6-11. Example of text without (left) and with (right) a break-word value for word-wrap

The word-wrap property is widely implemented across all major browsers (yes, including Internet
Explorer).

text-wrap
The text-wrap property functions in a similar way but sets wrapping preferences on lines of text
rather than on single words. Here’s the syntax:

E { text-wrap: keyword; }

It accepts four keyword values: normal, none, unrestricted, and suppress. The default is
normal, which means wrapping will occur at any regular break point, according to the particular
browser’s layout algorithm, whereas none will prevent all wrapping. suppress will prevent
wrapping unless there is no alternative; if no sibling elements are available with more convenient
break points, then breaks are allowed to occur in the same way as the normal value. The final value

is unrestricted, which means the line may break at any point without limitations.
If text-wrap is set to either normal or suppress, you can also apply the word-wrap
property. For example, if you want no wrapping to occur but want to allow words to be broken if
necessary, you’d use this combination:

E {
 text-wrap: suppress;
 word-wrap: break-word;
}

As of this writing, text-wrap remains unimplemented.

Setting Text Rendering Options
Firefox and WebKit browsers support a property called text-rendering, which allows
developers to control the optimization of speed or legibility. This new feature means the developer
can choose how the browser renders the text on a page. Here is the syntax:

E { text-rendering: keyword; }

The text-rendering property has four specific keyword values: auto, optimizeSpeed,
optimizeLegibility, and geometricPrecision. The default is auto, which allows the
browser to make rendering choices. optimizeSpeed favors speed over legibility, disabling
advanced font features for faster rendering, and optimizeLegibility will do the opposite at a
slight cost of speed. The geometricPrecision keyword may have some future value but
currently works the same as optimizeLegibility.
To get a better idea of what this means in practice, consider the following code example:

p.fast { text-rendering: optimizeSpeed; }
p.legible { text-rendering: optimizeLegibility; }

This applies two different optimization effects to identical p elements. Figure 6-12 shows the results.
The first example is optimized for speed, and the second example is optimized for legibility.

Figure 6-12. Comparison of text optimized for speed (top) and legibility (bottom)

The font family used in this example is DejaVu Serif. You should clearly see the differences between
the two text elements, especially with the capital Y/lowercase o pairing at the beginning and the
lowercase ffl characters at the end. This difference is apparent because the font file contains special
instructions for certain combinations of characters, which improve the spacing between individual
characters (known as kerning) and join certain sets together (ligatures) for increased legibility.

NOTE
Windows, OS X, and Linux all use different text-rendering methods, so you can’t depend on this always having an effect on the user’s
system.

WebKit browsers offer further control over how text is rendered: the -webkit-font-
smoothing property. Mac OS X users will know that fonts tend to display smoother and more
rounded than they do on Windows. This difference is due to anti-aliasing — that is, the way that the
screen renders the font so it appears to be smooth rather than pixelated. To set the level of anti-
aliasing on your fonts, use the -webkit-font-smoothing property:

E { -webkit-font-smoothing: keyword; }

The keyword value can be subpixel-antialiased, antialiased, or none. The default

value, subpixel-antialiased, provides the smooth fonts you see in Mac browsers, and none
shows jagged fonts with no smooth edges. Some people find Mac fonts a little too thick, and nobody
likes unaliased fonts, so the antialiased value provides the balance between the two.

Figure 6-13. Comparison of -webkit-font-smoothing values in Safari (from top): subpixel-antialiased,
antialiased, and none

All three are compared in Figure 6-13. The first line of text has the value of subpixel-
antialiased and has strong, rounded characters. The second has the antialiased value, so
the text appears slighter but still very legible. The final line has the value of none and appears
jagged and quite unattractive.
This property is exclusive to WebKit browsers and doesn’t appear in any of the CSS3 modules.

Applying Punctuation Properties
Many typographers like to hang punctuation into the margin of a block of text, like in Figure 6-14.
Until now this has had to be done using a negative value for the text-indent property, like this:

p:first-child { text-indent: −0.333em; }

Figure 6-14. An example of hanging punctuation

This method requires that you have fine control over your text, however, which isn’t always the case.
The proposed hanging-punctuation property is an attempt to address this issue. Here is the
syntax:

E { hanging-punctuation: keyword; }

The keyword value can be: start, end, or end-edge. These define whether the punctuation can
hang outside the start of the first line, the end of the first line, or the end of all lines
(respectively).This property is currently unimplemented and not fully described, so it may be dropped
from future revisions.
A further typographic convention with punctuation is to trim the spacing of (that is, kern) certain
marks when they appear at the beginning or end of text blocks, or when certain pairs appear next to
each other (like)], for example). The punctuation-trim property was created to this end and
has the following syntax:

E { punctuation-trim: keyword; }

For this property, the allowed keywords are: none, start, end, and adjacent. They describe
the position in the text block where the trimming is allowed to occur. This property remains
unimplemented as of this writing.

Summary
The last few years have seen a noticeable upturn in the quality of typography on the Web, although the
limited range of CSS text properties hasn’t made that easy. But I believe that browser makers have
noticed the push for better implementation and, slowly but surely, more typographic control is being
placed in our hands.
Although the Text Module is under review and some of the new properties in this chapter may never
see the light of day, I feel covering them is important so you can be prepared for the eventuality that
they are implemented. At the very least, you can be sure that the W3C is aware of web typographers’
concerns and are working to alleviate them.
In the previous chapter, I looked at ways to increase the range and variety of fonts, and in this chapter,
I’ve discussed methods to make those fonts more decorative, flexible, and — most importantly —
readable. The next chapter will complete the triumvirate of chapters on fonts and typography by
introducing a whole new way to lay out text content. Well, new to the Web, that is; printers have been
doing it for centuries.

Text Effects: Browser Support
 WebKit Firefox Opera IE

text-shadow Yes Yes Yes No

text-outline No No No No

text-stroke Yes No No No

text-align (new values) Yes Yes No No

text-align-last No No No Yes

word-wrap Yes Yes Yes Yes

text-wrap No No No No

text-overflow Yes No (expected in Firefox 4) No Yes

resize Yes No (expected in Firefox 4) No No

text-rendering Yes Yes No No

punctuation properties No No No No

Chapter 7. Multiple Columns

Although computer screens are getting wider, studies still show that people have difficulty reading
long lines of text. (Roughly 65 to 75 characters per line is generally considered a comfortable length
to read.) This convention has led to restricted layouts and websites that don’t take advantage of the
opportunities wider screens present.
For years, magazines and newspapers have used multiple columns to flow content — addressing both
the issue of long text lines and how to pack a lot of copy into limited spaces. Now, with the advent of
the Multi-column Layout Module in CSS3 (http://www.w3.org/TR/css3-multicol/), websites can take
advantage of multiple columns, too.
In this chapter, I’ll look at the properties that have been implemented, as well as noting some that
haven’t. And putting your content into columns is not without potential issues, so I’ll also address
some of those as well.
The Multi-column Layout Module currently has Candidate Recommendation status, meaning the
module is considered pretty complete, and both Mozilla and WebKit have implemented aspects of it
in recent years (albeit with proprietary properties — more on that later), so you have plenty of
opportunities to experiment with multiple columns.

http://www.w3.org/TR/css3-multicol/

Column Layout Methods
You can divide your content into columns using two methods: either prescriptively by setting a
specific number of columns or dynamically by specifying the width of columns and allowing the
browser to calculate how many columns will fit into the width of the parent element.

Prescriptive Columns: column-count
The simplest way to divide your content into equally distributed columns is to use the column-
count property:

E { column-count: columns; }

The element E is the parent of the content you want to divide, and the columns value is an integer
that sets the number of columns. To split content inside a div element into two columns, you would
use

div { column-count: 2; }

Currently, both Firefox and WebKit implement certain multi-column properties, although the Firefox
implementation is marginally less standard-compliant and both have slight differences in how they
render multi-columns. As these are still somewhat incomplete compared to the specification, both
browsers use their proprietary prefixes: -moz- for Firefox, and -webkit- for WebKit.
In order to make columns work in both browsers, therefore, you need to call both properties in your
stylesheet. So when you use column-count (or any of the other properties in the rest of this
chapter) you have to specify:

E {
 -moz-column-count: columns;
 -webkit-column-count: columns;
}

For the sake of clarity, in the remaining examples in this chapter, I’ll use only the nonprefixed
property titles. Bear this in mind, however, when using multiple columns in your production pages.
With that said, let’s move on to a real-world example. I’ll demonstrate a few paragraphs of copy
displayed twice, the first distributed over three columns and the second over four columns. Here’s the
code I’ll use:

div[class*='-3'] { column-count: 3; }
div[class*='-4'] { column-count: 4; }

NOTE
I’ve used the Arbitrary Substring Attribute Value Selector in these examples, which was introduced in Chapter 3.

You can see the results of this code in Figure 7-1.

Figure 7-1. Text broken over three and then four columns

Here’s the markup (edited for brevity) I used for the example shown in Figure 7-1:
<div class="columns-3">
 <p>Lorem ipsum dolor...</p>
</div>
<div class="columns-4">
 <p>Lorem ipsum dolor...</p>
</div>

The syntax is extremely simple, and the browser takes care of distributing the content equally.

Dynamic Columns: column-width
The second method for dividing content into columns is perhaps a better choice for flexible layouts.
Instead of specifying the number of columns, you use column-width to specify the width of each
column, and the browser fills the parent element with as many columns as can fit along its width. The
syntax is just as easy:

E { column-width: length; }

As with column-count, E is the parent element of the content you want to divide into columns.
But column-width differs in that it requires a length value: either a unit of length (such as px,
or em) or a percentage. Here’s an example:

div { column-width: 100px; }

This code would divide the child elements of the div into columns 100px wide and repeat the
columns along the width of the div. Let’s see how this would work, using the following style rules:

.columns {
 column-width: 100px;
 width: 950px;
}

Here I have an element with a class name of columns, which is 950px wide; the content will be
distributed into 100px-width columns. You can see how this renders in Figure 7-2.

Figure 7-2. Text broken across dynamically created, equally spaced columns

With the column-width set to 100px, the browser has created eight columns to fill the parent
element. But all is not as it seems. Remember, the parent element is 950px wide, and even with a
10px gap between each column (we’ll talk about that shortly), the total width comes to only 870px, so
where is the extra white space?
The algorithm that creates the columns is actually quite intelligent and resizes the columns
automatically so they better fit the parent. It uses the 100px as a minimum value and makes each
column slightly wider (in this case, 105px) and the resulting gap between each column wider (in this
case, a fraction over 15px) so the total width matches that of its parent.

A Note on Readability
When using the Multi-column Layout Module, be aware that margins and padding will still be applied
to your content and can lead to unnecessary blank lines between paragraphs and lines of floating text
at the top or bottom of columns, both of which affect the readability of your content.
To illustrate what I mean, Figure 7-3 shows a formatting style that’s common on the Web — left-
aligned, with a margin between each paragraph — as it appears on text flowing over multiple
columns. As you can see, you can easily end up with floating lines of copy, or even individual words,
as at the top of the third column.

Figure 7-3. A common type-style in multiple columns

When using multiple columns, it’s a good idea to follow the typesetting examples provided by most
newspapers and magazines: Indent at the start of each paragraph, and don’t leave margins between
paragraphs. You can do this easily with existing CSS properties:

.columns p {
 margin-bottom: 0;
 text-indent: 1em;
}

I applied these properties to the previous example, which you can see in Figure 7-4. This shows the
same text, but I’ve removed the margin-bottom from the paragraphs and indented the first
sentence of each paragraph.

Figure 7-4. Text in multiple columns — indented and with the margin removed

This example is somewhat easier to read, but the text is ragged on the right edge, which doesn’t
always look as nice. To combat this, you could justify the text using the text-align property:

.columns p { text-align: justify; }

Justification is only really recommended if you have absolute control over your content, as it places
irregular spaces between your words and can actually decrease readability unless you hyphenate
correctly. (You can add soft hyphens using the HTML code ­.) Figure 7-5 shows the example
text once more, but here I’ve set the text to justify and inserted soft hyphens into longer words so they

break nicely and don’t cause too many irregular spaces between words.

Figure 7-5. Text in multiple columns — justified and hyphenated

These values provide, in my opinion, the most readable presentation of text, although using them does
require more work from the content author; adding soft hyphens has to be done manually, which takes
time, and when new content is added, you have to recheck the formatting to make sure that no errors
were introduced.

Different Distribution Methods in Firefox and WebKit
One caveat to using multiple columns is that Firefox and WebKit use slightly different algorithms for
calculating columns. As a result, text may be distributed differently among columns in each browser.
Firefox’s approach is to make the majority of columns have the same number of lines, with the final
column longer or shorter than the rest. In contrast, WebKit will make all of the columns as equal as
possible.
Showing this difference is easier than trying to explain it. Figure 7-6 shows text distributed over four
columns, as rendered in Firefox.

Figure 7-6. Text distributed over four columns in Firefox

The first three columns have the same number of lines, but the fourth column is much shorter; in this
example, the majority of the columns have the same number of rows. Now compare this example to
the same text rendered in WebKit, shown in Figure 7-7.

Figure 7-7. Text distributed over four columns in WebKit

Here you see that the first and third columns have one line of text more than the other two; rather than
rendering one column much shorter than the others as Firefox does, WebKit renders the columns more
equally overall, thus distributing any surplus more evenly among columns.
This came about because previous versions of the specification (from 2001 and 2005) never made
clear how the copy should be balanced over the columns, so both browser makers came up with their
own solutions. The W3C addressed this in later versions of the specification with the column-
fill property:

E { column-fill: keyword; }

The keyword values are auto, which fills columns sequentially, as Firefox does, and balance,
which distributes in the same way as WebKit does. The default is balance, so we can say that the
WebKit approach is correct in this case. However, neither of the browsers actually implements this
property yet, so until they do you’ll just have to be aware of the different approaches when working
with columns.

Combining column-count and column-width
You can set both column-count and column-width properties on an element, though, at first,
you might think this would create a conflict. This possibility has been taken into consideration,
however: If both properties are applied to the same element, the column-count value acts as a
maximum. To illustrate, let’s refer to Figure 7-5, but change the CSS to also include the column-
count property:

.columns {
 column-count: 5;
 column-width: 100px;
}

So the logic behind this would be: divide the text into columns of 100px each, unless that would
create five or more columns, in which case make five with a minimum width of 100px.
If you refer back to our example you’ll remember that, given the parent element’s width of 950px, the
column-width property rendered eight columns. As you’re applying both properties on the same
element, however, the column-count property takes precedence and only five columns are
distributed, with their widths dynamically altered to best fit the parent element.
WebKit implements this rule incorrectly, however, and instead creates five columns of 100px each,
leaving empty white space, as shown in Figure 7-8.
The first example shows Firefox’s correct interpretation of the spec; the second example shows
WebKit’s incorrect interpretation. As these properties use proprietary prefixes, however, there is an
opportunity for this inconsistency to be corrected before the final implementation of the nonprefixed
properties.

Figure 7-8. How Firefox (top) and WebKit (bottom) interpret combined column properties

If you want to use these two properties together, a shorthand property is available:
E { columns: column-width column-count; }

This property is currently only implemented in WebKit browsers (again, with its proprietary prefix),
so if you use the values from Figure 7-8, the required code would be:

div { -webkit-columns: 100px 5; }

Column Gaps and Rules
When using a prescriptive multi-column layout, the browser should place a default 1em gap between
each column. (Remember that when using dynamic layouts, as in Figure 7-5, 1em is the minimum
width.) You can, however, alter that default and specify your own distances by using two new
properties: column-gap and column-rule.
The first property, column-gap, sets the space between columns, and its syntax is very simple:

E { column-gap: length; }

The length value is any number with a standard CSS length unit. Here’s an example that would put
a 2em gap between each of your generated columns (though not on the outside of either the first or last
column):

div { column-gap: 2em; }

The second property, column-rule, draws a line, similar to a border, equidistantly between
columns. The syntax for column-rule is actually shorthand for three subproperties: column-
rule-width, column-rule-style, and column-rule-color. These subproperties take
values in exactly the same way as their equivalent border-* properties from CSS2. Here’s the
syntax:

E {
 column-rule-width: length;
 column-rule-style: border-style;
 column-rule-color: color;
 column-rule: length border-style color; /* Shorthand of previous 3 */
}

If you add real values, you would have something like this:
div {
 column-rule-color: red;
 column-rule-style: solid;
 column-rule-width: 1px;
}

You can then use the column-rule shorthand to set all three subproperties at once, like this:
div { column-rule: 1px solid red; }

Now that I’ve demonstrated the syntax of both new properties, let’s look at an example demonstrating
the column-gap and the column-rule shorthand:

.columns {
 column-count: 4;
 column-gap: 2em;
 column-rule: 0.3em double silver;
}

This example splits the element’s children into four columns, each with a gap of 2em and a 0.3em
border between the columns. The gap is distributed equally on either side of the border; this example
uses a 1em gap, a 0.3em border, and then another 1em gap. The width of the rule is added to the width
of the gap, so the total distance between columns is 2.3em. You can see the result of this example in
Figure 7-9.

Figure 7-9. Intercolumn gaps and rules

Containing Elements within Columns
So far in these examples I’ve only used blocks of text, which flow neatly into columns. But what
happens with larger elements, like images, that are more than a column wide? Firefox and WebKit
treat them differently, with the latter conforming to the specification.
Let’s look at the different resolutions in each browser, by adding an image inside a column layout,
using the img element. First, take a look at the result in Firefox, which is displayed in Figure 7-10.

Figure 7-10. An img element wider than a column in Firefox

As you can see, the image displays in the second column, and flows across into the third, where it’s
visible behind the text. Now take a look at the same content displayed in WebKit, in Figure 7-11.

Figure 7-11. An img element wider than a column in WebKit

The image is displayed in the same position as in the previous example, but now the overflow is
hidden; it is clipped at a point halfway inside the column-gap. This implementation is correct, as
this quote from the specification makes clear:

Content in the normal flow that extends into column gaps (e.g., long words or images) is clipped in the middle of the column gap.

But what happens if your content spans multiple columns — if, for example, you want this image
displayed across the second and third columns? And what if you have a heading at the end of a
column, which you don’t want to have split onto the next? The good news is that the authors of the
Multi-column Layout Module have anticipated these possibilities and provided properties to deal
with them. The bad news is that, as of this writing, no browsers have implemented them.

Elements Spanning Multiple Columns
To deal with elements that need to be displayed in full across more than one column, the module
introduces the column-span element. The syntax is:

E { column-span: value; }

Here value can be only one of two possibilities: 1 or all. The default is 1, which will keep the
element in the column flow. The alternative value, all, will provide a break in the flow — all
content before the element (E) will be distributed into columns, and all content after the element will
be distributed into columns, but the element itself will not.

Elements Breaking over Multiple Columns
So far we’ve dealt mostly with text, which flows naturally over multiple columns. But what happens
with other elements, such as subheadings or lists, which shouldn’t be split between columns? The
point at which a column ends and the next one begins is known as a break, and you can override the
automatic generation of breaks with the break-after, break-before, and break-inside
properties:

E { break-after: keyword; }
E { break-before: keyword; }
E { break-inside: keyword; }

Each property accepts a range of keyword values: all three accept auto and avoid, and the
break-after and break-before properties allow an extra value, column. The avoid value
will ensure that no break occurs either immediately after or immediately before (whichever property
applies) the specified element, and the column value behaves in the opposite way, forcing a break
after or before the element. The default value for all of the properties is auto, which neither forces
nor forbids a break, letting the browser make the decision about whether a break should happen after,
before, or inside the element.
The properties are applied to the element that you want to avoid breaking over more than one column,
and they instruct the browser where the column break should be applied. Here are two examples:

h2 { break-after: column; }
img { break-before: avoid; }

In the first example, a column break will be forced immediately after the h2 element, regardless of
whether a break would occur there naturally. In the second, a break can never occur before the img
element, so in a situation where that may occur, the img will be positioned at the bottom of a column
with the break after the img.

Summary
Although CSS3 makes flowing your content into columns very easy, the challenges it presents are not
so much technical as they are practical: What happens if you want to use images that are wider than a
column or if you want to use long headlines in narrow columns?
Although using multiple columns is definitely appropriate in certain situations, think twice about
whether your content is suitable. Make sure you have full control over your content before using these
properties, and don’t design websites that rely on multiple columns, if your client doesn’t have a
dedicated and conscientious web content team.
Also, bear in mind that screen resolutions can vary dramatically, and content that looks readable to
you may not be readable to your website’s visitors. If they have to scroll up and down too frequently,
which can cause lot of confusion, they may be put them from visiting your site altogether. But with all
that said, clever use of columns can make your content much more readable.
In the previous three chapters, I’ve described how CSS3 provides methods to format and present your
text copy, allowing you better control over your typography and layout. Next I’m going to introduce
ways you can improve the overall visual presentation of your websites, starting with new background
and border effects.

Multiple Columns: Browser Support
 WebKit Firefox Opera IE

column-count Yes (with prefix) Yes (with prefix) No No

column-width Yes (with prefix) Yes (with prefix) No No

column-gap Yes (with prefix) Yes (with prefix) No No

column-rule Yes (with prefix) Yes (with prefix) No No

columns Yes (with prefix) No No No

column-span No No No No

break-* No No No No

Chapter 8. Background Images and Other
Decorative Properties

Adding decorative elements to make our websites more visually appealing is surprisingly resource-
and time-intensive. Even simple graphical effects can require a lot of unnecessary markup. You are
limited to only one background image per element, so to achieve a desired effect, which often
involves duplicating images at different sizes, you commonly have to use as many as three extraneous
elements. This leads to obfuscated markup, longer loading times, and more strain on the server to
load those extra graphical elements.
CSS3 introduces a number of new and extended properties aimed at overcoming this issue, and the
browser makers have been quick to implement them and to add a number of their own
implementations as well. Over the next few chapters, we’ll take a look at the new range of features
that we can use to prettify our pages.

Background Images
I’ll begin by taking you on a walk through one of the specifications that the W3C is making a priority,
the Backgrounds and Borders Module (http://www.w3.org/TR/css3-background/). Due to high
demand from web developers, many of its new properties have already been implemented by
browsers, so plenty of real-world test results are available to learn from.
Unlike previous versions of CSS, CSS3 allows multiple images to be applied to elements and those
images can be resized on the fly. Just these two new features alone would be enough to please most of
us, but the specification goes further to provide more control over image placement and image tiling.
The Backgrounds and Borders Module currently has Candidate Recommendation status and is likely
to become a Recommendation in the near future. Although, as mentioned previously, many of its
features are ready for use, some properties still require proprietary browser prefixes.

http://www.w3.org/TR/css3-background/

Multiple Background Images
The first new feature in the Backgrounds and Borders Module isn’t a new property, but an extension
of an existing one — or, rather, several existing ones. Almost all of the background-* properties
now accept multiple values, so you can add many background images to the same element
(background-color is the exception to this).
To add multiple background layers to an element, just list the values separated by commas. For
example, here’s the syntax with background-image:

E { background-image: value, value; }

For each background layer you create, you can add appropriate values to all of the relevant
background-* properties. Here’s a real-world example:

h2 {
 background-image: url('bunny.png'), url('landscape.jpg');
 background-position: 95% 85%, 50% 50%;
 background-repeat: no-repeat;
}

You can see the output in Figure 8-1. The layers are created in reverse order — that is, the first layer
in the list becomes the topmost layer, and so on. In my example code bunny.png is a layer above
landscape.jpg. The background-position property follows the same order: The landscape is
positioned at 50% left and 50% top (the horizontal and vertical center) of its containing element and
the bunny at 95% left and 85% top.

Figure 8-1. Two background images on the same element [1]

Notice that background-repeat has only one value. If a property has fewer values than there are
background layers, the values will repeat. In this example that means no-repeat will be applied to
all background layers.
You can use multiple values with the background shorthand property; as with the individual
properties, you just need to provide a comma-separated list. To get the result seen in Figure 8-1, I
could have also used this code:

h2 {
 background:

 url('bunny.png') no-repeat 95% 85%,
 url('landscape.jpg') no-repeat 50% 50%;
}

As I mentioned at the start of this section, background-color is the only background-*
element that doesn’t accept multiple values; the color layer will always be stacked below the image
layers. If you want to specify a background color when using the shorthand property, you must place it
in the last instance of the comma-separated list. In the example code that would be in the instance
with the landscape picture value:

h2 {
 background:
 url('bunny.png') no-repeat 95% 85%,
 #000 url('landscape.jpg') no-repeat 50% 50%;
}

Multiple backgrounds are supported in Firefox (version 3.6 and up), WebKit, and Opera, and are
scheduled for inclusion in IE9.
Keep in mind, however, browsers that don’t support the new multiple syntax — e.g., older versions
of Internet Explorer or Firefox 3.5 and below — will ignore it and refer to the previous rule in the
cascade. You should declare a property on the element before the multiple values as a fallback. For
example:

h2 {
 background: url('landscape.jpg') no-repeat 50% 50%;
 background:
 url('bunny.png') no-repeat 95% 85%,
 url('landscape.jpg') no-repeat 50% 50%;
}

In this case, the nonsupporting browser will ignore the property with multiple values and use the
single value that precedes it. Note, however, that in Internet Explorer, you will have to use the
shorthand background property for both; if you use individual background-* properties, they will
take preference over the shorthand property and no image will be displayed.

Background Size
A new property to CSS3 is background-size. This property, as you can probably guess, allows
you to scale your background images. Here’s the syntax:

E { background-size: value; }

Firefox, WebKit, and Opera have implemented this property already — in previous versions of
Firefox (before 4) and Safari (before 5), you’ll have to use the browser’s proprietary prefixes (-
moz- and -webkit-, respectively). No prefix is required in later versions — and it is scheduled
for inclusion in IE9 (also with no prefix). As always, for the sake of clarity, I’ll leave out the
browser-specific prefixes in the examples in the rest of this chapter, but remember to use them in your
own code.
This property’s value can be a pair of lengths or percentages, a single length or percentage, or a
keyword. If a pair is used, the syntax is:

E { background-size: width height; }

So to resize a background image to be 100px wide and 200px high, you would use:
div { background-size: 100px 200px; }

The length can be any standard unit of measurement. If you use percentages, the dimension is based on
the containing element, not the background image. So a width and height of 100%, for example, will
make the background image fill the container. To make the image appear at its natural size, use the
auto keyword.
If only a single value is specified, that value will be considered the width, and the height will be
assigned the default value of auto. Therefore, these two examples are exactly equivalent:

div { background-size: 100px auto; }
div { background-size: 100px; }

You can use your newly learned multiple background method with background-size as well.
For example, let’s revisit Figure 8-1, but repeat the bunny image a few more times, adding different
values to the background-position and background-size properties. Here’s the code:

h2 {
background:
 url('bunny.png') no-repeat 95% 85%,
 url('bunny.png') no-repeat 70% 70%,
 url('bunny.png') no-repeat 10% 100%,
 url('landscape.jpg') no-repeat 50% 50%;
 background-size: auto,5%,50%,auto;
}

Figure 8-2 shows this method in action.

Figure 8-2. Example of resized background images

The spec states that the background-size property can be used in the background shorthand
property, as long as it occurs after background-position. However, this hasn’t been
implemented in any browser yet, so for now, you must call the property separately.
Two other keywords are available: contain and cover. The contain keyword sets the image
should to scale (proportionately) as large as possible, without exceeding either the height or width of
the containing element; cover sets the image to scale to the size of either the height or width of the
containing element, whichever is larger.
Take a look at the following code to see what I mean:

div[class^='bunny'] {
 background-image: url('bunny.png');
 background-position: 50% 50%;
}
div[class$='-1'] { background-size: contain; }
div[class$='-2'] { background-size: cover; }

I used two div elements, with a class of bunny-1 and bunny-2, and set different keyword values for
background-size on each. The result is shown in Figure 8-3.

Figure 8-3. background-size keywords: contain (left) and cover (right)

The box on the left has the contain keyword value, so the background image fills the box vertically
(the shortest length); the box on the right has the cover keyword value, so the background image fills
the box horizontally (the longest length).

Background Clip and Origin
In CSS2, the position of a background image is defined relative to the outer limit of its containing
element’s padding, and any overflow will extend underneath its border. CSS3 introduces two new
properties that provide more granular control over this placement.
The first property is background-clip, which sets the section of the box model that becomes the
limit of where the background (either color or image) is displayed. Here’s the syntax:

E { background-clip: keyword; }

According to the spec, the keyword can be one of three possible values: border-box, content-
box, or padding-box. The border-box value is the default, and it means the background will
be displayed behind the border (you can see it if you use a transparent or semi-opaque border color).
A value of padding-box means the background will display only up to, and not behind, the border.
content-box means the background will stop at the element’s padding.
I’ll illustrate the difference using the following code:

h2[class^='clip'] {
 background: url('landscape.jpg') no-repeat 50% 50% #EFEFEF;
 border-width: 20px;
 padding: 20px;
}
h2[class$='-brdr'] { background-clip: border-box; }
h2[class$='-pddng'] { background-clip: padding-box; }
h2[class$='-cntnt'] { background-clip: content-box; }

I used three h2 elements with classes of clip-brdr, clip-pdding, and clip-cntnt,
respectively. Figure 8-4 illustrates the difference between the values.

Figure 8-4. Showing the effect of different values on the background-clip property: border-box (left), padding-
box (center), and content-box (right)

Here, I’ve used a semi-opaque border; you can see the image paint beneath it in the box on the left,
which has the border-box value. The central box has the padding-box value, and as you can
see, the background stops at the limit of the padding. In the box on the right, the value is content-
box, so the background does not show behind the padding.
This property is implemented correctly in Opera and should be in both Firefox 4 and IE9. Older
versions of Firefox have a nonstandard implementation where the values border and padding are
used in place of border-box and padding-box, respectively, with the proprietary -moz-
prefix on the property.
With WebKit it gets more complicated still; the oldest implementations have border and padding

values, like Firefox, and also the content keyword in place of content-box, all with the -
webkit- prefix on the property. More recent versions use border-box, padding-box, and
content-box, still with the prefixed property. The most recent versions (since Safari 5, for
example) have dropped the prefix requirement when using border-box and padding-box, but
not content-box. That being the case, if you want the example code to work in all browser
versions, you’d have to adapt it like so:

h2[class$='-brdr'] {
 -moz-background-clip: border;
 -webkit-background-clip: border;
 -webkit-background-clip: border-box;
 background-clip: border-box;
}
h2[class$='-pddng'] {
 -moz-background-clip: padding;
 -webkit-background-clip: padding;
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}
h2[class$='-cntnt'] {
 -webkit-background-clip: content;
 -webkit-background-clip: content-box;
 background-clip: content-box;
}

WebKit browsers allow a further, nonstandard keyword value: text. When used on text with a
transparent background color this fills the text with the background image. To make this work
compatibly with non-WebKit browsers, we should use the -webkit-text-fill-color that
was introduced back in Chapter 6. Here’s an example:

h2 {
 background: url('landscape.jpg') no-repeat 50% 60%;
 -webkit-background-clip: text;
 -webkit-text-fill-color: transparent;
}

The result is shown in Figure 8-5, where the background image is clipped to the text.
The second property that gives you more granular control is background-origin. Using
background-origin, you can set the point where the background is calculated to begin. As I
mentioned before, CSS2 background positions are calculated relative to the limit of the padding, but
background-origin lets you change that. Here’s the syntax:

Figure 8-5. Applying a background image to text with the -webkit-background-clip properiy

E { background-origin: keyword; }

The background-origin property accepts the same keyword values as we’ve just seen in
background-clip: border-box, content-box, and padding-box. Once more, I’ll

call on my bunny to help illustrate the difference. The next demonstration uses this code:
h2[class^='origin'] { background: url('bunny.png') no-repeat 0 100%;}
h2[class$='-brdr'] { background-origin: border-box; }
h2[class$='-cntnt'] { background-origin: content-box; }
h2[class$='-pddng'] { background-origin: padding-box; }

The effects of the different values are illustrated in Figure 8-6. As you can see, the bunny is in a
different position in each box because the background-position is calculated relative to a
different point in each box.

Figure 8-6. The background-origin property with values of border-box (left), padding-box (center), and
content-box (right)

The background-position is always set at 0 100%, which is the bottom left. The point where
the bottom left is measured from changes depending on the background-origin value, however.
In the first box, the background originates at the limit of the border; in the second, from the limit of the
padding; and in the third, from the limit of the content box.
A couple of things to bear in mind: First, this property has no effect if the background-
position is set to fixed. Second, both background-clip and background-origin
accept multiple values, using the same syntax used in Multiple Background Images in Background
Images.
As with background-clip, Opera and the latest WebKit browsers have an implementation that is
the same as the spec, and Firefox 4 and IE9 should have likewise. Older versions of Firefox and
much older versions of WebKit have nonstandard versions of this property and have implemented the
three possible values as border, content, and padding using the prefixed property, while
older but pre-Safari 5 versions of WebKit require the correct values, also with the prefixed property.
Therefore, to support every browser version the previous code example would have to be extended
like so:

h2[class$='-brdr'] {
 -moz-background-origin: border;
 -webkit-background-origin: border;
 -webkit-background-origin: border-box;
 background-origin: border-box;
}
h2[class$='-pddng'] {
 -moz-background-origin: padding;
 -webkit-background-origin: padding;
 -webkit-background-origin: padding-box;
 background-origin: padding-box;
}
h2[class$='-cntnt'] {
 -moz-background-origin: content;

 -webkit-background-origin: content;
 -webkit-background-origin: content-box;
 background-origin: content-box;
}

background-repeat
The background-repeat property currently has four possible values: no-repeat, repeat,
repeat-x, and repeat-y. These values allow you to tile images across either axis of an element
(or both axes) but don’t allow for any finer control than that. CSS3 extends the range of tiling options
with two new values.
The first is space, which will set the background image to repeat across its containing element as
many times as possible without clipping the image. All of the repetitions (except the first and last)
will then be equally spaced, so the image is evenly distributed.
The second is round, which will likewise set the background image to repeat as many times as
possible without clipping, but instead of equally spacing the repetitions, the images will scale so a
whole number of images fills the containing element.
Although these new values are once again planned for inclusion in IE9, the only browser to
implement them to date is Opera (version 10.5+), so I’ll provide an example using that browser:

.bunny {
 background-image: url('bunny_sprite.png');
 background-repeat: repeat;
 background-size: 20%;
}
.space { background-repeat: space; }
.round { background-repeat: round; }

First, I’ve resized bunny_sprite.png with the background-size property and then applied
it to three different boxes, each with a different background-repeat value. Figure 8-7 displays
the results.

Figure 8-7. background-repeat values: repeat (left), space (center), and round (right)

You can see some slight rounding errors, but nothing major. The box on the left has a background-
repeat value of repeat and shows the behavior you would currently expect. The box in the
middle has a value of space, and the maximum number of images that can be tiled without clipping
or scaling are displayed with empty space between them. Finally, the box on the right has a value of
round, which calculates the maximum whole number that can fit in the containing element both
horizontally and vertically.
WebKit recognizes these keywords, but treats them both incorrectly as no-repeat. Firefox ignores
them and uses the previous cascaded or inherited value.

Background Image Clipping
A technique that’s become a part of every web developer’s arsenal in the last few years has been the
use of image sprites. An image sprite is when you have many different images in a single file, but you
show only a part of the image on any given element (if you’re not familiar with CSS sprites, you can
find an explanation at http://www.alistapart.com/articles/sprites/). This technique is borrowed from
old video games and is useful for loading fewer images, which means fewer hits to the server.
This technique is not without its drawbacks, though: It relies on the element being able to mask the
parts of the image that you don’t want to be shown, and it can make it little harder to maintain your
graphics.
Mozilla has introduced a new proprietary property in Firefox 4 (Beta), which aims to get around
those issues. Called image-rect, the syntax looks like this:

E { background-image: -moz-image-rect(url, top, right, bottom, left); }

The first value is the path to the image you want to clip, and the next four values define the four sides
of the rectangle you want to show, using the same format as the CSS2 clip property: in order, top,
right, bottom, and left, measured from the top-left corner.
Here’s an example to illustrate exactly what I mean. I’m going to use a single background sprite and
then apply various values to image-rect to display different areas of the image. Here’s the code:

.bunny { background: url('bunny_sprite.png') no-repeat 50% 50% #EFEFEF; }

.white { background-image: -moz-image-rect(url('bunny_sprite.png'),0,57,100,0); }

.gray { background-image: -moz-image-rect(url('bunny_sprite.png'),0,114,100,57); }

Figure 8-8 shows the results of this technique. Three boxes are shown in the figure; each box uses the
same background image (shown in full in the first box).

Figure 8-8. Image sprite (left) cropped using -moz-image-rect (center and right)

All the boxes have a class of bunny, so browsers that don’t support image-rect will revert to
that background image. The image bunny_sprite.png is 114px wide and 100px high.
The second box has a class of white and only shows the white bunny. The image-rect
property has the image URL followed by the dimensions of the clip box: the top is 0px from the top;
the right is 57px from the left; the bottom is 100px from the top; and the left is 0px from the left. This
box shows only the left-hand side of the image — that is, the white bunny.
You can see the box “drawn” by those clip values in Figure 8-9.

http://www.alistapart.com/articles/sprites/

Figure 8-9. The bounding box drawn by the -moz-image-rect property

The third box has a class of gray, and only shows — guess what? — the gray bunny. Again the
image-rect property has the same URL value, but this time the dimensions are different: The top
is 0px from the top, the right is 114px from the left, the bottom is 100px from the top, and the left is
57px from the left.
The W3C are considering providing a property to substitute the CSS sprites technique in a future
revision of CSS3 (you can see the proposed syntax in Chapter 17), but as far as I’m aware, no final
decision has yet been made on which syntax it will use.

Image Masks
In the last few years, the WebKit team has created a series of new properties that add “eye candy” to
CSS. Known loosely as CSS Effects, some of these properties have been adopted by the W3C and
drafted for inclusion in CSS3. I’ll introduce those later in Chapter 12–Chapter 14.
One of the properties that hasn’t yet been adopted is the CSS Image Mask, and although other browser
makers are not currently showing an interest in implementing this property, all WebKit browsers
support Image Masks.
Anyone familiar with graphics should be familiar with the concept of masking. Essentially, masking
places an image layer over a background, making the area that is not transparent, transparent — in
other words, the background will show through in the shape of the image layer. Take a look at the
example in Figure 8-10.

Figure 8-10. From left to right, a background, an image mask, and the mask applied to the background

Figure 8-10 is an image mask in three parts: On the left is the background; in the center, the mask; on
the right, I applied the mask to the background — the black area becomes transparent, allowing only
that area of the background to show through.
WebKit introduces a new set of properties that allows you to do this to any element. The syntax
(which has the -webkit- prefix) is the same as the background-* set of properties and includes
-webkit-mask-image, -webkit-mask-position, -webkit-mask-repeat, and
so on.
As an example, I’m going to set a background image on an element (using my good friend, the bunny)
and then use another image called bw.png to apply the mask.
Here’s the relevant code:

div {
 background: url('images/bunny.png');
 -webkit-background-size: 17px 30px;
 -webkit-mask-image: url('images/bw.png');
 -webkit-mask-position: 50% 50%;
 -webkit-mask-repeat: no-repeat;
 -webkit-mask-size: 100%;
}

In Figure 8-11, I’ve put together an illustration of the three stages of the process. In the first box, you
can see the image bunny.png tiled across the back of the element. In the second box is the image
bw.png, which is the mask that will be applied to the element. And in the third box, the mask is
applied and the background image shows through the black area.

Figure 8-11. Demonstrating the -webkit-mask- properties [2]

Note that this is similar to what we did earlier in the chapter with the text value for -webkit-
background-clip.
As with the background-* properties, there is also a shorthand property, -webkit-mask,
which accepts values in exactly the same way. I could have abbreviated the previous code like so:

div {
 background: url('images/bunny.png');
 -webkit-background-size: 17px 30px;
 -webkit-mask: url('images/css3.png') no-repeat 50% 50%;
 -webkit-mask-size: 100%;
}

One property that doesn’t have a background-* counterpart is -webkit-mask-box-image,
which allows you to use a mask as a border. The syntax for this is based on the border-image
property, which will be introduced in the next chapter and works in the same way. Note that here you
can also use the CSS gradient syntax, which I’ll fully introduce in Chapter 11.
You can read more about the WebKit mask properties in the blog post that introduced them
(http://webkit.org/blog/181/css-masks/).

http://webkit.org/blog/181/css-masks/

Summary
The new features introduced in this chapter are a big step toward the stated aim of CSS: to separate a
page’s content from its presentation. The more nonessential markup we can remove from our
documents, the easier our pages will be to maintain and the better it will be for semantics.
The current leader in implementing these features is Opera, which from version 10.5 has very solid
and stable support for this module, though I expect all other major browsers will catch up in the near
future (including IE9, I hope).
In the next chapter, I’ll cover the other part of the Backgrounds and Borders Module: borders.

Background Images: Browser Support
 WebKit Firefox Opera IE

Multiple background images Yes Yes Yes No (expected
in IE9)

background-size Yes (with prefix in Safari 4 and
earlier)

Yes (with prefix; expected in Firefox 4
without prefix)

Yes No (expected
in IE9)

background-clip Yes (with prefix in Safari 4 and
earlier)

Yes (with prefix; expected in Firefox 4
without prefix)

Yes No (expected
in IE9)

background-origin Yes (with prefix in Safari 4 and
earlier)

Yes (with prefix; expected in Firefox 4
without prefix)

Yes No (expected
in IE9)

background-repeat
(new values)

No No Yes No (expected
in IE9)

image-rect No Yes (with prefix) No No

mask-* Yes (with prefix) No No No

[1] The bunny image is by Flickr user Andrew Mason (http://www.flickr.com/photos/a_mason/42744470/), and the landscape image is by
Flickr user Nicholas_T (http://www.flickr.com/photos/nicholas_t/1426623052/). Both images are published under a Creative Commons
Attribution license.

[2] This image is by Flickr user pasukaru76 (http://www.flickr.com/photos/pasukaru76/5164791212/) and is published under a Creative
Commons Attribution license.

http://www.flickr.com/photos/a_mason/42744470/
http://www.flickr.com/photos/nicholas_t/1426623052/
http://www.flickr.com/photos/pasukaru76/5164791212/

Chapter 9. Border and Box Effects

The ability to add borders to page elements has been around, almost unchanged, since the days of
CSS1. What developers wanted to do with borders, however, outstripped what they could do with
them years ago. Adding border effects such as rounded corners or shadows has probably been
responsible for more extraneous empty markup elements than almost anything else in the web
development world. Things that should be simple often involve some incredibly complex
workarounds.
The second part of our look at the Backgrounds and Borders Module explores new methods of
decorating elements without extra markup. You’ll learn how to make rounded corners, how to use
images for borders, and how to add drop shadows.

Giving Your Borders Rounded Corners
Since the earliest days of the Web, designers have been putting rounded corners on page elements.
That they’ve had no way to create them without using images seems crazy. To create a box of flexible
width with four rounded corners has meant creating four images and adding at least two extra
nonsemantic elements, which makes maintaining a website much harder than it needs to be.
But no more. The Backgrounds and Borders Module introduces a way to round the corners of your
elements using CSS alone. Each corner is treated as a quarter ellipse, which is defined by a curve that
is drawn between a point on the x-axis and a point on the y-axis (you may remember those from
Chapter 6). Figure 9-1 illustrates this more clearly.

Figure 9-1. A quarter ellipse made by the curve befween lengths on the x and y axes

A quarter ellipse can be regular, which means the length along both axes is the same, or irregular,
which means the length along each axis is different. Figure 9-2 shows examples of both.

Figure 9-2. A regular curve (left) has identical values on both axes; an irregular curve has different values on each axis.

CSS3 defines these curves using the border-radius property. This property allows you to define the
radius of the quarter ellipse simply using the following syntax:

E { border-v-h-radius: x y; }

In this syntax, v is a keyword value of top or bottom, h is a keyword value of left or right,
and the x and y values are lengths along the axes that define the curve of the quarter ellipse. That
sounds like a mouthful, but here’s an example that should make it clearer:

div { border-top-right-radius: 20px 20px; }

This syntax will round the top-right corner of a div element with a radius of 20px horizontally and

vertically, which is a regular curve.
In fact, for regular curves border-radius lets you simplify even further by leaving out either the
x or the y value; if one value is not specified, both are assumed to be equal. So if you wanted to apply
that radius to each corner of your element, you would use this code:

div {
 border-top-left-radius: 20px;
 border-top-right-radius: 20px;
 border-bottom-right-radius: 20px;
 border-bottom-left-radius: 20px;
}

Figure 9-3 shows the result.
To create irregular curves, you just use different values on the individual properties, like so:

div {
 border-top-left-radius: 10px 20px;
 border-top-right-radius: 10px 20px;
 border-bottom-right-radius: 10px 20px;
 border-bottom-left-radius: 10px 20px;
}

This syntax creates the shape shown in Figure 9-4.

Figure 9-3. Four equal, regular rounded corners

Figure 9-4. Four irregular rounded corners

border-radius Shorthand
If having to write a different property for each corner strikes you as quite repetitive, you'll be happy
to learn that a shorthand property is available. As with border-width, margin, and padding,
you can specify one, two, three, or four values. Where those values refer to sides, however, the
border-radius values refer to corners, starting at the top left:

E { border-radius: top-left top-right bottom-right bottom-left; }
E { border-radius: top-left top-right & bottom-left bottom-right; }
E { border-radius: top-left & bottom-right top-right & bottom-left; }
E { border-radius: top-left & top-right & bottom-right & bottom-left; }

The shorthand syntax can only be used like this if you have regular corners; that is, corners where the
horizontal and vertical values are the same and are defined with a single length. (I’ll cover the
shorthand for irregular corners momentarily.)
To demonstrate the shorthand property in action, I’m going to draw three boxes, each with a different
set of values:

.radius-1 { border-radius: 0 20px; }

.radius-2 { border-radius: 0 10px 20px; }

.radius-3 { border-radius: 0 0 20px 20px; }

You can see the output in Figure 9-5.

Figure 9-5. Effects of different values for the border-radius shorthand property

The first (left) box has two values for border-radius: The top-left and bottom-right have a
value of 0, so are square, but the top-right and bottom-left are rounded with a radius of 20px. The
second (middle) box has three values: The top-left is once again square, but now the top-right and
bottom-left have a 10px radius, and the bottom-right has a value of 20px. Finally, the last (right) box
has four values: The top-left and top-right have a value of 0, so are squared, whereas the bottom-right
and bottom-left have radii of 20px.
You can also use the shorthand syntax with irregular curves. To achieve this effect, you’ll need to list
the values separated by a slash (/), like so:

border-radius: { horizontal-radius / vertical-radius; }

Each side of the slash can contain between one and four values, as with the shorthand for regular
curves. This means, for example, you could have one value for the horizontal radius and four separate
values for the vertical radii. Again, I’ll demonstrate what this looks like in actual practice:

.radius-1 { border-radius: 20px / 10px; }

.radius-2 { border-radius: 20px / 10px 20px; }

.radius-3 { border-radius: 10px 20px 20px / 20px 10px; }

The results are shown in Figure 9-6.

Figure 9-6. Irregular rounded corners produced with the border-radius shorthand property

The first (left) box has four equal corners of 20px horizontal and a 10px vertical radius. The second
(middle) box has two corners of 20px/10px and two of 20px/20px. The last (right) box has a top-left
corner of 10px/20px, a top-right and a bottom-left corner of 20px/10px, and a bottom-right corner of
20px/20px.

Differences in Implementation Across Browsers
The syntax used so far in this chapter is what appears in the specification, so you can consider it
canonical. But to use rounded corners today, you should know how the various browsers implement
border-radius.
Whereas Opera (10.5+) and recent versions of WebKit support the syntax according to the
specification, previous WebKit browsers (such as Safari 4.04 and below) require the proprietary -
webkit- prefix before each property, and Firefox versions below 4 use a different pattern
altogether. Mozilla’s browser currently uses the following syntax:

E { -moz-border-radius-vh: x y; }

That means to apply a radius to the top-left corner of an element the code has to be written like so:
div { -moz-border-radius-topleft: 20px 20px; }

Also, older versions of WebKit — such as that used in Safari until at least version 4.04 — have an
incorrect implementation of the border-radius shorthand property, which accepts only a single
value. If you want to have anything other than four regular rounded corners, you have to specify
individual values for each of the border-*-*-radius properties, as shown at the beginning of
this chapter.

Using Images for Borders
Another common way to style elements is to use background images as decorative borders. With
CSS2, however, you had no way to achieve this, and you had to use a lot of extra markup to get the
required effect, with a subsequent penalty on semantics and maintainability. CSS3 introduces
border-image, which provides a simple syntax to apply decorative borders:

E { border-image: source slice / width repeat; }

This property is supported by Opera, as well as Firefox and Safari (with their proprietary prefixes).
However, as only Firefox supports the width value, the safe implementation would use this syntax:

E { border-image: source slice repeat; }

The first value, source, is the URL of the image you want to use for your borders. Next, slice is a
length or percentage value (or series of values) that sets a distance from each edge of the image
marking the area that will be used to “frame” the element; I’ll clarify this with an example shortly.
slice can be between one and four values, similar to margin, padding, border-radius,
and so on.
The repeat value takes either one or two keywords, which set the way the image is repeated along
the top and bottom (first keyword) and left and right (second keyword) of the element. The possible
values are stretch, which stretches the image to fill the border length; repeat, which tiles the
image across the length; round, which tiles the image across the length using a whole number of tiles
(the element will be resized to accommodate this); and space, which also tiles the image across the
length using a whole number of tiles, but using spaces if the image doesn’t fit the element.
This all probably sounds a bit complicated, so here’s an example that should help to illustrate.
Consider the following CSS:

div {
 border-image: url('frame.png') 32 39 36 41 stretch;
 border-width: 20px;
}

Note here that no unit values are included for the numbers. The numbers serve two purposes: for
bitmap images (such as JPG or PNG), they are pixel values; but for vector images (such as SVG),
they are coordinate values. I mentioned previously that percentages are also allowed, in which case,
you would use the percent sign (%).
Back to the example. Figure 9-7 shows the original image I’m going to use as my border-image
(frame.png) and then, on the right, that image applied as a border using the previous code.

Figure 9-7. The original image (left) and the image as it appears when displayed with border-image (right)[3]

Let me walk you through the code. First, I specify frame.png as the image I’ll be using for the
border. The next four numerical values set the areas I want to slice: 32px from the top, 39px from the
right, 36px from the bottom, and 41px from the left. These values specify which parts of frame.png
I want to use as my top, right, bottom, and left borders, respectively. Figure 9-8 shows where my
slices are on my frame image.

Figure 9-8. Where the four specified values in border-image will slice the image

The image is cut into nine slices: four sides, four corners, and the center. The corners and the center
will always remain constant, scaling to fill their set positions, but the four sides can be modified with
the values specified in the property. In this example, I’ve set the repeat value to stretch, which
means the side slices will be stretched to fill the length (height or width) of the element. I also set a
border-width of 20px on each side, so my image slices are scaled to fit inside that limit.
Now to illustrate the difference between the stretch and round keywords for the repeat value.
Check out this code:

.bimage-1 { border-image: url('frame.png') 32 39 36 41 round stretch; }

.bimage-2 { border-image: url('frame.png') 32 39 36 41 stretch; }

Figure 9-9 compares the two results.

Figure 9-9. border-image repeated horizontally (top) and stretched horizontally (bottom)

The first box has a value of round stretch, so the image is repeated three times horizontally but
scaled vertically. The second box has a value of stretch, so the image is scaled on both axes.
In the module itself, border-image is said to be the shorthand for a series of subproperties:

E {
 border-image-source: image;
 border-image-slice: length; /* Up to four values allowed */
 border-image-width: length; /* Up to four values allowed */
 border-image-outset: length; /* Up to four values allowed */
 border-image-repeat: keyword; /* Up to two values allowed */
}

You’ll be familiar with some of these properties from the shorthand property: border-image-
source is the same as the source value; border-image-slice is the same as slice; and
border-image-repeat is the same as repeat.
The border-image-width property has the same syntax as the slice value but a different
function: It sets the width of the element’s border and takes precedence over border-width.
(border-image-width is used to provide a fallback state, as with text-fill-color,
which I introduced in Chapter 6.) As I mentioned previously, you can use this property in Firefox’s
shorthand property but not in other browsers. The border-image-outset property also uses the
same syntax as slice, but it sets the length that the border can extend outside the element.
These properties were only introduced to the specification at the end of 2009, however, and as of this
writing, no browser supports them, although they are likely to be implemented in the future.

Multicolored Borders
Firefox has a series of proprietary properties that let you define multiple colors on a border. The
syntax is very similar (one letter different!) to the border-*-color properties:

E { -moz-border-*-colors: colors; }

The asterisk represents a keyword for a side — top, right, bottom, left — and colors is a
list of space-separated color values, each of which will color a single pixel-width of the border. For
example, if you have a 3px left border and wanted to color it like the Italian flag, you would use:

div {
 border-left-width: 3px;
 border-left-colors: green white red;
}

As each color only applies to a single pixel-width, you may have borders with a thicker width than
you have defined colors for. In this case, the last color specified will repeat for the rest of the
border’s width.
Here’s the code for two examples:

.colors-stripe { -moz-border-*-colors: black white black white black white; }

.colors-fade { -moz-border-*-colors: #222 #444 #666 #888 #AAA #CCC; }

Figure 9-10 shows these examples in action. Note, however, that to give clarity to this code example
I’ve used only one property for each element; in practice, you have to specify all four sides to get the
results shown. In other words, this property has no shorthand property.

Figure 9-10. Different values supplied to Firefox’s border-*-colors property (detail)

Both boxes have a border width of 6px. The left box’s border alternates black and white colors, and
the right uses several shades of gray that get darker as you get farther away from the element.

Adding Drop Shadows
In Chapter 6, we looked at a way to add drop shadows to text with the text-shadow property, but
CSS3 also has a method for adding shadows to box elements using the box-shadow property. The
syntax for box-shadow is similar to that of text-shadow:

E { box-shadow: inset horizontal vertical blur spread color; }

The first value, inset, is an optional keyword that sets whether the shadow sits inside or outside of
the element. If inset is not specified, the shadow will sit outside. The next two values are lengths,
which set the horizontal and vertical distance of the shadow from the box; if you want to
have a shadow, these values are required.
The next value sets the blur radius and is again a length value. Then you have spread, which sets
the distance the shadow spreads. A positive length makes the shadow larger than its element, and a
negative length makes it smaller. Both of these values are optional.
Finally you have the color value. In WebKit, this value is required, but in Firefox and Opera, it’s
optional. If left unspecified, color will default to black.
Now I’ll put them together in an example:

div { box-shadow: 4px 4px 3px #666; }

That syntax creates a dark gray shadow outside of the element, positioned at a distance of 4px, both
horizontally and vertically, with a blur radius of 3px.
Next, I’ll demonstrate this and further examples of the effects of different values on the box-
shadow property, using the following CSS:

.shadow-one { box-shadow: 4px 4px; }

.shadow-two { box-shadow: 4px 4px 3px; }

.shadow-three { box-shadow: 12px 12px 2px −6px; }

.shadow-four { box-shadow: #999 4px −4px 2px 0; }

.shadow-five { box-shadow: #999 4px −4px 2px 0, −4px 4px 2px; }

The results are shown in Figure 9-11. The elements in the code correspond to the boxes in the
illustration, moving from left to right.

Figure 9-11. The effects of using different values for the box-shadow property

The first is the simplest shadow, simply distanced 4px both horizontally and vertically from the
element. The second has the same distance values as the first but also adds a blur radius of 3px to
soften the shadow’s edges. The third has a distance of 12px along both axes but a negative spread
value (-6px), which makes the shadow smaller than its box. The fourth example has a medium gray-
colored shadow with a negative vertical distance, meaning the shadow falls above the element
instead of below it. Finally, the fifth box has two shadows applied to it: The first is the same as in the
fourth box, and the second is a black shadow with a negative horizontal distance, making the shadow
fall to the left of the box.

I briefly mentioned the optional inset keyword at the beginning of this section. If present, this
keyword draws a shadow on the interior of the box, but also has the effect of “flipping” the shadow to
the other side of the box. What I mean is that where a regular — that is, outset — shadow with
positive x and y values would appear at the bottom right of the box, an inset shadow would appear at
the top left.
To illustrate I’ll use the same code as for the previous example but add the inset keyword to each
one:

.shadow-one { box-shadow: inset 4px 4px; }

.shadow-two { box-shadow: inset 4px 4px 3px; }

.shadow-three { box-shadow: inset 12px 12px 2px −6px; }

.shadow-four { box-shadow: inset #999 4px −4px 2px 0; }

.shadow-five { box-shadow: inset #999 4px −4px 2px 0, inset −4px 4px 2px; }

The result is shown in Figure 9-12.

Figure 9-12. Inset shadows

Here you see almost the inverse of Figure 9-11; all offset, blur radius, and color values are the same,
but the shadows now appear on the interior of the boxes and in the opposite corners.
The box-shadow property is pretty well implemented in browsers: WebKit and older version of
Firefox (3.6 and below) implement it with a proprietary prefix and Opera, IE9, and Firefox 4 with the
standard syntax. One caveat: As with border-radius, older versions of WebKit (such as in
Safari 4.04 and below) use a different implementation — one with no spread value. This means
that some of the code used in this chapter may display incorrectly in those browsers.

Summary
I mentioned at the beginning of the previous chapter that the Backgrounds and Borders Module is a
priority for the W3C because of the clamor from web developers. The new properties it introduces
are extremely useful for removing extraneous elements from markup and giving developers finer
control over the way pages are laid out. With a multitude of new background and border properties at
our disposal, creating websites that can be viewed at many different sizes and resolutions is going to
be much easier, and our sites will be more suited to the cross-platform ideal of the age.
In the next chapter, I’ll continue with the theme of page decoration, as we take a look at the new color
and opacity controls that CSS3 provides.

Border and Box Effects: Browser Support
 WebKit Firefox Opera IE

border-radius Yes (with prefix in Safari
4 and below)

Yes (with prefix; incorrect syntax on subproperties;
expected in Firefox 4 without prefix)

Yes No
(expected
in IE9)

border-image Yes (with prefix) Yes (with prefix) Yes No

Multiple border-
color values

No Yes No No

box-shadow Yes (with prefix) Yes (with prefix) Yes No

[3] The border image is by Flickr user SkeletalMess (http://www.flickr.com/photos/skeletalmess/4396262635/) and is published under a
Creative Commons Attribution license.

http://www.flickr.com/photos/skeletalmess/4396262635/

Chapter 10. Color and Opacity

Color in CSS2 was based around the Red, Green, Blue (RGB)model; whether you used hexadecimal
notation or the rgb color value, you had to combine those three colors to add color to your pages. Of
course, designers speak in terms of shades and tints: When one of them says to use a “50 percent tint”
of a certain color, developers have had to use the RGB model to match that color, which has often
involved some chicanery with a graphics package to find the exact tone needed.
The CSS Color Module (http://www.w3.org/TR/css3-color/) has a solution to that problem — and
more besides. For starters, it introduces the concepts of opacity and transparency through the opacity
property and the Alpha color channel. In addition, the CSS Color Module adds an entirely new color
model, which is more intuitive and easier to tweak to find the perfect tone.
The Color Module is a Proposed Recommendation and is pretty well implemented in every browser
except Internet Explorer (at least up to version 8), so with a little bit of careful coding to provide a
fallback state for those older versions of Internet Explorer, you can begin to use it straight away.

http://www.w3.org/TR/css3-color/

Setting Transparency with the opacity Property
Opacity and transparency sit at opposite ends of a scale. Strictly speaking, they are the measure of an
object’s resistance to light — the more opaque something is, the less light it lets through; the more
transparent something is, the more light it lets through. An object with no transparency is fully opaque,
and an object with no opacity is fully transparent. In CSS both are measured using the opacity
property. In essence, with opacity, you are setting how much of the background can be seen
through the specified element.
The opacity property has the following syntax:

E { opacity: number; }

The number value is a decimal fraction — i.e., a number between 0.0 and 1.0 — where 0.0 is fully
transparent, 1.0 is fully opaque, and any value between those two is a blend of opacity and
transparency. For example, to set a p element to be 50 percent opaque (or 50 percent transparent,
depending on whether your glass is half empty or half full), you would use the following code:

p { opacity: 0.5; }

To further demonstrate, I’ll show three div elements (each with a single child p element) and display
each element in the same way, except for a change to the opacity value. Here’s the relevant code
for this example:

div { background-color: black; }
p { color: white; }
.semi-opaque-1 { opacity: 0.66; }
.semi-opaque-2 { opacity: 0.33; }

You can see the output in Figure 10-1.

Figure 10-1. The effect of differing opacity values on three identical elements

The first (left) box has no explicitly set value for opacity, so it defaults to 1.0, or fully opaque.
The next (middle) box has a value of 0.66, so its opacity is reduced by a third, causing the black to
appear as a dark gray (a blend of the black background color of the box and the white background
color of the body element, which shows through). Finally, the last (right) box has an opacity value
of 0.33, so it can be considered 67 percent transparent, making the box a lighter gray color.
Now, here’s a very important point to remember about this property: The value of the opacity
property is inherited by all of its child elements. If I set an opacity value of 0.5 on an element, its
children will never be able to be more opaque than that. This setting can’t be overruled by any other
property — or rather, you can never make an element more opaque than its parent, but you can make it
less opaque.
The example in Figure 10-1 doesn’t make this point very obviously, as the p element has the color
value of white, which, on the white background of the element behind it, doesn’t make any

noticeable difference. But in the following example, you’ll see the difference more clearly. Consider
these CSS rules:

.box { background-image: url('bunny_sprite.png'); }

.text { background-color: white; }
p { color: black; }

I’ll apply them to a box that uses the following markup:
<div class="box">
 <div class="text">
 <p>Call me Ishmael</p>
 </div>
</div>

You can see the result in Figure 10-2.

Figure 10-2. Nested div elements with some styling applied

Now I’ll add the opacity property to the inner div, like so:
.box { background-image: url('bunny_sprite.png'); }
.text {
 background-color: white;
 opacity: 0.7;
}
p { color: black; }

You can see the result in Figure 10-3. The text that was fully opaque in the original version
(Figure 10-2) had a true black color. But in the second version (Figure 10-3), to which I’ve applied
the opacity property, the text box is semi-opaque and so is the text contained within it.

Figure 10-3. The inner div has an opacity value of 0.7

The opacity property may seem somewhat limiting, as you can’t apply it to elements with children
without also applying it to those children, as I’ve just demonstrated. CSS3 has a new method to get
around this, however; it's called the Alpha channel, and I’ll explain it in the next section.
The opacity property is currently supported in Firefox, WebKit, and Opera, and planned for
inclusion with IE9.

New and Extended Color Values
CSS2.1 allowed three methods for specifying color values: keywords (like black), hexadecimal
notation (like #000), and RGB (like 0,0,0). In CSS3, the range is expanded by a completely new
method of specifying colors, as well as the introduction of opacity through the Alpha channel.

The Alpha Channel
The Alpha channel (Alpha for short) is the measure of the transparency of a color — as opposed to
the opacity property, which is the measure of the transparency of an element. So although color
values using Alpha can be inherited by child elements like any other color value, the overall opacity
of the element is not affected.
CSS3 introduces Alpha as a value in the RGBA color model. RGBA stands for Red, Green, Blue,
Alpha, and the syntax is the same as for the RGB value used in CSS2 but with the Alpha value
specified by an extra comma-separated argument at the end:

E { color: rgba(red, green, blue, alpha); }

The value of that alpha argument is the same as the value provided for opacity: a decimal
fraction from 0.0 to 1.0, which is once again a measure between full transparency (0.0) and full
opacity (1.0). If you wanted to set a p element to have a black color and 50 percent opacity, you
would use the following code:

p { color: rgba(0,0,0,0.5); }

As mentioned, rgba differs from opacity in a couple of ways: First, rgba is a color value, so
you couldn’t, for example, use it to change the opacity of an image (or an element with a background
image). Second, the rgba value applies only to the element it is specified on, so child elements can
overrule any inheritance.
To more precisely illustrate the difference between the two, I’ll show a modified version of the
examples shown in Figure 10-2 and Figure 10-3. I’ll use the same markup, but this time I’ll set the
opacity of one and give an rgba value to the background-color of another, both with the
same value:

.opacity { opacity: 0.5; }

.rgba { background-color: rgba(255,255,255,0.5); }

You can see the results in Figure 10-4.

Figure 10-4. Comparing opacity (left) and RGBA (right)

The difference is pretty clear. Both boxes have the same level of transparency, but in the first (left)
box, the opacity value has been inherited by its child p element, making the text semi-transparent
also. In the second (right) box, the rgba value for the color property has not been inherited, so the
p element retains the fully opaque black color.
Having established that rgba is not the same as opacity, let’s see how it works. Being a color
value, you can obviously use it for backgrounds, borders, shadows, and so on. The following code
shows some examples of rgba applied to different properties:

 .shadow .text { box-shadow: 10px 10px 4px rgba(0,0,0,0.7); }

 .border .text { border: 10px solid rgba(0,0,0,0.5); }
 .text-semi p { color: rgba(0,0,0,0.6); }
 .text-shadow p { text-shadow: 5px 5px 1px rgba(0,0,0,0.6); }

Figure 10-5 shows these properties in action.

Figure 10-5. RGBA applied to different properties

Moving clockwise from top left, in the first box, rgba lowers the opacity of box-shadow; setting
the alpha value to 0.7 allows some of the background to show through, making the shadow more
“realistic.” The next example shows a 50 percent opaque black border (which I used in the
example shown in Figure 8-4 in Background Clip and Origin). (I’ll explain an important issue to bear
in mind when using this technique in WebKit browsers in Border Overlap Issue in WebKit in Border
Overlap Issue in WebKit.) In the next example, the alpha value of the color property has been set
to 0.6 , which makes the text appear semi-opaque. And finally the last example shows another
shadow effect, this time on the text-shadow property. The alpha value is set at 0.6 , which,
once again, makes for a more realistic shadow.
Like opacity, RGBA color values are currently supported in Firefox, WebKit, and Opera, and are
planned for inclusion with IE9.

RGBA and Graceful Degradation
Older browsers that don’t support RGBA values will ignore any rules that use them and default to a
previously specified or inherited value. To compensate, you should specify the color twice, using the
cascade to ensure the right color is implemented:

p {
 color: #F00;
 color: rgba(255,0,0,0.75);
}

In this example, browsers that don’t support RGBA values ignore the second color property and
apply the first color property. Of course, this result means that a fully opaque color will be used
instead of a semi-opaque one, so check your design thoroughly to make sure it isn’t affected
negatively.
The same goes for all new color values introduced in the rest of this chapter.

Border Overlap Issue in WebKit
As I mentioned, all WebKit browsers currently have an issue regarding the implementation of RGBA
on the border-color property. In those browsers, borders that have RGBA color values will
show an overlap of the colors on the corners.
To see what I mean, consider the following CSS rule:

div { border: 50px solid rgba(0,0,0,0.5); }

When viewed in a WebKit browser, this code gives the result shown in Figure 10-6.
As you can see, the corners are darker due to the overlap of two semi-opaque edges. The WebKit
team is aware of this bug but currently has no fix for it. Neither Firefox nor Opera have this issue.

Figure 10-6. Issue with RGBA colors on borders in Webkit

Hue, Saturation, Lightness
Summing up exactly what HSL is without providing a course in color theory is hard, but I’ll do my
best: HSL — which stands for Hue, Saturation, Lightness (sometimes called luminance) — is a
cylindrical-coordinate representation of RGB. Still not clear? Okay, what about: HSL is like all the
possible RGB colors mapped in three dimensions? No? Alright, take a look at Figure 10-7.
All the possible colors are arranged in a cylinder with a central axis. The angle around the axis is the
hue; the distance from the axis is the saturation; and the distance along the axis is the lightness. The
combination of those three values creates a unique color.
Hue represents the major colors, starting and ending with red (0 or 360) and including all the main
colors between. Think of the colors of the visible spectrum (or the colors of the rainbow) you learned
about in school — red, orange, yellow, green, blue, indigo, violet — arranged around the
circumference of a circle; the value of hue is a degree around that circumference that points to a
specific color.

Figure 10-7. Diagram explaining the HSL color method[4]

Saturation is the strength or intensity of that color: 0 percent is no strength, which would make your
color a shade of gray, and 100 percent is full strength, the most intense version of that color.
Lightness is the brightness or darkness of the color: 50 percent is the true color, 0 percent is black,
and 100 percent is white.
If you’ve never encountered HSL before and my explanation has still left you baffled, don’t worry —
for our purposes, you just need to understand that hsl is a color value that takes three arguments, with
a similar syntax to RGB:

E { color: hsl(hue,saturation,lightness); }

Hue accepts a value of 0 to 360, and saturation and lightness accept values from 0 percent to 100
percent. Some simple color examples with their hexadecimal and RGB equivalents are shown in
Table 10-1.

Table 10-1. Common Color Equivalents for Four Color Values

HSL RGB Hexadecimal Keyword

0,0%,0% 0,0,0 #000000 Black

360,0%,0% 255,255,255 #FFFFFF White

0,100%,50% 255,0,0 #FF0000 Red

120,100%,25% 0,128,0 #008000 Green

240,100%,50% 0,0,255 #0000FF Blue

NOTE
Even if you are using a 0 (zero) value for saturation and lightness, you must still specify the value as a percentage.

The table doesn’t actually tell the whole story — many different combinations of values allow you to
create pure white, for example. Really, the best way to learn more about HSL is to get hold of a color
picker that supports it and play around for a while. HSL plug-ins are available for Photoshop and
most other graphics packages, and you should also be able to find color conversion tools online. Be
careful, however, not to confuse HSL with Hue, Saturation, Value (HSV). Although they use an
identical syntax, the color values are mapped differently so you will not get the same results.
The advantage of HSL over RGB (or hexadecimal) is that it allows you to more quickly try different
variants of a color, making it more useful for people who design websites. If you're a developer
coding from other people's designs, you may want to continue using RGB. HSL is simply a new
alternative to consider.
HSL color values are currently supported in Firefox, WebKit, and Opera and, once more, are planned
for inclusion in IE9.

HSLA
If you’ve decided that HSL is the color method for you, then you’ll also be able to utilize the Alpha
channel for transparency with the hsla color value. Like its counterpart RGBA, hsla simply
extends the color scheme with an extra argument in the syntax:

E { color: hsl(hue,saturation,lightness,alpha); }

So, for example, if you wanted a p element with a color value of red and 50 percent transparency,
you’d use the following code:

p { color: hsl(0,100%,50%,0.5); }

Note that the overlapping borders issue with RGBA, seen in Figure 10-6, also applies to HSLA.

The Color Variable: currentColor
In addition to the new color methods I’ve just described, CSS3 also introduces a new color value
keyword: currentColor. This keyword acts as a variable, which means its value is inherited,
and it will have a different value depending on where you apply it in the document tree.
The value of currentColor for an element is the value of its own color property and, like
color, currentColor can be inherited. Let’s say an element has a color value of red, the
value of currentColor is red. You can then use that to set a color value on a different property
without having to specify red again.
The following example should clarify the usefulness of currentColor. First, I take the following
markup:

<p>The Central Intelligence Agency (<abbr>CIA</abbr>).</p>
<p>The Federal Bureau of Investigation (<abbr>FBI</abbr>)</p>

And I apply this CSS to it:
p { color: black; }
p:last-child {
 background-color: black;
 color: white;
}
p abbr { border-bottom: 6px double currentColor; }

One paragraph will display in black (black) text on the default (white) background, and the other
in white text on a black background. Next, I used the currentColor keyword as a value for
the border-bottom property on the abbr elements. You can see the result in Figure 10-8.

Figure 10-8. A demo of the currentColor color value keyword

Because the first paragraph has a color value of black, the color value of the border-bottom
property of the abbr element is also black. Because the second paragraph has a color value of
white, the border-bottom property of the abbr element has the same color value. These
values have inherited the color property of their parent elements.
The currentColor keyword means I don’t have to specify the color of the border for every
instance of the abbr element. In this example, I don’t have to use an extra rule — without it, I would
have to use something like this:

p abbr { border-bottom: 6px double black; }
p:last-child abbr { border-bottom-color: white; }

Although this may not seem like a big savings, it means I can update the parent element color and not
have to worry about setting the color on any relevant children. On a large site with many different
color combinations, you can see that currentColor would be extremely handy.
The currentColor value is currently implemented in Firefox, WebKit, and Opera, and is planned
for inclusion in IE9.

Matching the Operating System’s Appearance
In CSS2, you could use colors from different aspects of your operating system to give websites a
more “native” appearance. You could, for instance, match the background color of a button element
on a web page with that of a button element on your system by using the following code:

button { background-color: ButtonFace; }

This functionality has been deprecated in CSS3 and has been replaced by the appearance
property, which is introduced in the Basic User Interface Module. Here’s the syntax:

E { appearance: keyword; }

The keyword is from a long list of user interface elements, including button, radio-button,
password, and so on. Firefox and WebKit both support this property with proprietary prefixes, and
both have different lists of accepted values. Rather than list all of the values here, take a look at the
links to each browser’s CSS reference pages, which you can find links to in Appendix B.
To provide a quick demonstration, I’ll use this code:

p.button { appearance: button; }
button.native { appearance: none; }

And I’ll apply it to this markup:
<button>Go</button>
<p class="button">Go</p>

<button class="native">Go</button>

The result is shown in Figure 10-9.

Figure 10-9. Different button appearances in WebKit on Ubuntu

The first two elements appear to be pretty much identical, but they aren’t: The first is a button
element with the default appearance value of button, taking its style from the operating system;
the second is a p element with the button value explicitly set on the appearance property,
matching the button element itself. The third example is also a button element, but it has an
appearance value of none, so it displays as a browser default, without any reference to the
operating system.

NOTE
The examples shown in Figure 10-9 are as they appear in WebKit on Ubuntu Linux and will look different if you use any other
operating system.

Summary
The introduction of transparency to CSS may seem minor, but transparency could potentially cause
some significant changes to page designs; overlapping colors have long been a staple of print design,
but this style has yet to make serious inroads into web design because of how difficult it is to
implement.
The appearance property is also a small change with big implications. HTML5 is arriving and
bringing with it expanded scope for building web applications and further blurring the boundaries
between desktop and Web. More web applications will frequently blend with a user’s operating
system in the near future.
In the next chapter, I’ll complete the quartet of chapters on backgrounds, borders, and colors with a
look at the bleeding edge of CSS3: the gradient background.

Color and Opacity: Browser Support
 WebKit Firefox Opera IE

opacity Yes Yes Yes No (expected in IE9)

RGBA values Yes Yes Yes No (expected in IE9)

HSL values Yes Yes Yes No (expected in IE9)

HSLA values Yes Yes Yes No (expected in IE9)

currentColor value Yes Yes Yes No (expected in IE9)

appearance Yes Yes No No

[4] This image is taken from Wikimedia (http://en.wikipedia.org/wiki/File:HSL_color_solid_cylinder_alpha_lowgamma.png) and is
published under a Creative Commons Attribution license.

http://en.wikipedia.org/wiki/File:HSL_color_solid_cylinder_alpha_lowgamma.png

Chapter 11. Gradients

The word “gradient” has many different meanings, but in CSS, a gradient is strictly defined as a
gradual transition between a range of (at least two) colors. CSS gradients are a fairly recent
development but have already been through a number of changes. They were originally proposed by
the WebKit team in April 2008, modified from the syntax proposed for the canvas element in
HTML 5. In August 2009, Mozilla announced that an implementation slightly modified from that of
WebKit’s would be in the next version of Firefox (3.6).
Since then, however, the W3C’s CSS Working Group proposed a further modified syntax, and this
syntax is in the latest revisions of the Image Values Module (http://www.w3.org/TR/css3-images/).
Following a quick turnaround from the Mozilla team, the new syntax made it into Firefox 3.6.
The WebKit team has indicated that its existing implementation will almost certainly be changed to
the modified one, but the team wants to discuss one or two elements of the implementation first. As of
this writing, the original syntax is implemented in all WebKit browsers.
Unlike most of the other chapters in this book, I’ll show the two different syntaxes in each example.
We have no way of knowing when WebKit will change its syntax, so I’ll discuss the methods as they
are currently implemented. Throughout the chapter I’ll refer to “the Firefox syntax” rather than “the
W3C syntax,” as the specification is still very new and subject to change.
The two syntaxes have a number of differences, but the first and most obvious is that the Firefox
implementation uses two functions (-moz-linear-gradient and -moz-radial-
gradient), whereas WebKit uses only a single function (-webkit-gradient) with two type
values (linear and radial). The syntaxes will become clearer as the chapter progresses.

NOTE
Just as this book was going to print, the WebKit team implemented the W3C standard properties, with the -webkit- prefix: So
although these properties are not in any browser as I write this, in the future you should use them. However, for the sake of backward
compatibility, the current implementation that’s explained in this chapter will be kept in WebKit browsers for the foreseeable future.

http://www.w3.org/TR/css3-images/

Linear Gradients
A linear gradient is one that gradually transitions between colors over the distance between two
points in a straight line. At its simplest, a linear gradient will change proportionally between two
colors along the full length of the line.

Linear Gradients in Firefox
Here’s the syntax for a linear gradient in Firefox:

E { background-image: -moz-linear-gradient(point or angle,
 from-stop, color-stop, to-stop); }

I’ll explain each part of that syntax in detail throughout the rest of this section, but I want to start with
an example of the simplest possible set of values in Firefox:

div { background-image: -moz-linear-gradient(white, black); }

Each different color that you want the gradient to pass through is supplied as a value known as a
color-stop, and the simplest gradient requires two: a start, which I’ll refer to as a from-stop (to avoid
using the term “start-stop”!), and an end, which I’ll call a to-stop. In this first example, the gradient
will start white and end black, passing gradually through all the variations between the two colors.
You can see this in Figure 11-1.

Figure 11-1. A simple top-bottom, two-color linear gradient

Note that this gradient begins at the top of the box and moves vertically to the bottom — this is
because of the point value in the syntax. The point is the position the gradient starts from and is
specified with a similar syntax to background-position; that is, either by keywords (top,
bottom, left, right, center) or a percentage value. Point requires two arguments (left
center, top right, 0% 50%, and so on) but if only one is specified, then the other is assumed
to be center (or 50%). Therefore, an argument of left is assumed to be left center, and an
argument of 100% is assumed to be 100% 50%. If no point value is provided, as in the first
example, the value is assumed to be top center or 0% 50%, which is the top of the box.
I could have used any combination of the following to get the same result:

div { background-image: -moz-linear-gradient(center top, white, black); }
div { background-image: -moz-linear-gradient(top, white, black); }
div { background-image: -moz-linear-gradient(50% 0%, white, black); }

An alternative to point is to use an angle argument. Angles can be declared using a few different
units: the Values and Units Module allows degrees, grads, radians, and turns, but I’m going to stick
with degrees (deg) as they’re the most commonly understood. (See http://www.w3.org/TR/css3-
values/#angle/ for more information on the others.) The angle value sets the angle of the gradient:
0deg (or 360deg) goes from left to right, 45deg from bottom left to top right, 90deg from bottom
to top, and so on. You can also use negative values, which go counterclockwise: −45deg is the same
as 315deg, −315deg is the same as 45deg . . . you get the idea.
So for the previous example, you also have these possible options:

div { background-image: -moz-linear-gradient(270deg, white, black); }
div { background-image: -moz-linear-gradient(-90deg, white, black); }

http://www.w3.org/TR/css3-values/#angle/

Linear Gradients in WebKit
WebKit’s implementation is pretty similar to that of Firefox’s, although angle values are not
permitted, and the syntax is somewhat more precise and verbose:

E { background-image: -webkit-gradient(type, start-point,
 end-point, from(from-stop), color-stop(color-stop), to(to-stop); }

The immediate point of interest is that, as mentioned in the introduction to this chapter, you have to
specify the type of gradient as a value. This value can be either linear or radial, but for now I’ll
stick to linear. Also, both start and end points are required, and from-stop and to-stop are
specified with the from() and to() functions.
The WebKit way to achieve the simple example shown in Figure 10-1 requires the following
declaration:

div { background-image:
 -webkit-gradient(linear, center top, center bottom, from(white), to(black));
}

As with Firefox, I could also use percentage values for the start and end points:
div { background-image:
 -webkit-gradient(linear, 50% 0%, 50% 100%, from(white), to(black));
}

But, unlike Firefox, angle values are not permitted, and two arguments are required for each; no
assumption is made if one is left out.

Using Linear Gradients
Keeping the differences between the two syntaxes in mind, I’m going to present five different
examples and then walk you through the code required to create them. Here’s the relevant CSS
snippet:

 .gradient-1 {

 background-image: -moz-linear-gradient(left, white, black);
 background-image: -webkit-gradient(linear, left center,
 right center, from(white), to(black));

}
 .gradient-2 {

 background-image: -moz-linear-gradient(right, white, black);
 background-image: -webkit-gradient(linear, right center,
 left center, from(white), to(black));

}
 .gradient-3 {

 background-image: -moz-linear-gradient(50% 100%, white, black);
 background-image: -webkit-gradient(linear, 50% 100%, 50% 0%,
 from(white), to(black));

}
 .gradient-4 {

 background-image: -moz-linear-gradient(0% 100%, white, black);
 background-image: -webkit-gradient(linear, 0% 100%, 100%
 0%, from(white), to(black));

}
 .gradient-5 {

 background-image: -moz-linear-gradient(225deg, white, black);
 background-image: -webkit-gradient(linear, 100% 0%, 0%
 100%, from(white), to(black));
}

These examples are shown in Figure 11-2.

Figure 11-2. Examples of different point values for linear gradients

The first example () is a left-right gradient. In Firefox, I simply use left as a value for the point
argument as the pair of this value is assumed to be center; also, I don’t need to specify an end
point. But in WebKit, I must specify a pair of values for both the start and end points. The second
example ()uses the same syntax, but the gradient begins on the right and ends on the left.
In the third example (), I set a bottom-top gradient using percentage values. Once again, in Firefox,
the end point is automatically set, whereas in WebKit, I must set it manually. The fourth example (
)uses the same syntax, but this time runs diagonally from bottom left to top right.

In the final example (), I use an angle value for Firefox. The 225deg value sets the gradient to
run from top right to bottom left. I use percentage values in WebKit to achieve the same effect.

Adding Extra color-stop Values
So far in my examples, I’ve used a simple gradient with only two color-stops, but you can, of course,
use more. I must note, however, that this book is printed in black and white, so I’m limited by the
palette that I can choose!
Each different color you add is declared in a color-stop. In Firefox, you just add more values
(comma-separated) between the from-stop and to-stop, like so:

div { background-image: -moz-linear-gradient(left, black, white, black); }

The color-stops are processed in the order listed, so this example will create a gradient that goes
from black to white and back to black again. The Firefox syntax will evenly distribute the color-stops
along the length of the gradient unless otherwise specified. In this example, the white color-stop will
be exactly halfway between the two blacks.
In WebKit, the same effect is achieved with the following syntax:

div { background-image: -webkit-gradient(
 linear, left center, right center, from(black), color-stop(50%,white), to(black)
);}

Notice here that I declare the color-stop using a color-stop() function, which requires two
values: the position along the gradient where the stop should be implemented and the color. Unlike
Firefox, the distribution of colors is not automatically calculated.
As before, the best way to illustrate the differences between the two syntaxes is with a demonstration;
for that, I’ll use the following code:

 .gradient-1 {
 background-image: -moz-linear-gradient(left, black, white, black);
 background-image: -webkit-gradient(linear, left center,
 right center, from(black), color-stop(50%,white), to(black));
}

 .gradient-2 {
 background-image: -moz-linear-gradient(left, black, white 75%, black);
 background-image: -webkit-gradient(linear, left center, right center,
from(black), color-stop(75%,white), to(black));
}
 .gradient-3 {

 background-image: -moz-linear-gradient(bottom, black, white 20px, black);
 background-image: -webkit-gradient(linear, center bottom, center top,
from(black), color-stop(0.2,white), to(black));
}
 .gradient-4 {

 background-image: -moz-linear-gradient(45deg, black, white, black, white,
black);
 background-image: -webkit-gradient(linear, left bottom, right top,
from(black), color-stop(25%,white), color-stop(50%,black), color-
stop(75%,white), to(black));
}

You can see the output in Figure 11-3.

Figure 11-3. Examples of different color-stop values

The first example () uses the values I introduced at the beginning of this section, a left-right gradient
starting and ending black with a white color-stop between. As mentioned, in the WebKit syntax, I set
the color-stop to be exactly halfway between the start and end, which Firefox does automatically.
The next example ()shows the color-stop specified to begin 75 percent of the way along the length
of the gradient. You’ve seen how to do this in WebKit already, but in Firefox, it’s slightly different:
You add the percentage value after the color value, with no comma, in the color-stop() function.
The third example () shows some different units in the color-stop() function. Firefox allows
length units (I’ve used px here), which WebKit does not, but WebKit does allow a number from 0.0
to 1.0 instead of a percentage. As my box is 100px high, the Firefox and WebKit values are
equivalent.
Finally, the fourth example ()has five color-stops alternating black and white. Here is where the
WebKit syntax starts to become really unwieldy, requiring that I specify the color-stop()
function for each one and that I calculate the percentage values that will distribute them equally along
the length.

Radial Gradients
A radial gradient is the gradual transition between colors, radiating from a central point in all
directions. At its simplest, a radial gradient will graduate between two colors in a circular or
elliptical shape.

Radial Gradients in Firefox
Here’s the syntax to implement a radial gradient in Firefox:

E { background-image: -moz-radial-gradient(
 position or angle, shape or size, from-stop, color-stop, to-stop
); }

The first two values, position and angle, work in the same way as their counterparts in -moz-
linear-gradient, as do from-stop and to-stop. The two new arguments are shape and
size; shape takes a keyword constant value of either circle or ellipse (the default is
ellipse), and size accepts one of six different keyword constants, which I’ll cover in due
course.
The simplest way to create a radial gradient using the Firefox syntax is:

div { background-image: -moz-radial-gradient(white, black); }

The result is in a simple white-black gradient in an ellipse that extends to the farthest corner of its
parent element, as you can see in Figure 11-4.

Figure 11-4. simple two-color radial gradient in Firefox

Radial Gradients in WebKit
The WebKit syntax is substantially quite different. It looks like this:

E { background-image: -webkit-gradient(
 type, inner-center, inner-radius, outer-center,
 outer-radius, from(from-
stop), color-stop(color-stop), to(to-stop)
);

As with the linear gradient, you have the type argument, but here, I’ll use the value radial. Next
you see two pairs of arguments: inner-center and inner-radius, and outer-center and
outer-radius. These arguments set the start and end points of the gradient and the distance of
their radii.
Both inner-center and outer-center accept the same values, as do inner-radius and
outer-radius. The values permitted for inner-center and outer-center are the same
as those for start-point and end-point for a linear gradient — that is, a pair of values as
keywords (center center) or percentages (50% 50%) — whereas inner-radius and
outer-radius accept only an integer value that represents a length in pixels.
The from(), color-stop(), and to() functions are the same as those used on linear gradients,
as described earlier in the chapter.

Using Radial Gradients
Because you are required to set a limit on the outer radius, WebKit radial gradient syntax doesn’t
allow you to create an elliptical gradient — they must all be circles. I can’t, therefore, replicate the
example shown in Figure 11-4. Instead, I’ll show a simple radial gradient with the following syntax:

div { background-image:
 -webkit-gradient(radial, 50% 50%, 0, 50% 50%, 50, from(white), to(black));
}

The inner gradient starts at the center of the element and has a radius value of 0, and the outer gradient
starts at the same place but has a radius value of 50. These values create a single gradient from white
to black from the center of the element to its top and bottom edges. The container is 100px high, so the
50px radius is exactly half that.
You can see the result in Figure 11-5.
You can replicate that exactly in Firefox with this code:

Figure 11-5. A circular radial gradient

div { background-image: -moz-radial-gradient(contain circle, white, black); }

Note two new keywords here. The first is circle, which is a value for the shape argument, and
simply sets the gradient to be circular instead of elliptical. The next — contain — is a value for
the size argument I mentioned earlier. The contain value means the gradient stops at the side of
the box closest to its center. You can also use the keyword closest-side if you prefer, as these
keywords are synonymous.
The other keyword constant values for the size argument are: cover, which stops the gradient at the
corner of the element farthest from its center (you can also use the farthest-corner keyword, as this is
synonymous with cover); closest-corner, which stops the gradient at the corner closest to its
center; and farthest-side, which stops the gradient at the side farthest from its center. Pardon
the tautologous definitions, but the keywords are pleasantly obvious!
You should be able to infer from this example the key difference between the two syntaxes: WebKit
requires explicitly set limits, whereas in Firefox, the limits are defined by the dimensions of the
element that the gradient is applied to.
To illustrate some of the ways you can apply radial gradients, I’ll show four examples using the
following code:

 .gradient-1 {
 background-image: -moz-radial-gradient(circle farthest-side, black, white);
 background-image: -webkit-gradient(radial, center center, 0, center
center, 95, from(black), to(white));
}
 .gradient-2 {

 background-image: -moz-radial-gradient(left, circle farthest-side, black,
white);

 background-image: -webkit-gradient(radial, left center, 0, left center,
 190, from(black), to(white));
}
 .gradient-3 {

 background-image: -moz-radial-gradient(right top, circle farthest-corner,
white, black);
 background-image: -webkit-gradient(radial, right top, 0, right top, 214.7,
from(white), to(black));
}
 .gradient-4 {

 background-image: -moz-radial-gradient(80% 50%, circle closest-side,
white, black);
 background-image: -webkit-gradient(radial, 80% 50%, 0, 80% 50%, 38,
from(white), to(black));
}

You can see the output in Figure 11-6.

Figure 11-6. Examples of different values for radial gradients

The first example ()shows a black-white gradient that starts at the center of the box and radiates to
its farthest (horizontal) side. In Firefox, I use the farthest-side keyword, and in WebKit, I set
the value to 95px (half the width of the box).
In the next example (), I again set the limit of the radius to the farthest side of the box, but this time,
I set the center point as the center of the left side. In WebKit, I defined the second radius value as
190px, which is the width of the box.
The third example () is where WebKit’s syntax really starts to take its toll. I set the gradient to start
at the top-right corner of the box and the radius at the farthest corner (bottom left). In Firefox, I
accomplish this with the farthest-corner constant, but to achieve the same effect in WebKit, I
have to calculate the diagonal of the box using the formula: sqrt(x2 + y2) — that is, the square
root of the square of the height plus the square of the width, which in this example is 214.7. You
really don’t want to have to do this every time you use this type of gradient!
In the fourth example (), I’ve positioned the center of the gradient at 80 percent of the width and 50
percent of the height of the box and set the limit of the radius to the nearest (right) side. Again, this is
simplicity itself in Firefox — I need only the closest-side keyword. But WebKit requires more
tricky math. The box is 190px wide; the center point is, therefore, 152px from the left, so the limit of
the radius must be 38px (190px - 152px).

Multiple color-stop Values
As with their linear counterparts, radial gradients accept multiple color-stop values. As before, in
Firefox, you simply add the color values between the from-stop and to-stop, and in WebKit, you
declare each one with a color-stop() function. You may end up with something like this:

E {
 background-image: -moz-radial-gradient(circle, black, white, black);
 background-image: -webkit-gradient(radial, 50% 50%, 0, 50% 50%, 100,
from(black), color-stop(50%, white),to(black);
}

I’ll illustrate the use of multiple color-stop values with the following code:
 .gradient-1 {

 background-image: -moz-radial-gradient(circle farthest-side, black, white,
black);
 background-image: -webkit-gradient(radial, center center, 0, center
center, 95, from(black), color-stop(50%, white), to(black));
}
 .gradient-2 {

 background-image: -moz-radial-gradient(circle farthest-side, black, white
25%, black);
 background-image: -webkit-gradient(radial, center center, 0, center
center, 95, from(black), color-stop(25%, white), to(black));
}
 .gradient-3 {

 background-image: -moz-radial-gradient(left, circle farthest-side, white,
black 25%, white 75%, black);
 background-image: -webkit-gradient(radial, left center, 0, left center,
190, from(white), color-stop(25%, black), color-stop(75%, white), to(black));
}
 .gradient-4 {

 background-image: -moz-radial-gradient(40% 50%, circle closest-side,
white, white 25%, black 50%, white 75%, black);
 background-image: -webkit-gradient(radial, 40% 50%, 0, 40% 50%, 50,
 from(white), color-stop(25%, white), color-stop(50%, black), color-stop(75%,
white), to(black));
}

All of the results can be seen in Figure 11-7.

Figure 11-7. Different color-stop values for radial gradients

In the first example (), I created a gradient with three color-stops (black-white-black) from the
center of the box to its farthest side. Remember that Firefox calculates the proportions automatically,
whereas in WebKit I have to specify the length along the radius that the color-stop must occur. The
second example () is similar, except I’ve specified the color-stop to begin 25 percent along the
length of the radius. In the third example (), I set the gradient to begin at the left side of the box and
end at the right side, with color-stops at 25 percent and 75 percent of the length.
The final example () uses five colors, but by specifying both the from-stop and first color-stop to
use the same color, I create the solid white circle in the center. Note that here the limit of the gradient

is the long horizontal side of the box, so in WebKit, I set the outer-radius value to 50px, half the
vertical height of the box.

The WebKit Advantage
One advantage that the WebKit syntax has over the Firefox syntax is the inner-* and outer-*
arguments, which permit two different centers and radii to be set on the same gradient. These
arguments allow for gradient patterns that the Firefox syntax can’t replicate. Take the following code,
for example:

div { background-image: -webkit-gradient(
 radial, 45% 35%, 10, 50% 50%, 40, from(black), color-stop(75%, white),
color-stop(95%, black), to(white)
);}

I set the inner gradient to have a center at 45 percent and 35 percent of the element and a radius of
10px and the outer gradient to have a center at 50 percent and 50 percent and a radius of 40px.
Therefore, the two gradient positions are offset from each other, and the gradient has a total radius of
30px, giving the effect shown in Figure 11-8.

Figure 11-8. A radial gradient only possible with the WebKit syntax

Although unique to the WebKit syntax, this particular gradient carries the penalty of two extra
arguments, which many times simply aren’t needed.

Multiple Gradients
Because gradients are applied with the background-image property, you can use the multiple
background values’ syntax that’s been newly introduced in CSS3 (see Chapter 8) to apply multiple
gradients to an element using comma-separated values.
Here are two examples; the first uses linear gradients, the second, radial:

.linears {
 background-image:
 -moz-linear-gradient(left top, black, white, transparent),
 -moz-linear-gradient(right top, black, white, transparent);
 background-image:
 -webkit-gradient(linear, left top, right bottom, from(black), color-
stop(50%, white), to(transparent)),
 -webkit-gradient(linear, right top, left bottom, from(black), color-
stop(50%, white), to(transparent));
 }
 .radials {
 background-image:
 -moz-radial-gradient(20% 50%, circle contain, white, black 95%,
 transparent),
 -moz-radial-gradient(50% 50%, circle contain, white, black 95%,
 transparent),
 -moz-radial-gradient(80% 50%,circle contain, white, black 95%,
 transparent);
background-image:
 -webkit-gradient(radial, 20% 50%, 0, 20% 50%, 50, from(white), color-
stop(95%, black), to(transparent)),
 -webkit-gradient(radial, 50% 50%, 0, 50% 50%, 50, from(white), color-
stop(95%, black), to(transparent)),
 -webkit-gradient(radial, 80% 50%, 0, 80% 50%, 50, from(white), color-
stop(95%, black), to(transparent));
}

Both of these examples are shown in Figure 11-9.

Figure 11-9. Multiple gradient background values

The first example shows two linear gradients, one from top-left to bottom-right, the other from top-
right to bottom-left. The to-stop has a value of transparent to allow the second gradient to show
through below it — remember, if you don’t set transparency, then the gradient will fill the rest of the
box and the layer below it will be hidden.
The second example shows three radial gradients with a radius of 50px each. Again, the to-stop has a
value of transparent to allow the layers below to show through.

Repeating Gradients in Firefox
One limitation of the current gradient syntaxes is that they become more and more unwieldy as you
specify extra color-stops, meaning they require a lot of repetitive code if you want to do anything
more than a simple gradient. The Firefox developers have proposed a pair of functions that go some
way toward solving this problem by repeating the gradient to fill the box. These are currently
proprietary functions that have not been accepted into the Image Values Module, so you must use the -
moz- prefix.

Repeating Linear Gradients
Repeating a linear gradient is done with the -moz-repeating-linear-gradient function,
which accepts the same fundamental set of values as -moz-linear-gradient:

E { background-image: -moz-repeating-linear-gradient(<point> or <angle>,<from-stop>,
<color-stop(s),<to-stop>); }

The difference between the two is that with -moz-repeating-linear-gradient, a length or
percentage value is required for the to-stop. For example:

div { background-image: -moz-repeating-linear-gradient(white,black 25%); }

This value sets the point at which the gradient should end and then start repeating. This example
creates a top-bottom gradient (remember, this is the default) between white and black that covers 25
percent of the height of the box, meaning it would repeat four times.
This is best illustrated with some examples using different values, which I’ll then explain. Here’s the
code I’ve used for the examples:

 .gradient-1 {
 background-image: -moz-repeating-linear-gradient(white, black 25%);
}
 .gradient-2 {

 background-image: -moz-repeating-linear-gradient(left,
 black, white, black 25%);
}
 .gradient-3 {

 background-image: -moz-repeating-linear-gradient(45deg,
 black, white 2px, black 10px);
}
 .gradient-4 {

 background-image: -moz-repeating-linear-gradient(315deg,
 black, black 2px, white 2px, white 4px);
}

You can see the output in Figure 11-10.

Figure 11-10. Repeating linear gradients in Firefox

Moving clockwise from top left, the first example () uses the code with which I introduced this
section: top-bottom, two colors, repeated four times. Next, I introduce an extra color-stop and change
the point so the gradient goes from left-right (). Here the gradient again covers 25 percent of the
element, but this time the gradient goes black-white-black and is evenly distributed.
For the third example (), I use an angle value of 45deg so the gradient is diagonal, and I use px

units for the color-stops. Again the gradients are black-white-black but this time distributed
unequally, so the black-white covers 2px, whereas the white-black covers 8px.
In the final example (), I use four color-stops: black-black over 2px and then white-white over 2px.
The low length values don’t allow any gradual change between the two colors, creating the hard
diagonal lines you see here.

Repeating Radial Gradients
Accompanying the -moz-radial-gradient function in Firefox is -moz-repeating-
radial-gradient, which repeats the values supplied until its specified limit is reached. It works
in the same way as -moz-repeating-linear-gradient, requiring a length value for to-stop,
such as:

E { background-image:
 -moz-repeating-radial-gradient(circle, black, white 20px);
}

This example creates a black-white gradient that is repeated every 20px. You can see this in action
along with some further demonstrations in this code:

 .gradient-1 {
 background-image: -moz-repeating-radial-gradient(circle farthest-side,
 black, white 20px);
}
 .gradient-2 {

 background-image: -moz-repeating-radial-gradient(right top, circle cover,
black, white 10%, black 15%);
}
 .gradient-3 {

 background-image: -moz-repeating-radial-gradient(left, circle cover,
white, white 10px, black 15px);
}
 .gradient-4 {

 background-image: -moz-repeating-radial-gradient(circle cover, white,
 black 1px, white 2px);
}

The results are displayed in Figure 11-11.

Figure 11-11. Repeating radial gradients in Firefox

Once again moving clockwise from top left, the first example () is the one I used in the introduction
to this section, a black-white circular gradient repeated every 20px. The second example ()
radiates from the top-right corner and passes through three color-stops over 15 percent of the box
width — the limit is set by the cover keyword constant, meaning it goes to the farthest (bottom-left)
corner. In the third example (), I set the center of the gradient to the left side of the box and the limit
to the farthest corner, using a white-white (solid) gradient for 10px and then white-black for 5px. In
the final example (), I seem to have created a work of art! I set a repeating white-black-white
gradient over a very low radius of 2px, which has created the interference pattern you see here. I
didn’t do it intentionally, but the result certainly is interesting!

Summary
The WebKit syntax allows for fine control over your gradients, but that control comes at a cost:
complexity. Although the Firefox syntax doesn’t allow you to do everything that you can with WebKit,
you’ll find it much, much simpler to apply a gradient to an element.
Currently, adding gradients to your pages with CSS may seem like a fairly painful process, but really
that’s only because W3C adoption of the method is quite recent, and actual browser implementation is
in a transitional phase requiring two quite dissimilar syntaxes in order to achieve the desired effects.
Barring extraordinary circumstances, the current WebKit syntax is not going to make it into the final
draft of the specification, so you may feel you’d be better off not using it. As long as you have
provided a fallback image (or even a plain color) — which you should do for other browsers anyway
— you can feel free to use just the Firefox implementation for now:

div {
 background-image: url('gradient.png');
 background-image: -moz-linear-gradient(black,white);
}

Now that we’ve finished looking at ways to decorate your page elements, I’m going to move on to
cover a whole new field of expertise: transforming and animating page elements.

Gradients: Browser Support
 WebKit Firefox Opera IE

Gradients Yes (with prefix; incorrect syntax) Yes (with prefix) No No

Repeating Gradients No Yes (with prefix) No No

Chapter 12. 2D Transformations

Because of the way HTML works, with all of its elements composed of rectangular blocks and right-
angled corners, web pages have traditionally appeared mostly boxy, with lots of straight horizontal
and vertical lines, and the only way to provide any variation to this rule was to use images. But back
in 2008, the WebKit team proposed a new module that allows elements to be rotated, resized,
skewed, and generally messed around with. This module has since been adopted by the W3C and
formalized as the 2D Transformations Module (http://www.w3.org/TR/css3-2d-transforms/).
The module’s components are adapted from functions in the Scalable Vector Graphics (SVG)
language, which is a specification for drawing two-dimensional images. SVG is supported by most
modern browsers, so Firefox and Opera were quick to implement 2D Transformations in their own
products. The Release Candidate of IE9 also has an implementation, so it should be in the final
release of that browser. All this means you can start practicing with these new features right away.
One thing to note before I introduce the syntax: By the end of this chapter, I’ll have introduced some
fairly complex functions, so you might want to brush up on your trigonometry. Are you nervous? Don’t
worry; I’ll try to make it as painless as possible.

http://www.w3.org/TR/css3-2d-transforms/

The transform Property
A range of different transformations can be applied, but all are declared as functions in the
transform property. Here’s the basic syntax:

E { transform: function(value); }

A number of possible functions are available; I’ll explore each in turn throughout the rest of this
chapter. Each function takes either a single value or a comma-separated list of values. I’ll also
explain what this means when I discuss each function individually.
As I mentioned in the beginning of the chapter, Firefox (3.5+), Opera (10.5+), IE9 (Release
Candidate), and WebKit all developed implementations of the transform property, each with its
proprietary prefix, which means that to use this property currently, you have to specify it four times:

E {
 -moz-transform: function(value); /* Firefox */
 -ms-transform: function(value); /* Internet Explorer */
 -o-transform: function(value); /* Opera */
 -webkit-transform: function(value); /* WebKit */
}

Ordinarily, I would recommend adding the nonprefixed property after each of the browser-specific
ones, so future browser version releases that implement the nonprefixed property are accounted for,
like so:

E {
 -moz-transform: function(value); /* Firefox */
 -ms-transform: function(value); /* Internet Explorer */
 -o-transform: function(value); /* Opera */
 -webkit-transform: function(value); /* WebKit */
 transform: function(value); /* Future-proofing */
}

Some browsers, however, have implemented transform very slightly differently, and because the
module is still at Working Draft status, the syntax is subject to change. For that reason, I caution
against using the future-proofing method of including the nonprefixed property after the prefixed one,
just in case the final syntax differs from the current one. In my examples, I’ll follow my custom of
only using the nonprefixed rule, but remember, when creating your own pages, you have to specify all
four.

rotate
Probably the simplest of all the functions is rotate, which does what it sounds like it should do: It
rotates the element around a set point. Here’s the syntax:

E { transform: rotate(value); }

The value here is a single angle value just like you used with the CSS Gradients introduced in
Chapter 11. And, like in that chapter, I’m sticking with the commonly understood degrees (deg) unit
for my examples. Note that you can also use negative values here: for example, −90 degrees is
equivalent to 270 degrees.
To show you rotate in action, I’m going to rotate an h2 element by −25 degrees (or 335 degrees),
using this rule:

h2 { transform: rotate(-25deg); }

You can see how this displays in Figure 12-1.

Figure 12-1. An h2 element rotated by 10 degrees

In Figure 12-1, I positioned another h2 element with a light gray background in the same place as the
first one so you can compare the rotated element with the default (nonrotated) element. I’ll do the
same for most examples in this chapter.

Position in Document Flow
Once an element has been transformed, it acts as if it had position: relative applied to it;
that is, the element is almost like two elements. The original, pretransformation element retains its
place in the document flow, so all subsequent elements are affected by it and its margin and padding.
The transformed element does not affect the page layout but sits in a new layer above the rest of the
page, which means the new element can cover subsequent elements.
In the next example, I’ll rotate the h2 element again, but this time flow some text under it so you can
see the effect of the transformation. Here’s the code to rotate the element:

h2 { transform: rotate(-15deg); }

Figure 12-2 shows the results of this transformation.

Figure 12-2. The effect of a transformed element on the document flow

Both examples are identical, except for the rotate transformation. You can clearly see the rotated
element covers the text under it, which immediately follows the nontransformed element in the layout.
This same rule applies to any element that has the transform property applied to it, so be aware of
this going forward.

transform-origin
The origin of a transformation is the point on an element about which that transformation happens.
This concept is easiest to illustrate using rotate, although you can apply it to any of the
transformation functions introduced in this chapter.
In the case of rotate, you can visualize the origin by imagining you have a piece of paper (the
element) and a pin (the origin of that element). If you use the pin to stick the paper to a flat surface,
you can rotate the paper around the pin. By sticking the pin in different places on the paper, you can
change how the rotation happens — if the pin is stuck in the center of the paper, the rotation has a
short radius, and the paper on either side of the pin moves equally; if the pin is placed at one edge, the
whole length of the paper rotates around it.
The default point of origin in the CSS transform property is the absolute (that is, horizontal and
vertical) center. You can change this using the transform-origin property:

E { transform-origin: value(s); }

The value for this property is either one or two length or keyword values. Lengths can be any
accepted CSS unit (em, px, etc.) or a percentage. The keywords are left, right, top, bottom,
and center. If two values are supplied, the first sets the horizontal point and the second sets the
vertical; if only one is supplied, that point sets the horizontal, with the vertical presumed to be
center (or 50 percent).
If you want to change the point of origin to the top-left corner, you can use either of the following:

E { transform-origin: 0 0; }
E { transform-origin: left top; }

And if you want the point of origin to be the bottom-right corner, you can use these values (let’s say
the element has a height of 50px and a width of 200px):

E { transform-origin: 200px 50px; }
E { transform-origin: 100% 100%; }
E { transform-origin: right bottom; }

Let me demonstrate the effects of changing the origin of transformation. This example shows three
identical elements with the same transform property applied to each but with a different
transform-origin value:

h2 { transform: rotate(-10deg); }
h2.example-1 { transform-origin: left center; }
h2.example-2 { transform-origin: 100% 50%; }

You can see the effects on the three elements in Figure 12-3.

Figure 12-3. Different transform-origin values on a rotated element

The first element has the default values of center center, so the element rotates around the

absolute center. The second element has values of left center, so the element rotates around the
vertical center of the left-hand side. And the third element has values of 100% 50%, so the element
rotates around the vertical center of the right-hand side.

translate
The next function we’ll look at is translate, which moves the element from its default position.
Three functions are actually involved: tranlateX, translateY, and translate:

E {
 transform: translateX(value);
 transform: translateY(value);
}
E { transform: translate(translateX,translateY); }

The first two functions, translateX and translateY, move the element along an axis — if you
need a refresher, refer to the explanation of axes in Chapter 6 — for the length that you specify. You
can use any length units or percentage values here, so, for example, you could have:

E {
 transform: translateX(20px);
 transform: translateY(15%);
}

This code would move the element 20px to the right (along the x-axis), and 15 percent of its own
height down (along the y-axis). You can also use negative values, which would move the element in
the opposite direction along the axis — that is, up or to the left.
The next function, translate, is shorthand for translateX and translateY. You could use
it with the previous example values like so:

E { transform: translate(20px,15%); }

Here are two examples using translate:
h2.translate-1 { transform: translate(20px,20px); }
h2.translate-2 { transform: translate(20px,-20px); }

You can see the results of this code displayed in Figure 12-4, again with elements in a lighter gray
showing the original position.

Figure 12-4. Elements showing effects of different values in the translate function

The first example uses a pair of values of 20px, so the element is offset from the original by 20px
both horizontally and vertically. The second example has a negative second value (-20px), so the
element is moved in the opposite direction along the y-axis, so it’s offset above the original.
It’s permissible to use only one value with the translate shorthand, like so:

E { transform: translate(20px); }

If this is the case, the value provided will be presumed to be the translateX value, and a value of 0
(zero) will be used for translateY. That being the case, both of the following declarations are the

same:
E { transform: translate(20px,0); }
E { transform: translate(20px); }

You might think translate seems very similar to using relative positioning and the left and top
properties, but remember that the transformed element retains its position and only appears to have
moved; the image of the element is transformed, not the element itself.

skew
The skew function allows you to alter the angle of the horizontal or vertical axis (or both axes) of an
element. As with translate, each axis has an individual function, and a shorthand function is
available to indicate both:

E {
 transform: skewX(value);
 transform: skewY(value);
}
E { transform: skew(skewX,skewY); }

The values for the skew functions are angle values (I’ll use degrees in my examples). Negative
values are permitted, and the skew shorthand can take either one or two values — as before, if only
one is specified, then the value is presumed to be skewX, and skewY defaults to 0.
Let me show you how skew works by providing three demonstrations, using this code:

h2.transform-1 { transform: skewX(45deg); }
h2.transform-2 { transform: skewY(10deg); }
h2.transform-3 { transform: skew(-45deg,5deg); }

These demonstrations are illustrated in Figure 12-5.

Figure 12-5. Elements transformed by different values in the skew function

In the first example, the element is skewed by 45 degrees along its x-axis, causing the vertical edges
to slope diagonally. In the second example, the skew is by 10 degrees on the y-axis, so the horizontal
edges slope diagonally while the vertical edges remain unchanged. The final example shows the
effect of two values being applied using the shorthand function. The values are −45 degrees on the x-
axis and 5 degrees on the y-axis, so the element is sloped on both axes.
By looking at that last example, you can see replicating the rotate function using skew is possible.
To do this, the angle that you want to rotate the element by is given as a value to scaleX and the
inverse value to scaleY; that is, if scaleX is 10 degrees, then scaleY should be −10 degrees,
and vice versa. Therefore, the two functions in this code example perform the same job:

E {
transform: rotate(15deg);
transform: skew(15deg,-15deg);
}

You’ll find this useful to know when I introduce the matrix function later in this chapter.

scale
You can make an element larger or smaller than the original by using the scale function. Once again,
you have functions for the horizontal and vertical values and a shorthand function:

E {
 transform: scaleX(value);
 transform: scaleY(value);
}
E { transform: scale(scaleX,scaleY); }

The values for scaleX and scaleY are unitless numbers, which give a size ratio. The default size
is 1; 2 is twice the default, 0.5 is half the default, and so on. You can also use negative numbers —
I’ll explain the effect of negative numbers shortly.
To make an element double its original size on both axes, you would use:

E {
 transform: scaleX(2);
 transform: scaleY(2);
}

Of course, you could also use the shorthand property, scale. Note, however, that the scale
function works differently from the other shorthand properties you’ve seen so far in this chapter, in
that if only one value is provided, the other is presumed to be identical. Using the previous example,
you could opt instead for the shorthand:

E { transform: scale(2); }

I’ll demonstrate scale in action with a few examples. Here’s the code I’ll use:
h2.transform-1 { transform: scale(0.5); }
h2.transform-2 { transform: scaleX(0.5); }
h2.transform-3 { transform: scale(1,-1); }

The results are shown in Figure 12-6.

Figure 12-6. The effects of different values in the scale function

The first example has a scale value of 0.5, so the transformed element is half the size of the original
— remember I specified only one value in the shorthand, so the other is presumed to be equal. In the
second example, I used 0.5 as a value but this time for the scaleX function, meaning the transformed
element is the same height as the original but only half the width.
In the final example, I supplied two values to the scale shorthand: The first is 1 (one), which sets
the horizontal size to be the same as the original, but the second is −1 (negative one). Using a negative
value has the effect of flipping the element vertically, creating a “reflection” of the original element at
the same scale.

NOTE
WebKit browsers have another way to do this as well, with the box-reflect property, which I’ll introduce later in Reflections
with WebKit in Reflections with WebKit.

Multiple Transformations
You can apply multiple transformations to a single element by simply listing functions, space-
separated, in the transform property:

E { transform: function(value) function(value); }

So you could, for example, rotate, scale, and translate an element with code like this:
h2 { transform: rotate(-40deg) scale(0.75) translate(-46%,-400%); }

You can see how this code looks in a real-world demonstration shown in Figure 12-7.

Figure 12-7. Multiple functions applied to the h2 element to create a “ribbon” effect

The h2 element has been transformed with multiple functions and sits across the top-left corner of its
parent element in a ribbon effect that’s fairly popular on the Web but, until now, had to be done with
images.

Transforming Elements with Matrices
You can use one final transformation function to apply multiple values to an element; this function is
called matrix. Rather than explaining the theory behind transformation matrices (which is quite
complex and could easily be a chapter of its own), I’ll try to keep the explanation as simple as
possible and just give you the practical basics. If you really want to dig into the theory, I suggest you
read the W3C’s explanation at http://www.w3.org/TR/SVG/coords.html#TransformMatrixDefined.
The matrix function accepts six values. By combining them, you can replicate the functions
introduced already in this chapter. Here’s the syntax:

E { transform: matrix(a,b,c,d,X,Y); }

All of the default values are 0 (zero), and they behave slightly differently depending on which values
are supplied — I’ll explain what this means as I go along. I said that you can perform all of the
functions introduced so far in this chapter with matrix, but the process is not quite that simple —
you need to know some trigonometry first.
Before getting to the hard stuff, I’ll start with something simple that doesn’t require any trig: scaling.
If you want to scale an element, you can use a and d to equate to scaleX and scaleY and set
values accordingly, leaving b and c at 0. Therefore, to double an element’s size, you would use:

E { transform: matrix(2,0,0,2,0,0); }

You can also translate an element with matrix by providing horizontal and vertical offset
values to X and Y (respectively). Firefox implements this slightly differently than other browsers by
requiring length units for the values, whereas WebKit, Opera, and IE9 accept only unitless numbers,
which represent pixel values. That being the case, for this next example I’m going to list all of the
different prefixed properties:

E {
 -moz-transform: matrix(2,0,0,2,15px,15px);
 -ms-transform: matrix(2,0,0,2,15,15);
 -o-transform: matrix(2,0,0,2,15,15);
 -webkit-transform: matrix(2,0,0,2,15,15);
}

The result of this code would be to double an element’s size and offset it by 15px both vertically and
horizontally.
Mozilla has suggested the specification be modified to support their proposed change, as the current
spec means only pixel values can be used for matrix transformations. This is the key difference among
the different browsers’ implementations. In the examples in the rest of this chapter I’ll use unitless
values, because they are more common.
If you want to skew an element, well, this is where it becomes a lot more complex — here’s where I
need to introduce the trigonometric functions. You can read a full explanation of these functions on
Wikipedia (http://en.wikipedia.org/wiki/Trigonometric_functions#Sine.2C_cosine_and_tangent), but
here’s a quick and dirty summary: The trigonometric functions are ratio values used to calculate
angles in a triangle.
The first trigonometric function I’ll use is tan (tangent), which is required to skew an element along
the x- or y-axis. Referring to the original matrix syntax, the x-axis is supplied as a value to b and
the y as a value to c. Here’s the syntax for each:

http://www.w3.org/TR/SVG/coords.html#TransformMatrixDefined
http://en.wikipedia.org/wiki/Trigonometric_functions#Sine.2C_cosine_and_tangent

E { transform: matrix(1,tan(angle),0,1, X,Y); } /* X Axis */
E { transform: matrix(1,0,tan(angle),1, X,Y); } /* Y Axis */

The angle here refers to the degrees (counterclockwise) of the angle you want to skew by. If you
want to skew an element by 15 degrees, the value you’re looking for is the tangent of 15. So whip out
your scientific calculator — if you don’t own one, your operating system’s calculator should have a
scientific mode — and get the result that tan(15) = 0.27. This result is what you provide to the
matrix function. For example, if you want the skew to be along the x-axis, the syntax would be:

E { transform: matrix(1,0.27,0,1,0,0); }

NOTE
As I’m using degrees in my examples, make sure your calculator’s trigonometric type is set to degrees if you want to follow along. If
you’d prefer working in gradians or radians, all of these examples can be updated accordingly.

As mentioned previously, skew can also be used to rotate an element — and you can do the same
with matrix. This time you have to make use of the sin (sine) and cos (cosine) trigonometric
functions. To rotate an element, the matrix syntax is:

E { transform: matrix(cos(angle),sin(angle),-sin(angle),cos(angle),X,
Y); }

Note that a and d take the same value, and b and c take inverse values (if b is a positive value, c is
the negative of the same value, and vice versa). Once again, angle refers to the degrees of the angle
you want to rotate the element by. To rotate by 60 degrees, you would go back to your scientific
calculator and calculate the cos and sin of 60. My calculator tells me that cos(60) = 0.5 and sin(60) =
0.87, so the required code would be:

E { transform: matrix(0.5,0.87,-0.87,0.5,0,0); }

Now let’s look at a few examples. Here’s the code I’ll use:
h2.transform-1 { transform: matrix(1,0,0,-1,0,-24); }
h2.transform-2 { transform: matrix(1,0,1,1,18,-24); }
h2.transform-3 { transform: matrix(0.98,-0.17,0.17,0.98,0,0); }

The output is shown in Figure 12-8.

Figure 12-8. Examples of transformations made with the matrix function

In the first example, I’ve flipped the element vertically (as I did earlier using scale in Figure 12-6)
and translated it by −24px along the y-axis to sit neatly under the original element. In the next
example, I’ve skewed the element by 45 degrees along the y-axis (after calculating that tan(45) = 1)
and translated it along both axes. The final example shows the element rotated by 10 degrees; the
values are the results of the calculations I showed you previously: cos(10) = 0.98 and sin(10) = 0.17.

As mentioned, the sin value is negative in position b and positive in position c, which makes the
rotation uniform.
I know this is all quite complex, but hopefully I’ve been able to simplify it enough for you to
understand, without making it seem so simple you can’t see the scope for great flexibility — as long
as you keep your scientific calculator with you at all times! And if this does seem overly complex,
and you’re having trouble understanding it, remember you can perform all of these transformations
using the individual functions, so you can happily forget about matrix and trigonometry, too, if you
so desire.

Reflections with WebKit
One of the common design tropes of “Web 2.0” was the reflected image — that is, an image made to
appear as if it were reflected in a shiny surface. Earlier in the chapter, I demonstrated how you can
use scale to flip and reflect an element, but this requires two separate page elements: the original
and the reflection.
To address this issue, WebKit introduces a new property that removes the need for that extra element:
-webkit-box-reflect. The syntax looks like this:

E { -webkit-box-reflect: direction offset mask-box-image; }

The first value, direction, is a keyword that sets where the reflection should appear in relation to
the element: above, below, left, or right. Next is offset, which is a length value that sets
the distance between the element and the reflection (the default is 0). The final value is mask-box-
image, which is an optional value that allows you to set an image to use as a mask.
Let’s put aside the mask-box-image value briefly, and instead I’ll show you an example of the
simplest possible reflection:

h2 { -webkit-box-reflect: below; }

Here, I’ve set the reflection to appear below the element; remember, offset defaults to 0 and
mask-box-image is optional, so direction is the only required value. You can see how this
appears in Figure 12-9.

Figure 12-9. A simple reflection below the element

This code creates an exact mirror of the image, but in order to get a shiny Web 2.0 reflection you need
to create the illusion that the reflection fades out as it gets farther away from the original element. You
do this with the mask-box-image value — or, rather, series of values. mask-box-image uses
the same syntax as you saw in the section on masks in Chapter 8, which is the also the same as
border-image from Chapter 9:

E { -webkit-box-reflect: direction offset source slice repeat; }

As with border-image, source is the URL of an image file (you can also use the gradient syntax
from Chapter 11 here), slice is an optional series of length values used to define the area of the
image that will be used, and repeat is a keyword value that sets how the image is repeated to fill
the dimensions of the reflected element; this value is also optional, and the default value of stretch
will be used if repeat isn’t present.
Let me show you two very simple examples that use only the source value:

h2.transform-1 { -webkit-box-reflect:
 below 0 -webkit-gradient(linear,50% 0,50% 100%,from(transparent),to(white));
}
h2.transform-2 { -webkit-box-reflect: url('cloud.png'); }

You can see the output of this in Figure 12-10.

Figure 12-10. Using a gradient (left) and image (right) as a mask

In the first example, I used a gradient fill vertically from transparent to white, which provides the
shiny reflection effect. In the second, I used the image cloud.png to act as a mask on the reflection.
Note that the reflection behaves in the same way as the other transformation effects in this chapter: It
occupies no position in the layout flow of the page but sits in a layer above the main body content
and, therefore, will overlay subsequent elements.

Summary
This chapter has introduced the most complex property so far: the matrix function. Although one
might be tempted to say that if you want to perform complex operations, you have to deal with
complex syntax, I think the other functions in this chapter do a good job of translating that complexity
into something simple. Just remember, easier options are always available if you get fed up with
matrix.
This chapter has also introduced some of the most revolutionary properties so far — just a few years
ago the notion that you could rotate, skew, and scale elements was just a pipe dream, but today you
can do just that. And if you think what you’ve seen in this chapter is impressive, wait until the next
one — I’m going to show how you can introduce subtle (or not so subtle) animation effects, without
using JavaScript.

2D Transformations: Browser Support
 WebKit Firefox Opera IE

2D Transformations Yes (with prefix) Yes (with prefix) Yes (with prefix) No (expected in IE9, with prefix)

box-reflect Yes (with prefix) No No No

Chapter 13. Transitions and Animations

We think of web pages as having three layers: content (HTML), presentation (CSS), and behavior
(JavaScript), and it’s generally understood that these layers should all be kept absolutely separate —
we don’t use presentational or behavioral rules in the content layer (in other words, no CSS or
JavaScript inline in the markup). This separation is not quite as clear cut as it seems, however — for
a start, CSS has always had some behavioral aspects (the :hover pseudo-class being a prime
example).
This line between presentation and behavior was blurred even further when the WebKit developers
introduced two new behavioral modules that have been adopted as CSS3 components: Transitions
and Animations. These allow for the animation of element properties, adding movement to otherwise
static pages even when JavaScript is not available.
Some have argued — and perhaps still do — about whether the Transition and Animation modules
should be included in CSS, as they fall firmly in the behavioral layer. But as the W3C has decided to
offer them for discussion as an “official” part of CSS3, we no longer need to debate the ethics of them
— we can just have fun with them, instead!
The difference between Transitions and Animations is that the former is implicit and the latter is
declared. That means Transitions only take effect when the property they are applied to changes
value, whereas Animations are explicitly executed when applied to an element.
I’ll start this chapter with a look at Transitions, as they are the simpler of the two modules; however,
both have a lot of syntax in common, so much of what you learn from one can be directly applied to
the other.

Transitions
There are no in-between states in CSS2: When the value of a property changes, the change is abrupt.
Consider an element with a width of 100px, which changes to a width of 200px when you hover your
mouse over it. You’ll notice the element does not progress smoothly between the two states; the
element jumps between them. CSS3 provides options to change this with the introduction of the
Transitions Module (http://www.w3.org/TR/css3-transitions/). In CSS, a transition is an animation
that moves a property between two states.
As I mentioned in the introduction to this chapter, transitions are an implicit animation, which means
they are triggered only when a new value is set for a CSS property. For a transition to occur, four
conditions must be in place: an initial value, an end value, the transition itself, and a trigger.
Here’s an example of those four conditions in a very simple transition:

div {
 background-color: black;
 transition: background-color 2s;
}
div:hover { background-color: silver; }

The div element provides the initial value (background-color: black) and the transition
(background-color 2s). Don’t worry about the syntax just yet; I’ll explain everything in due
course. The trigger is the :hover pseudo-class, which also provides the end value (silver) for the
background-color property.
So here we have a div element with a black background that, when the mouse is passed over it,
transitions smoothly to silver. All transitions act in reverse when the trigger is no longer active, so
when the mouse is moved off of the div, the background smoothly transitions back to black.
Now that you have a general overview of how it works, I’ll explore each of the transition properties
in turn. Transitions are implemented in WebKit browsers, Opera (from version 10.6), and in pre-
release test builds of Firefox (and are currently planned for implementation in version 4). All of the
following properties should be prefixed with -moz-, -o-, and -webkit- in your pages; as
always, I will refer to the nonprefixed properties in the examples.

http://www.w3.org/TR/css3-transitions/

Property
The first new property, transition-property, specifies which property (or properties) of an
element will be animated. Here’s the syntax:

E { transition-property: keyword; }

An acceptable value for keyword would be either the keywords all or none, or a valid CSS
property. The default value is all, which means every valid property will be animated. I stress valid
CSS property because not every property can be transitioned; the specification has a full list of the
ones that can at http://www.w3.org/TR/css3-transitions/#properties-from-css-.
Here’s an example of transition-property:

h1 {
 font-size: 150%;
 transition-property: font-size;
}

This code sets an initial value of 150% on the font-size property and declares this is the
property that will be transitioned when the (not yet specified) trigger is activated. Note that I will add
properties to this example throughout the rest of this section before showing the completed example in
action at the end.

http://www.w3.org/TR/css3-transitions/#properties-from-css-

Duration
The next property is transition-duration, which defines the length of time that the transition
takes to complete. The syntax for this is:

E { transition-duration: time; }

The time value is a number with a unit of ms (milliseconds) or s (seconds). Since 1,000
milliseconds equals 1 second, a value of 1.25s is the same as 1250ms. The default value is 0
(zero), meaning this property is the only one required to create a transition. A transition can occur if
you declare a transition-duration without a transition-property (as that defaults to
all, so all valid properties will animate) but not vice versa.
To make the example transition from the first section happen over a period of two seconds, you would
add this code:

h1 {
 font-size: 150%;
 transition-property: font-size;
 transition-duration: 2s;
}

Note that although you can supply negative values here, they will be interpreted as 0.

Timing Function
To control the manner in which an element transitions between states we use the transition-
timing-function property. This allows for variations in speed along the duration of the
transition, which gives you control over the animation’s pace. This property has two different value
types: a keyword or the cubic-bezier function. I’ll discuss cubic-bezier in detail later in
this section, as it’s a little complex; to begin, I’ll focus on the keywords.

Timing Function Keywords
The syntax of the transition-timing-function property when used with a keyword is quite
straightforward:

E { transition-timing-function: keyword; }

The possible values for keyword are ease, linear, ease-in, ease-out, and ease-in-
out. The default value is ease, which starts slowly, accelerates quickly, and slows down again at
the end. The linear value progresses steadily from the start of the transition to the end, with no
variation in speed. With the ease-in value, the animation begins slowly and then speeds up toward
the end, and the ease-out value acts in reverse. Finally, ease-in-out starts slowly, speeds up
through the middle, and then slows down again at the end, similar to — but less dramatic than — the
ease value.
With that explained, let’s add a simple timing function to the example transition:

h1 {
 font-size: 150%;
 transition-property: font-size;
 transition-duration: 2s;
 transition-timing-function: ease-out;
}

The Cubic Bézier Curve
One of the possible values for the transition-timing-function is the cubic-bezier
function. In case you’re not familiar with cubic Bézier curves — and indeed, why would you be? —
allow me to explain. First, here’s the syntax:

E { transition-timing-function: cubic-bezier(x1, y1, x2, y2); }

A cubic Bézier curve is plotted over four points on a grid that goes from 0 to 1 along both axes. The
four points are known as p0, p1, p2, and p3. They define curvature and are plotted with pairs of (x, y)
coordinates, where the first (p0) is always at (0, 0) and the last (p3) is always at (1, 1). The other
two points are defined in the function: (x1, y1) and (x2, y2). An example, shown in Figure 13-1,
illustrates this best.

Figure 13-1. An example of a cubic Bézier curve

Figure 13-1 shows the four points mapped onto the grid to create a Bézier curve. The coordinates of
each point are shown in Table 13-1:

Table 13-1. The Coordinate Points Used to Plot a Bézier Curve

Point Coordinates (x, y)

p0 (0, 0)

p1 (0.6, 0.1)

p2 (0.15, 0.8)

p3 (1, 1)

You would use the following CSS to represent this curve (remember, you don’t need to define p0 and
p3 because they will always have the same values):

E { transition-timing-function: cubic-bezier(0.6, 0.1, 0.15, 0.8); }

A linear animation progresses in a straight line from (0, 0) to (1, 1), but this example animation
follows the progression of the curve toward the final point over the set duration. If you imagine the
duration to be 1 second, you can see the speed gradually increases at the start, between 0 and
(roughly) 0.5 seconds, then increases sharply to about 0.7 seconds, and then assumes a slower rate
until the end of the animation.
All of the transition-timing-function keywords described earlier are produced with
cubic Bézier curves. Table 13-2 shows each of the keywords and their corresponding values for the
cubic-bezier function.
As with the transformation matrices I introduced in the previous chapter, cubic-bezier functions
can be quite daunting if you’re not used to math. But don’t worry — you can always use the keyword
values, which will be more than sufficient in most cases.

Table 13-2. Comparing transition-timing-function Keywords with Their Equivalent
Cubic Bézier Values

Keyword Value Cubic Bézier Value

ease 0.25, 0.1, 0.25, 1

linear 0, 0, 1, 1

ease-in 0.42, 0, 1, 1

ease-out 0, 0, 0.58, 1

ease-in-out 0.42, 0, 0.58, 1

If you want to experiment with cubic Bézier curves there’s a tool online at
http://www.netzgesta.de/dev/cubic-bezier-timing-function.html which graphically displays the results
of different combinations of coordinates.

http://www.netzgesta.de/dev/cubic-bezier-timing-function.html

Delay
The final property in the transition-* family is transition-delay, which sets the time
when the transition starts. Here’s the syntax:

E { transition-delay: time; }

As with transition-duration, the time value is a number with a unit of either ms or s. The
default value is 0 (zero), meaning the transition happens as soon as the trigger is . . . well, triggered.
Any other positive value starts the transition after the specified length of time has passed.
For example, if you wanted to set a delay of a quarter of a second at the start of the example
transition, here’s the code you would use:

h1 {
 font-size: 150%;
 transition-property: font-size;
 transition-duration: 2s;
 transition-timing-function: ease-out;
 transition-delay: 250ms;
}

You can also use negative values for transition-delay, which has an interesting effect: The
transition begins immediately but skips ahead by the amount of the negative value. To illustrate what I
mean, consider a transition with a duration of four seconds but a delay of negative two seconds:

E {
 transition-duration: 4s;
 transition-delay: −2s;
}

When triggered, the transition starts immediately, but as if two seconds had already passed (two
seconds being the duration minus the delay). In this case, the animation would start halfway through
the transition.

Shorthand
Throughout this section, I’ve been building an example transition property by property. So far, the
code looks like this:

h1 {
 font-size: 150%;
 transition-property: font-size;
 transition-duration: 2s;
 transition-timing-function: ease-out;
 transition-delay: 250ms;
}

This code seems like quite a lot to write for each transition. But, as with all of the other CSS
properties that are part of a “family” (background-*, border-*, etc.), the transition-*
family has a shorthand. Here’s the syntax:

E { transition:a
transition-property transition-duration transition-timing-function
 transition-delay;
}

One important thing to be aware of here is that there are two time values: transition-
duration and transition-delay, which must be declared in that order. If only one is
declared, the syntax presumes it is transition-duration, and transition-delay will be
set at the default (or inherited) value.
If you were to use the values from the example transition with the shorthand property, the result would
be:

h1 {
 font-size: 150%;
 transition: font-size 2s ease-out 250ms;
}

which is, obviously, a lot less code to write.

The Complete Transition Example
Now that I’ve explained all of the component properties, let’s take a look at the example transition in
action. The full code is shown here:

h1 {
 font-size: 150%;
 transition: font-size 2s ease-out 250ms;
}
h1:hover { font-size: 600%; }

Figure 13-2 shows what happens when I pass my mouse over the h1 element.

Figure 13-2. Three stages of an animated transition on the font-size property

Obviously, I can’t show the full animation on the printed page, but the illustration shows three stages
of the transition: the initial, pre-transition stage (left) with a font-size of 150 percent; an
intermediate, mid-transition stage (center), which is just under two seconds into the animation when
the font-size has increased; and the final, post-transition stage (right) where the font-size is
600 percent.
As I’ve already mentioned, transitions act in reverse when the condition that acts as a trigger is no
longer being met, so when you remove your mouse from over the h1 element, you can read this
example from right to left to see what will happen.

Multiple Transitions
You can easily add multiple transitions to an element by providing a list of comma-separated values
to the individual or shorthand properties. That being the case, both of the following code examples
are valid:

E {
 transition-property: border-width, height, padding;
 transition-duration: 4s, 500ms, 4s;
}
E { transition: border-width 4s, height 500ms, padding 4s; }

Note that if a property has fewer values than the others, that list of values will be looped. With that in
mind, you could rewrite this code example slightly:

E {
 transition-property: border-width, height, padding;
 transition-duration: 4s, 500ms;
}

Here, the transition-property property has three values, whereas the transition-
duration property has only two. This means the third value of the former (padding) is matched
with the first value of the latter (4s), matching what was supplied in the first example.
Here’s a practical example:

.widget {
 background-color: black;
 left: 10px;
 position: absolute;
 top: 90px;
 transition: background-color 4s linear, left 4s ease-in-out, top 4s ease-in-out;
}
div:hover .widget {
 background-color: silver;
 left: 130px;
 top: 10px;
}

Here, I’ve used the transition shorthand to apply three transitions. The first transition changes
the background-color from black to silver in a linear timing function, and the next two
change the left and top properties with ease-in-out timing functions. All the transitions take
place over four seconds. You can see this illustrated in Figure 13-3.

Figure 13-3. Three stages of an animated transition on the background-color, left, and top properties

Figure 13-3 shows three stages of the transition: The first stage (left) shows the element pre-
transition, with a black background and positioned at the bottom left of its parent element; the next

stage (center) is mid-transition, as the element is changing color and moving to the top right of its
parent; and the final stage (right) shows the element post-transition, with a silver background and in
its final position.

Triggers
In my examples, I’ve used the :hover pseudo-class as the trigger, but other options are available.
As well as all of the other element state pseudo-classes (:active, :target), you can also
combine transitions with JavaScript. For example, you could set up your CSS like this:

h2 {
 background-color: black;
 transition: background-color 2s;
}
h2.transition { background-color: silver; }

Then use a script to add the class and trigger the transition:
document.querySelector('h2').className = 'transition';

When the function runs, the h2 element has the class added to it, and the element’s background
color changes smoothly from black to silver.

More Complex Animations
Transitions are good but naturally limited; they are only applied when a property value changes. The
CSS3 Animations Module (http://www.w3.org/TR/css3-animations/) goes beyond what is possible
with Transitions, allowing animations to be applied directly to elements with a syntax that is more
flexible and permits more granular control. Animations and transitions have quite a lot of syntax in
common, but the process for creating animations is very different: First, you define the properties and
timings, and then you add the animation controls to the elements that will be animated.
The Animations Module is currently only implemented in WebKit browsers, although Firefox
developers have stated that they are considering it for implementation “in the future.”

http://www.w3.org/TR/css3-animations/

Key Frames
The first step in creating animations is to define your key frames. A key frame is a point that defines
the start and end of a transition. The most simple animation will have two key frames — one at the
start and one at the end — whereas more complex ones will have multiple key frames in between. A
CSS transition is essentially an animation with only two key frames.
In CSS, key frames are declared in the @keyframes rule, which has the following syntax:

@keyframes 'name' {
 keyframe {
 property : value;
 }
}

NOTE
As I mentioned, only WebKit browsers currently implement CSS Animations. Remember to use the WebKit prefix for this rule, which
is @-webkit-keyframes.

The first value for the @keyframes rule is name; this unique identifier will be used to call the
animation, which I’ll discuss later. You can use pretty much any value here, although I suggest using a
word or term that is relevant to the animation it describes — your stylesheets will be much easier to
follow if you do.
The next value, keyframe, sets the position along the duration of the animation that the key frame
will occur. The possible values are percentages or one of the keywords from or to (which are
analogous to 0 percent and 100 percent, respectively). You must specify at least two key frames
(from/0% and to/100%), but you can have as many as you like as long as each has a unique
position in the animation.
Within each key frame is a CSS declaration or series of declarations that are applied to a selected
element at the specified stage of the animation. Let me clarify with an example. The following code
describes a simple animation with three key frames:

@keyframes 'expand' {
 from { border-width: 10px; }
 50% { border-width: 1px; }
 to {
 border-width: 1px;

 height: 120px;
 width: 150px;
 }
}

At the beginning of the animation (), the selected element has a border that is 10px wide; halfway
through the animation (), the border is reduced to a width of 1px; and at the end of the animation(
), the border is 1px wide, and the height and width are 120px and 150px, respectively. Between each
of the key frames, the elements are animated gradually, so between the start and 50 percent mark, the
border is animated to smoothly change width from 10px to 1px.
Note that inheritance operates on individual key frames, so if you want a change to persist between
frames, you need to specify it in each frame. If I hadn’t specified border-width again in the to
key frame (), it would default back to the inherited value of the element the animation was applied

to, meaning the animation could be quite different.

Animation Properties
Once you’ve defined the key frames, the next step is to add the controls to the elements you want to
animate. As I mentioned in the introduction to this section, many of the animation properties share
syntax with their counterparts in the transition-* family, so you should already be pretty
familiar with them.

NOTE
As with the @keyframes rule, the animation-* properties are currently only implemented in WebKit and so should be prefixed
with -webkit- when you use them in your pages.

Name
The animation-name property is used to refer to an animation that’s been defined with the
@keyframes rule, and as such the syntax is quite straightforward:

E { animation-name: name; }

You can see it requires only a single value, which is the name of an already defined animation. To call
the animation created in the previous section, you would use:

div { animation-name: border-changer; }

The only other permissible value is none, which prevents any animations from occurring on this
element.

Duration
The duration of an animation is set by the animation-duration property, which is functionally
identical to the transition-duration property introduced earlier in this chapter:

E { animation-duration: time; }

As with transition-duration, the time value is a number with a unit of either ms or s, or a
0 (zero), which prevents the animation from running. (Negative values are also implemented as 0.) To
extend the example animation so it’s six seconds in duration, you add this line:

div { animation-duration: 6s; }

Timing Function
Another property that should be familiar is animation-timing-function, which again is
functionally identical to its counterpart transition-timing-function:

E { animation-timing-function: keyword OR cubic-bezier(x1, y1, x2, y2); }

Permitted values are ease, linear, ease-in, ease-out, and ease-in-out. The cubic-
bezier function is also allowed. I explain these values in Timing Function in Timing Function.
Therefore, if you want to make your animation “ease in” at the start, you add this code:

div { animation-timing-function: ease-in; }

Delay
Yet another property that has (kind of) already been introduced is animation-delay, which is

identical in function to its counterpart, the transition-delay property:
E { animation-delay: time; }

Like animation-duration (and the two corresponding transition-* properties), the time
value is a number with a unit of either ms or s, which sets the delay before an animation begins. A 0
(zero) means no delay. As with transition-duration, negative values cause the animation to
“skip” by that amount.
To delay the example animation by two seconds, you include this code:

div { animation-delay: 2s; }

Iteration Count
Unlike a transition, which only happens once (or twice, if you want to count the reverse), an
animation can be repeated any number of times. The number of repetitions is set by the
animation-iteration-count property, which has this syntax:

E { animation-iteration-count: count; }

The count value in this syntax is either a whole number or the keyword infinite. A number
value sets how many times the animation repeats. The default value is 1 (one), meaning the animation
plays from start to end once and then stops. The infinite value means the animation loops
indefinitely, or at least until another condition is met that changes this value. A value of 0 (zero) or
any negative number prevents the animation from playing.
To continue with the example I’ve been building throughout this section, if you want the animation to
repeat 10 times, you need to add the following declaration:

div { animation-iteration-count: 10; }

Direction
Animations play from start to finish, but they can also play in reverse (like transitions do). You can
set whether your animation always plays in one direction or alternates playing forward and
backward. To do this, you use the animation-direction property:

E { animation-direction: keyword; }

The keyword value has two options: normal or alternate. The default is normal, which
always plays the animation forward: The animation plays through from start to finish, and then, if it is
set to repeat, it plays again from the start. If the alternate value is used, the animation plays from
start to finish and then plays in reverse before starting over again. If you consider each iteration of the
animation as a “cycle,” the odd-numbered cycles play forward and the even-numbered play
backward.
To complete the example animation, let’s set the animation to alternate forward and backward:

div { animation-direction: alternate; }

Shorthand
Throughout this section, I’ve been assembling an example animation one property at a time. Here’s
how all the properties combined appear:

div {
 animation-name: border-changer;

 animation-duration: 6s;
 animation-timing-function: ease-in;
 animation-delay: 2s;
 animation-iteration-count: 10;
 animation-direction: alternate;
}

That’s a lot of different properties to declare for each animation. Once again, however, you can take
advantage of a shorthand property; it’s called animation, and here’s the syntax:

E { animation: animation-name animation-duration
 animation-timing-function animation-delay animation-iteration-count
 animation-direction; }

As with the transition shorthand, animation-duration and animation-delay must
be specified in order. If either is left out, the syntax presumes it is animation-delay, which
receives a default value of 0.
To make the example somewhat more compact, you can use this shorthand code:

div { animation: 'border-changer' 6s ease-in 2s 10 alternate; }

Play State
One animation property isn’t included in the shorthand. The animation-play-state property
sets whether an animation is active. Here’s the syntax:

E { animation-play-state: keyword; }

The keyword value has two options: running means the animation is playing, and paused
means it isn’t. You can use this property to perform a play/pause action, like so:

div { animation: 'border-changer' 6s infinite alternate; }
div:hover { animation-play-state: paused; }

In this example, the animation loops continuously until the mouse passes over it, at which point the
animation pauses; when the mouse is moved off the element, the animation continues.

WARNING
A note in the specification states that the animation-play-state property may be removed in the future, but for now it is part
of the language.

The Complete Animations Example
Let’s take a look at the full example animation in action. Here’s the CSS:

@keyframes 'expand' {
 0% { border-width: 4px; }
 50% { border-width: 12px; }
 100% {

 border-width: 4px;
 height: 130px;
 width: 150px;
 }
}
div {
 border: 4px solid black;
 height: 100px;
 width: 100px;
 box-sizing: border-box;
 animation: 'expand' 6s ease 0 infinite alternate;
}

The result is shown in Figure 13-4.

Figure 13-4. Three stages of an animation affecting the border-width, height, and width properties

Unfortunately, I can’t show animation in this book, so I’ll settle for describing it. Figure 13-4 shows
the state of the element at the three key frames of the animation: The key frame at 0 percent () shows
the element with a border-width of 4px and the inherited height and width (100px each); in
the 50 percent key frame (), the border-width is increased to 12px; and in the final, 100
percent key frame (), the border-width returns to 4px and the dimensions have changed to
150px by 130px.

Multiple Animations
You can add multiple animations to an element using a comma-separated list. This method works for
each of the subproperties and the shorthand property, so both of these examples are valid:

E {
 animation-name: first-anim, second-anim;
 animation-duration: 6s, 1250ms;
 animation-delay: 0, 750ms;
}
E { animation: first-anim 6s, second-anim 1250ms 750ms; }

Here, lists of values are looped through to ensure that all properties have the same number of values
applied, in exactly the same way as described in Multiple Transitions in Multiple Transitions.

Summary
Adding a behavioral layer to CSS was a contentious move, but I think the syntax used by the writers
of these modules is pretty graceful and adds a lot of flexibility without being overwhelmingly
complicated.
Developers expressed concern that transitions and animations would be misused and that we’d end up
with a lot of garish, unusable websites. Although a genuine concern, one really can’t do anything to
stop people from doing that now with existing CSS properties. (And indeed, many do!) But used
sparingly and appropriately, this powerful new tool can add vibrancy to web pages.
In the next chapter, we’ll look at the final new module in what’s loosely termed the “CSS Effects”
group: 3D Transformations.

Transitions and Animations: Browser Support
 WebKit Firefox Opera IE

Transitions Yes (with prefix) No (expected in Firefox 4 with prefix) Yes (with prefix) No

Animations Yes (with prefix) No No No

Chapter 14. 3D Transformations

Everything we’ve discussed in CSS up until now has involved two dimensions; every element has
height and width but no depth, and all of the calculations have involved only the x-axis and y-axis.
But, with the introduction of the z-axis in the CSS 3D Transforms Module, CSS3 introduces a really
revolutionary way of transforming an element in the third dimension (you can learn more at
http://www.w3.org/TR/css3-3d-transforms/).
Moving objects around in three dimensions (3D) requires quite a lot of computer processing power,
so to see elements in true 3D, you need a browser that has hardware acceleration for graphics;
currently only Safari 4.03 and above on Mac OS X 10.6 and iPhone OS 2 and above offer this. Other
browsers plan on including hardware acceleration in future releases. With that being the case, all of
the properties used in this chapter should be prefixed with -webkit-. However, as in other
chapters, I’ll leave it out of the examples for clarity.
The 3D Transforms Module was originally proposed by the WebKit team but has been accepted by
the W3C to the recommendation process. It currently has Working Draft status and is very likely to
change somewhat in the future; couple that with the fact that it only works on a small subset of
possible hardware/software configurations and you might want to think twice before making
transformations the crucial center point of a production website.

http://www.w3.org/TR/css3-3d-transforms/

3D Elements in CSS
Three-dimensional objects in CSS are based on the Cartesian coordinate system, which is illustrated
in Figure 14-1. You can read about it at Wikipedia
(http://en.wikipedia.org/wiki/Cartesian_coordinate_system). We discussed the two-dimensional
version of this system in Chapter 6.

NOTE
If you have experience using three-dimensional computer graphics programs, you should be familiar with the calculations and
terminology used in this chapter. If not, don’t worry; I’ll do my best to explain it all as I go along.

Figure 14-1. The Cartesian coordinate system, with the axes x, y, and z[5]

In CSS, the z-axis is based on the viewer: If you think of the x-axis as left to right and the y-axis as up
and down, then think of the z-axis as toward and away. When you move an element along the z-axis by
a positive value, you move it toward yourself; likewise, moving it by a negative value moves it away
from you. You can change this somewhat by using different perspectives, which I’ll explain in due
course.
Illustrating three-dimensional transformation concepts on the printed page is quite hard, so I strongly
suggest you take a look at the examples on the website that accompanies this book
(http://www.thebookofcss3.com/); I’ve added transition rules to the examples so they animate when

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://www.thebookofcss3.com/

you interact with them, showing more clearly the three-dimensional effects that are difficult to convey
in a two-dimensional book. These examples should really help with understanding some of the
techniques used in this chapter. I also recommend the test page put together by the team at Westciv
(http://www.westciv.com/tools/3Dtransforms/). This page allows you to try out different
combinations of transformation values to see the effect they have on elements.
Before I begin introducing the new and extended transformation properties, a quick note about the
examples I’m using in this chapter. Although each example may use different classes to apply unique
style rules, all of the examples use the same basic markup:

<div class="threed">
 <div>
 <h2>The Book Of</h2>
 <h1>CSS3</h1>
 </div>
</div>

Unless otherwise noted, the transformation functions in this chapter are applied to the div, which is a
child of .threed. To more clearly demonstrate some of the 3D effects, I’ve already rotated the
parent element around the x-axis and y-axis, using the transform properties introduced in
Chapter 12. Here is the code I’ve used (don’t worry about what it means yet; I will explain it
throughout the course of this chapter):

.threed { transform: rotateX(15deg) rotateY(45deg); }

You can see the result of this code in Figure 14-2. If, in the examples, I refer to a “default” or
“untransformed” element, I am referring to this reference element with these transformations applied
and no others.

Figure 14-2. A reference element used in many examples in this chapter

Again, I encourage you to visit the website that accompanies this book
(http://www.thebookofcss3.com/) to take a look at the example files.

http://www.westciv.com/tools/3Dtransforms/
http://www.thebookofcss3.com/

Transform Style
The first new property is very simple but very important; if you don’t change it from the default value,
you won’t be able to view your transformations in three dimensions. The property is called
transform-style, and here’s the syntax:

E { transform-style: keyword; }

The keyword value can be either flat (the default) or preserve-3d. Explaining the difference
is easier if I start with an example: First, I’ll create two elements that are identical except for the
value given to transform-style:

.div-1 { transform-style: flat; }

.div-2 { transform-style: preserve-3d; }

I also applied some 3D transformations that aren’t important for this example, but I’ll explain those
later in this chapter. The result is shown in Figure 14-3.
The difference is quite stark. The first example has the value of flat, and so the three-dimensional
transformation is only applied on a two-dimensional plane, distorting the element but not providing
any real sense of depth. The second example, by contrast, has a transform-style value of
preserve-3d, transforming the element in three dimensions and giving a true sense of depth. All of
the examples in the rest of this chapter have this value, and you’ll need this value to make your own
three-dimensional page elements.

Figure 14-3. Comparing the effects of different values for the transform-style property

The value given to transform-style affects an element’s children, not the element itself. One
caveat, however: If an element has an overflow value of hidden, its children can’t be displayed
in 3D, so that element behaves as if the transform-style value were flat.

The Transformation Functions
In Chapter 12, I introduced the transform property and its associated functions. Three-
dimensional transformations use the same transform property and many of the same functions but
also extend some of those functions and add some entirely new ones. I’ll explain each of the
transformation functions in turn and note whether they are entirely new or extend the existing 2D
Transformation properties that have already been discussed.

Rotation Around an Axis
I’ll begin explaining the 3D transformation functions as I did the 2D functions — with rotation. Two-
dimensional space has only one axis to rotate around, so the rotate function requires only a single
value. But when you’re dealing with three dimensions, you’ve got three axes to rotate around and,
therefore, three properties to control this. Here they are:

E {
 transform: rotateX(angle);
 transform: rotateY(angle);
 transform: rotateZ(angle);
}

Like the rotate function, each of the functions accepts a single angle value. I’ll use the deg
(degrees) unit in my examples, so negative values are permitted. I’ll demonstrate how each of these
works by showing a rotation around each axis using the following code:

 .trans-x { transform: rotateX(-60deg); }
 .trans-y { transform: rotateY(22.5deg); }
 .trans-z { transform: rotateZ(22.5deg); }

You can see the results in Figure 14-4.

Figure 14-4. Rotation around each of the three axes

The first example () shows an element rotated 60 degrees around the x-axis. To understand what’s
happening here, imagine a line running horizontally across the center the element; the half of the
element above the line is inclined 60 degrees toward you, and the half below the line is inclined 60
degrees away. The next example () has a 22.5 degree rotation applied but this time on the y-axis.
Imagine a vertical line running down the center of the box; the half of the element to the left of the line
is inclined 22.5 degrees toward you and the half on the right, 22.5 degrees away. The final example (

) shows the same rotation, 22.5 degrees, but this time around the z-axis, which has the same effect
as the two-dimensional rotate function.
If you want to rotate an element around more than one axis, you can apply multiple functions to an
element:

E { transform: rotateX(angle) rotateY(angle) rotateZ(angle); }

Another new function — rotate3d — also allows you to rotate an element around multiple axes,
however. Here’s the syntax:

E { transform: rotate3d(x,y,z,angle); }

The angle value is straightforward, but the x, y, and z values are not quite so simple. Each takes a

number value, which is used to calculate a direction vector (the full explanation of which is beyond
the scope of this book; visit http://www.tutorvista.com/math/3d-cartesian-coordinates/ for an
overview of the topic). The origin of the vector is the point where all the axes meet, represented by
the values 0,0,0. A direction vector sets a point in 3D space; the x,y,z values provided to the
rotate3d function plot a point at that number of pixels along each axis. Imagine a line between the
origin and that point — that’s the line around which the rotation happens by the angle specified.
This subject is quite complex, so I’ll explain by showing a few simple examples using the following
code:

 .trans-x { transform: rotate3d(1,1,0,-45deg); }
 .trans-y { transform: rotate3d(1,0,1,-22.5deg); }
 .trans-z { transform: rotate3d(0,10,10,15deg); }

You can see the output in Figure 14-5.

Figure 14-5. Rotation using directional vectors with the rotate3d function

The first (left) example () has the values 1,1,0, meaning the imaginary line goes to a point 1px along
the x-axis and y-axis. (In fact, the “line” continues past that point in the same direction; the values
10,10,0 or 1000,1000,0 would produce the same results.) The element is rotated 45 degrees around
that line, as shown in the example on the left in Figure 14-5. The second (middle) example () has
the values 1,0,1, creating a point 1px along the x-axis and y-axis and rotating the element by 22.5
degrees around that line. The final example () has the values 0,10,10, so the element rotates 15
degrees around a line between the origin and a point 10px along the y-axis and z-axis, as shown on
the right in Figure 14-5. Remember that any two equal values would have the same effect.
You probably won’t use this function very often when coding pure CSS transformations, as the
calculations involved are quite complex. But when combined with JavaScript, the flexibility of this
approach could really come into its own.

http://www.tutorvista.com/math/3d-cartesian-coordinates/

Translation Along the Axis
The translateX and translateY functions (and their shorthand, translate) are used to
move an element along its axis by a specified length in two-dimensions, but the move into a third
dimension requires a new function: translateZ. The syntax is identical to its sibling properties:

E { transform: translateZ(length); }

The length value is any number with a unit of length. For example, to move a div element 30px
along the z-axis (toward the viewer), you use

div { transform: translateZ(30px); }

Before I demonstrate this, however, allow me to introduce the new shorthand function, translate3d.
This shorthand function allows you to set all three values. The syntax is a logical extension of the
translate function:

E { transform: translate3d(translateX,translateY,translateZ); }

Each of the values is equivalent to the named function, so each accepts a numerical value, positive or
negative, with a CSS length unit.
Now that you’ve met the new functions, let’s see them at work. In the following example, I show a
mix of different translate functions using this code:

 .trans-xy { transform: translateX(10px) translateY(10px); }
 .trans-z { transform: translateZ(40px); }
 .trans-xyz { transform: translate3d(10px,0,-20px); }

You can see the results in Figure 14-6.

Figure 14-6. Showing translation along different axes

The first (left) example () has a value of 10px for the translateX and translateY functions,
which means it is moved by that amount along the x-axis and y-axis, which places it below and to the
right of its original position. The next () has a value of 40px on the translateZ function, moving
it by that amount along the z-axis and making it appear “in front” of the original, as the middle
example shows. In the final example (), the translate3d function is used to move the element
10px along the x-axis and 20px along the z-axis, while retaining the same position on the y-axis,
which puts it below and behind its original position, as in the example on the right in Figure 14-6.

Scaling
I also introduced the scale function, along with the subfunctions scaleX and scaleY, in
Chapter 12. The move to three dimensions adds a new subfunction, scaleZ, which has this syntax:

E { transform: scaleZ(number); }

As with its siblings, the number value provides a factor to scale the element by, so a value of 2
would double the element’s size along the z-axis. The resulting behavior is probably not what you’d
expect, however — the element itself has no depth; it has only height and width, so an increase in
scaleZ by itself doesn’t seem to change the element. What the increase actually does is act as a
multiplier to any value that’s supplied to translateZ. For example, consider this code:

div { transform: scaleZ(3) translateZ(10px); }

The scaleZ function’s value of 3 would multiply the translateZ function’s value of 10px, so the
element would appear 30px (3 × 10px) along the z-axis.
In addition to scaleZ, a new shorthand function, scale3d, has also been added. Here is its syntax:

E { transform: scale3d(scaleX,scaleY,scaleZ); }

As should be pretty clear, this shorthand simply accepts a number for each of the values, acting as a
scaling factor on the pertinent axis. Here are a few examples to show you 3D scaling in action:

 .trans-xy { transform: scaleX(1.5) scaleY(1.5); }
 .trans-z { transform: scaleZ(3) translateZ(10px); }
 .trans-xyz { transform: scale3d(1.25,1.25,4) translateZ(10px); }

You can see the results in Figure 14-7.

Figure 14-7. Scaling on different and multiple axes

In the first (left) example (), I’ve applied values of 1.5 to both scaleX and scaleY, so the element
is half again its original size on the two-dimensional axes. The second (middle) example () shows
an element with a translateZ value of 10px and a scaleZ value of 2.5 ; as I mentioned,
scaleZ acts as a multiplier of translateZ, so the element appears 25px along the z-axis. You
can see the result in the middle example in Figure 14-7. In the final example (), I used the
scale3d function to set values of 1.25 on the x-axis and y-axis and 4 on the z-axis. The resulting
element, shown on the right in Figure 14-7, is 25 percent larger on the two-dimensional axes, and the
scaleZ value multiplies the translateZ value of 10px to move the element 40px along the z-
axis.

The Transformation Matrix
One of the more esoteric aspects of 2D Transformations is the matrix function, which I introduced
in Chapter 12. This function allows complex transformations to be applied using six values (based
around a grid pattern) and some tri gonometric calculations. You can also apply three-dimensional
transformations using a matrix with the matrix3d function. But if you thought the 2D matrix was
hard to grasp, you might want to skip this one — matrix3d has a whopping 16 values! Here’s the
syntax:

E { transform: matrix3d(
 m01,m02,m03,m04,
 m05,m06,m07,m08,
 m09,m10,m11,m12,
 m13,m14,m15,m16
); }

NOTE
The line breaks are shown here for clarity; you don’t need to use them in practice.

Each of the m values is a number, but I can’t even begin to explain what each of them does! I would
suggest you read an introduction to the subject (http://gpwiki.org/index.php/3D:Matrix_Math) and
decide if this is something you want to learn more about. Remember that all of the matrix3d effects
can be achieved with different functions; this function is here if you want fine control or an easy
function to interact with using JavaScript.
I’ll provide some simple examples using this code to demonstrate the functionality:

 .trans-1 { transform: matrix3d(1,0,0,0,0,1,0,0,0,0,1,0,10,10,10,1); }
 .trans-2 { transform: matrix3d(1.5,0,0,0,0,1.5,0,0,0,0,2,0,0,0,10,1); }
 .trans-3 { transform: matrix3d

(0.96,-0.26,0,0,0.26,0.96,0,0,0,0,1,0,-10,0,20,1); }

You can see the results in Figure 14-8.

Figure 14-8. Transformations applied with the matrix3d function

The first (left) example () shows the element moved 10px along each axis with the equivalent of the
translate3d function — the m13, m14, and m15 values in the matrix operate as translateX,
translateY, and translateZ, respectively. In the second example (), I scaled the image by a
factor of 1.5 on the x-axis and y-axis (the m1 and m6 values) and by a factor of 2 on the z-axis (the
m11 value), which multiplies the translateZ value (m15) to move the element 20px along the z-

http://gpwiki.org/index.php/3D:Matrix_Math

axis, as shown in the middle example in Figure 14-8. The final example () requires a scientific
calculator for some trigonometric functions, as I’ve rotated the element by 15 degrees on the z-axis.
To create the rotation, you need to give a value of cos(15) — which is 0.96 — to m1 and m6 and then
sin(15) — that is, 0.26 — to m5 and negative sin(15) to m2. I also translated the element by 10px on
the x-axis with the value in m13. You can view the result on the right in Figure 14-8.
As I’m sure you can see already, this function is very powerful — and very complex. Whether you
want to learn the full potential of matrix3d depends largely on you and your projects, but I feel it’s
beyond the scope of this book. Don’t forget that you can perform all of these transformations with the
individual functions; you’ll end up with more code, but it will be easier to understand — not only for
yourself but also for anyone tasked with maintaining the website after you!

Perspective
The final function is perspective, a brand-new function that creates an artificial viewpoint from
where you view the 3D object, providing the illusion of depth. Here’s the syntax:

E { transform: perspective(depth); }

The value depth is an integer that represents a length (in pixels) or the default of none. This length
sets a “viewpoint” at that distance along the z-axis away from the element’s origin (z = 0). If the
element is translated along its z-axis, the distance of the viewpoint from the element dictates how
large the element will appear to be.
Consider an element with a translateX value of 10px. If the perspective value is 50, the
element appears exceptionally large; if the perspective value is 1,000, the element appears to be its
original size. An element only appears smaller than its original size if you move it negatively along
the z-axis and view it from a low perspective.
perspective is probably easier to show than to describe. I’ll provide some examples of different
values for the perspective function to show you the viewpoint changes. Here’s the code I’ll use:

 .trans-1 { transform: rotateX(-90deg) rotateY(-15deg)
 perspective(20) translateZ(10px); }
 .trans-2

 { transform: rotateX(-90deg) rotateY(-15deg) perspective(50) translateZ(10px); }
 .trans-3 { transform: rotateX(-90deg)

 rotateY(-15deg) perspective(1000) translateZ(10px); }

Before I show the results, I’d like to make a slight digression. You may be wondering why the code
contains so much repetition; why couldn’t I have done something like this instead?

div { transform: rotateX(-90deg) rotateY(-15deg) translateZ(10px); }
.trans-1 { transform: perspective(20); }
.trans-2 { transform: perspective(50); }
.trans-3 { transform: perspective(1000); }

The reason is that if you don’t specify a function, its value is presumed to be the default, so the values
I set in the functions on the h1 element are effectively overwritten by (the absence of) the functions in
the subsequent styles. For example, by not restating rotateX(-90deg) in any of the further
declarations, the assumption is it defaults back to rotateX(0).
Anyway, back to the example. You can see the results in Figure 14-9.

Figure 14-9. The effects of different perspective function values

The first example in Figure 14-9 is an untransformed reference, different than the one used up to now.
In the second example (), you see the same element from a perspective value of 20 ; that means
that you are effectively viewing it 20px along the z-axis, and as the element itself is already translated

10px along that axis, it is half the distance between the viewpoint and the origin and appears to be
double its original size. In the third example (), the perspective value has increased to 50,
placing the viewpoint a little farther away from the element. So although it is smaller than the
previous example, as you can see in the figure, the element is still larger than the reference. The final
(far right) example () shows the element from a perspective distance of 1,000, and the element
appears to be about the same size as the reference example in Figure 14-9. From higher values like
1,000, perspective often has little noticeable effect.

The perspective and perspective-origin Properties
I’ve just covered the perspective transformation function, but a perspective property is also
available. The syntax is pretty straightforward:

E { perspective: depth; }

This property operates in the same way as the perspective function: The depth value is a
number that sets the distance from the element’s origin, z = 0. In fact, the only difference between the
function and the property is that the value supplied to the property applies only to its child elements,
not to itself.
The companion property of perspective is perspective-origin. This property sets the
origin point of the element from where the perspective will be viewed, changing the angle at which
the element is viewed. Here’s the syntax:

E { perspective-origin: x-position y-position; }

The x-position value can be any one of the keywords left, right, or center; and the y-
position value can be top, bottom, or center. Percentage or length values can also be used.
You should be familiar with these values from other properties, such as background-position
or transform-origin.
The default is center center (or 50% 50%), so you are viewing the line of perspective as if it
started at the absolute center of the element. Changing the values of perspective-origin
changes the origin of that line of perspective.
That may sound a little brain-bending, but once again, showing it is easier than explaining it. In the
next example, I’ll show the same transformed element from different perspective origins. Here’s the
code:

.threed { perspective: 200; }

.threed div { transform: rotateX(45deg) rotateY(-15deg)
 rotateZ(90deg) translateZ(20px); }
 .trans-1 { perspective-origin: left center; }
 .trans-2 { perspective-origin: 128px 56px; }
 .trans-3 { perspective-origin: 75% 25%; }

The examples are illustrated in Figure 14-10.

Figure 14-10. Different values for the perspective-origin property

A reference example is shown first; this reference is a transformed element viewed from the default
origin of center center. The second example () is the same element but with
perspective-origin at the center of the left-hand side of the element. You can clearly see that
in the second example in Figure 14-10. The angle you’re viewing the element from has changed; the
viewpoint appears to be slightly to the left of it. In the third example of the figure (), I’ve used

length values of 128px 56px, which changes the origin to the bottom of the right-hand side. This time
the viewpoint appears to be slightly to the right and looking up. The last (far right) example () is
viewed from a point 75 percent along the x-axis and 25 percent along the y-axis; this example is
similar to the reference example, but the viewpoint has shifted slightly to be just to the right of, and
slightly above, the element.

The Transformation Origin
An element origin is the point at which the x-axis, y-axis, and z-axis meet. By default, this point is the
exact center of an element, but you can change this using the transform-origin property, which
I introduced in Chapter 12. Obviously that property was written for two-dimensional transformations,
but you can also use it on three-dimensional ones by extending the syntax:

E { transform-origin: x,y,z; }

The first two values, x and y, act the same as in the transform-origin property for 2D
elements; that is, they accept values as either a keyword (left, right, center for x, and top,
bottom, center for y), a length unit, or a percentage. The default value is center center, or
50% 50%. The third value, z, is a length value, which sets the distance along the z-axis that the
transformation will happen. This can seem quite counterintuitive as it seems to act in reverse; if a
negative value is given, the transformation origin is behind the element, which makes it appear in
front of its parent; likewise, a positive value places the origin in front of the element, making the
element appear behind its parent.
I’ll illustrate this with a demonstration showing three elements identical in all values but
transform-origin. Here’s the relevant code for these examples:

 .trans-1 div { transform-origin: 0 28px 0; }
 .trans-2 div { transform-origin: 100% 100% 10px; }
 .trans-3 div { transform-origin: center bottom −20px; }

You can see the output in Figure 14-11.

Figure 14-11. Different transform-origin values on a transformed element

The first example is, once again, a reference element. The next example () shows the same element
with the transform-origin value set to 0 28px, or the center of the left-hand side (the element
is 56px high), and in the original (unchanged) position on the z-axis. The third example () has
values of 100% 100% 10px, so the transformation origin is set to the bottom-right corner of the
element, which appears to be moved 10px along the z-axis away from the viewer — due, as I
explained, to the origin now being in front of the element. In the final (far right) example (), the
origin of the transformation is set to be the center bottom of the element, which moves it 20px
along the z-axis — that is, toward the viewer (as it appears).
The original WebKit proposal also has three individual subproperties:

E {
 transform-origin-x: value;
 transform-origin-y: value;
 transform-origin-z: value;
}

These accept the same values as the subvalues of the transform-origin property just
discussed: either the positional keywords (left, right, center, top, bottom), a percentage,

or a length value. I could have declared the third example () from those shown previously like this:
.trans-3 div {
 transform-origin-y: bottom;
 transform-origin-z: −20px;
}

Although these subproperties do currently work in Safari, they don’t appear in the W3C module, so
they may have been dropped and won’t appear in future implementations by different browsers.

Showing or Hiding the Backface
Often you’ll encounter a situation where the element has been rotated so it faces away from you and
you are seeing the “back” of it (known as the backface). By default, the element behaves as if it were
transparent, so you will see the reverse of what appears on the front. You can change this by using the
backface-visibility property, which has this syntax:

E { backface-visibility: state; }

The state value is one of two keywords: hidden or visible. The default is visible, which
behaves in the way I just described; the alternative, hidden, shows nothing. These work in the same
way as the visibility property, which you should be familiar with from CSS2.
I’ll provide a quick example of the difference between the two states by showing two elements that
are identical except for their backface-visibility values. Here’s the code:

.threed div {
 backface-visibility: visible;
 -webkit-transform: rotateY(90deg);
}
div.trans-3d { backface-visibility: hidden; }

You can see the results in Figure 14-12.

Figure 14-12. Demonstrating the backface-visibility property

Both example elements are rotated around the y-axis so they are facing away from you. The example
on the left shows the element with a value of visible on the backface-visibility property,
so you can clearly see the back of the element. In the example on the right, you can see . . . well . . .
nothing. The backface-visibility property has a value of hidden, so nothing is displayed
— no border, no background-color. Nothing. To confirm that the element is actually there,
visit the website that accompanies this book and take a look at the animated code examples so you
can better see how they work.

Summary
The introduction of the third dimension takes CSS into areas that are rich with potential but
immensely daunting. Performing simple transformations is easy now, but for anything beyond simple,
you’ll need strong math skills — at least until someone invents tools that can calculate all of this for
you.
This module will almost certainly change before it is ready for release, so implementation in other
browsers may be some distance down the line. Three-dimensional transformations are about as
cutting-edge as CSS can be, so I suggest you have fun making demos and learning the syntax and the
possibilities, but don’t consider it for your client sites in the near future.
In the next chapters, I’ll move on to more of the bleeding edge of CSS and look at a new subject:
alternatives for laying out your pages.

3D Transformations: Browser Support
 WebKit Firefox Opera IE

3D Transformations Yes (with prefix) No No No

[5] This image is from Wikimedia Commons (http://commons.wikimedia.org/wiki/File:Coord_system_CA_0.svg).

http://commons.wikimedia.org/wiki/File:Coord_system_CA_0.svg

Chapter 15. Flexible Box Layout

That web pages look as good as they do is a minor miracle (comparatively speaking, of course!).
Since the move away from table-based layouts to pure CSS, developers have often had to create
complex page structures using simple tools such as float, margin, and position — tools that
perhaps were not even intended for that purpose when they were created. As CSS matures and
browsers get more powerful, a whole new range of alternative toolsets have been proposed, and over
the next three chapters, I’ll discuss each of these in turn. Note that we’re moving beyond the cutting
edge and onto the bleeding edge — some of these toolsets are not yet ready for daily use.
I’ll start with the proposal that’s closest to being ready. The Flexible Box Layout Module
(http://www.w3.org/TR/css3-flexbox/, from here on known as Flex Box) is based on a syntax used by
Mozilla for many of its software products, including Firefox. After being proposed as a standard,
Flex Box was implemented in the KHTML layout engine, which is at the core of WebKit, and as a
result is well implemented in browsers based upon that engine.
The Firefox implementation is now quite old, however, and hasn’t kept up to date with changes in the
specification. Although its reimplementation has been flagged as a priority for future releases, its
current version has some quirks that make it problematic to use — I’ll provide more detail about this,
where relevant, throughout the chapter.
Some properties in this module have also been implemented in the prerelease versions of IE9,
although nothing has yet been officially announced by Microsoft. Whether Flex Box will make it into
the final release remains to be seen. The properties that have been implemented will use the -ms-
prefix.
So what is the Flex Box layout method? Flex Box makes elements more fluid, allowing them to resize
or change position in relation to their parent or sibling elements without your needing to specify
positioning or perform complex calculations. This flexibility is ideal for modern web design, which
has to deal with a wide variety of screen sizes across different devices.

http://www.w3.org/TR/css3-flexbox/

Triggering the Flexible Box Layout
In order to initiate the Flex Box layout mode, you must specify a containing element, whether the
document body or child element within it. You do this by using the existing display property with
a new value:

E { display: box; }

When this declaration is set on an element, all of its immediate child elements are subject to Flex Box
layout rules. Be aware that this differs from the example declarations you’ll see in the rest of this
chapter. Those all require the browser-specific prefix on the property; here you must set it on the
value. For practical purposes, you must declare this:

E {
 display: -moz-box;
 display: -ms-box;
 display: -webkit-box;
}

With that advisory out of the way, let’s take a look at the effect this property has. In this first example,
I’ll show a parent element with three children and apply the box value to the parent. Here’s the code:

#flexbox-holder {
 display: box;
 width: 600px;
}
div.flex { width: 200px; }

You can see the result in Figure 15-1.

Figure 15-1. The effect of using the box value on the display property

The first thing you notice is that, without specifying any float or position values, the child
elements are displayed horizontally within the parent; I’ll explain why this happens later in this
chapter in Changing Orientation in Changing Orientation.
The other thing to note is that the child elements have overflowed the parent. Because the parent has a
width of 600px and each child is 200px wide plus margin, padding, and border, their combined box
widths exceed the width of the parent and overflow the container. This behavior is expected, but, in
general, it’s not really what you want. To fix this, you need the new properties in the box-* family,
which I’ll introduce throughout the rest of this chapter — after a brief digression about browser
differences.

The box Value in Firefox
In the introduction, I mentioned that the Firefox implementation is somewhat problematic. This first
example clearly highlights one of those problems. The example shown in Figure 15-1 demonstrates
how the code displays in WebKit browsers. Have a look at the same code rendered in Firefox in
Figure 15-2.

Figure 15-2. The same code from Figure 15-1 but viewed in Firefox

Here, you can see the parent element has expanded to 640px. In the Firefox implementation, if the
parent element has a width value that is auto or less than the children’s width combined, that value
is ignored and the parent is resized to accommodate all of its children. This is not what we want; if
we’ve set a width value for the parent element, we want that width to be respected.
I don’t believe either WebKit or Firefox have done this incorrectly as such. The module isn’t clear
about which of these methods is right. But I would say that the WebKit implementation respects the
values we assign to elements and so is more predictable and thus easier to work with. Throughout the
rest of this chapter, I’ll show examples as they appear in WebKit, making a note of where Firefox’s
implementation differs and, if possible, how to work around it.

Inline Boxes
Other than the effect it has on its children, an element with a display value of box acts in the same
way as an element with a value of block, generating a linebreak before and after itself. But just as
block has a counterpart value of inline-block, sobox has a counterpart value of inline-
box:

E { display: inline-box; }

As you may be able to deduce, this value triggers the Flex Box layout but makes the element run inline
in the document flow, without creating a line break. Firefox’s -moz-box implementation is actually
incorrect and behaves like -moz-inline-box, so I can illustrate the difference using this code:

div {
 display: -moz-box;
 display: -webkit-box;
}

You can see the result in Figure 15-3. The two blocks on the left show how they appear in Firefox —
they’re inline with each other, so they display horizontally. The two blocks on the right illustrate how
they appear in WebKit — they are correctly displayed as block elements so display vertically.
Unfortunately, I haven’t found a way to change this behavior in Firefox, so if you want your elements
to display in a block flow using that browser, consider using clearing elements:

Figure 15-3. Two elements with the display value of box displayed incorrectly (similar to inline-block) in Firefox
(left) and correctly (similar to block) in WebK it (right).

br.clear { clear: both; }

I won’t use inline-box for any of the examples in the rest of this chapter, but now you know that
the possibility to do this exists.

Making the Boxes Flexible
In Figure 15-1, the child elements overflowed their parent. Now let’s see how to make them fit by
using Flex Box and a new family of properties, which I’ll refer to as the box-* properties. The first
of the family, box-flex, is the key to the Flex Box layout method. Here’s the syntax:

E { box-flex: number; }

According to the spec, the number value can be either a whole number or a decimal fraction. At this
time, however, Firefox only supports whole numbers, so I’ll stick with whole numbers for the
following examples. This value acts as a ratio when resizing child elements within their parent — I’ll
explain that in more detail as I go along. The default value is 0, which results in the layout you saw in
Figure 15-1. Any value other than 0 will be used in the calculation to distribute the child elements
into the width (or, as you’ll see later, the height) of their parent. Showing this is much easier than
explaining it, so let’s take a look at an example. This example is similar to the one shown in
Figure 15-1, but I added the box-flex property to the child elements:

#flexbox-holder {
 display: box;
 width: 600px;
}
div.flex {
 box-flex: 1;
 width: 200px;
}

Figure 15-4 shows the result as seen in WebKit browsers.

Figure 15-4. Child boxes resized dynamically to fit the parent

All three child boxes fit comfortably inside the parent; their width has been reduced to 165px so their
combined values equal the width of the parent. How did this happen? As I mentioned, the value of
box-flex actually represents a ratio to distribute the boxes within their parent. The value of 1 is
not important; what’s important is the fact that all the elements have the same value.
In this example, the parent element has a width of 600px; the child elements have a width of 200px,
20px of horizontal padding, and a 2px horizontal border; and the first and third elements also have
20px horizontal margin. By setting their box-flex value to any other value than 0, you trigger them
to be flexible; although the border, margin, and padding values are always respected, their width
values will be dynamically altered so they fit inside the parent.
In Figure 15-4, the children are wider than the parent, so the width is reduced in accordance with the

box-flex value of each child. To calculate the amount of reduction, you first subtract the combined
border, margin, and padding values (6px, 40px, and 60px, respectively) from the width of the parent
(600px), which leaves 494px to divide between the child elements. Each has a box-flex value of
1, which means 494px is divided equally between the three child elements, giving each box a
(rounded up) value of 165px.
box-flex also works the other way around: As well as reducing width to fill a parent, box-flex
increases the width of the child elements if their combined value is less than their parent’s width.
Take a look at this example:

#flexbox-holder {
 display: box;
 width: 600px;
}
div.flex { width: 150px; }

Here, the combined width of the children is less than that of the parent. You can see the empty space
in Figure 15-5.

Figure 15-5. Child elements whose combined width is less than that of the parent

Now let’s apply the box-flex value as before:
#flexbox-holder {
 display: box;
 width: 600px;
}
div.flex {
 box-flex: 1;
 width: 150px;
}

The same calculation used previously applies here: The parent element has a width of 600px, and the
combined border, margin, and padding values of the children are 106px, leaving a difference of
494px, which is divided three ways to produce a width value of 165px — only this time the boxes’
width increases instead of decreases. To see the result, look again at Figure 15-4 — the output of this
example is identical to the last one!

Unequal Ratios
A ratio value of 1:1:1 is the same as a ratio value of 3:3:3 or 5.5:5.5:5.5 or 100:100:100, so if all
child elements have the same box-flex value, it doesn’t actually matter what that value is. But
what happens when the values are not equal?
This next code example is similar to the one in the previous section, but the width value of the child
elements is reduced and the element with the class name flex-two has an increased box-flex
value:

#flexbox-holder {
 display: box;
 width: 600px;
}
div.flex {
 box-flex: 1;
 width: 100px;
}
div.flex-two { box-flex: 3; }

The same calculations run on these elements, but this time the 494px difference is distributed between
the children using the ratio 1:3:1. Therefore, the width of the element with a box-flex value of 3 is
increased by 3px for each time that the other two elements are increased by a width of 1px. You can
see the result of this in Figure 15-6.

Figure 15-6. The result of using different box-flex values

Recall that in Figure 15-4 and Figure 15-5 each element had a width of 165px (494px divided by 3).
In Figure 15-6, the two elements with a box-flex value of 1 have a width value of 139px, whereas
the element with a box-flex value of 3 has a width of 217px — all due to the changed distribution
ration of 1:3:1.

Zero Values and Firefox Layouts
Setting a value of 0 for box-flex (or not actively specifying a value) means the element stays
inflexible — that is, it retains its original dimensions. Or, at least, that’s what it’s supposed to do.
Unfortunately, 0 has somewhat of a strange side-effect in Firefox in that it makes an element act as if it
uses the Quirks Mode box model (see http://www.quirksmode.org/css/quirksmode.html if you need a
reminder) — the element’s specified width value applies to the entire box, including its border and
padding. Take a look at this code:

#flexbox-holder {
 display: box;
 width: 600px;
}
div.flex {
 box-flex: 0;
 width: 150px;
}

I used this code in Figure 15-5, so the result should be the same as what’s shown there. But the output
in Firefox is somewhat different, as you can see in Figure 15-7.
A notably larger amount of space remains at the right of the parent because each of the children has a
total box width of 150px, which is made up of a 2px border, 20px padding, and a 128px width. Now,
I can’t see anywhere in the specification that says this shouldn’t be the case, but the result doesn’t
seem at all logical to me.

Figure 15-7. Child elements with a box-flex value of 0 displayed in Firefox

Unfortunately, I’ve been unable to find a solution to this; you simply have to factor it in when planning
your website layouts until the Firefox developers resolve it.

http://www.quirksmode.org/css/quirksmode.html

Grouping Flexible Boxes
As well as individual boxes being resized according to their box-flex values, you can also create
groups of boxes that will be resized jointly using the box-flex-group property. This property
has the following syntax:

E { box-flex-group: number; }

In the case of this property, the number value is a single integer that creates a numbered group; all
elements with the same value are considered part of the same group. The default value is 1, so unless
otherwise specified, all elements belong to this group. When the elements are resized to fit their
parent, all elements in the same group are given the same size. Groups with lower numbers are given
priority.
Before I give some examples, a quick aside about browser support: Firefox and the latest preview
version of IE9 have no implementation of the property at all, and WebKit’s doesn’t work according to
the specification. In WebKit, all elements in the group with the lowest box-flex-group value are
considered flexible, and their individual box-flex values apply; all elements in other numbered
groups are not flexible, meaning they act as if they have a box-flex value of 0.
Keep this in mind as I step through a simple side-by-side demonstration. I have two flexible box
parent elements with three children each; the first child of each parent has a box-flex value of 2,
whereas all the other children have a box-flex value of 1. All of the other properties have the
same values except for the box-flex-group property.
Here’s the code:

div[class^='box-holder'] { display: box; }
div[class^='flex'] {
 width: 60px;
 box-flex: 1;
}
div.flex-one { box-flex: 2; }
 .box-holder-one .flex-one, .box-holder-one .flex-two { box-flex-group: 2; }
 .box-holder-one .flex- three { box-flex-group: 3; }
 .box-holder-two .flex-one, .box-holder-two .flex-two { box-flex-group: 3; }
 .box-holder-two .flex- three { box-flex-group: 2; }

And here’s the relevant markup:
<div class="box-holder-one">
 <div class="flex-one">...</div>
 <div class="flex-two">...</div>
 <div class="flex-three">...</div>
</div>
<div class="box-holder-two">
 <div class="flex-one">...</div>
 <div class="flex-two">...</div>
 <div class="flex-three">...</div>
</div>

You can see the results in Figure 15-8.

Figure 15-8. Two examples using different box-flex-group values

In the top example, the first and second boxes () have a box-flex-group value of 2, and the
third () has a value of 3. The group with the lower value has priority, so the third element is
considered inflexible and retains its original size. The first and second elements are flexible and so
are resized dynamically with the space distributed 2:1 in favor of the first box.
The elements in the bottom example have the values reversed; now the first and second elements ()
are not flexible, so the box-flex value is ignored, whereas the third (), which is in the group
with the lower box-flex-group value, is flexible and fills the remaining width.

Changing Orientation
When you begin to use this layout method, the boxes with a set box-flex value automatically fill
the horizontal length — the width — of their parents, as you can see in all of the examples used in this
chapter so far. But you can change this behavior using the next new property: box-orient. Here’s
the syntax:

E { box-orient: keyword; }

keyword has four possible values: block-axis, inline-axis (the default), horizontal, or
vertical. The first two values, block-axis and inline-axis, depend on the writing mode
of the web page; as this book is using English, which is a left-to-right language, block-
axis and inline-axis are interchangeable with vertical and horizontal, respectively.
I’ll use those values throughout this section. Here’s a quick demonstration of the difference between
the two:

div[class^='box-holder'] { display: box; }
.box-holder-one { box-orient: vertical; }
.box-holder-two { box-orient: horizontal; }
div[class^='flex'] { box-flex: 1; }

I applied this to the same markup used in Figure 15-8, and you can see the result in Figure 15-9.

Figure 15-9. Comparing values for the box-orient property: vertical (left) and horizontal (right)

The three elements on the left have a box-orient value of vertical so are resized to fill the
parent’s height, whereas the three on the right have a value of horizontal so they fill the parent’s
width.

Changing the Order of Flexible Boxes
Flex Box has another big advantage: You can easily change the order in which the boxes display on
the page, regardless of their order in the DOM, without using JavaScript or positioning tricks. You
can perform this reordering in two ways: by reversing the order or by organizing elements into
ordinal groups.

Reversing the Order
By default, flexible box elements display in the order in which they’re coded in the document — but
you can overrule this behavior using the box-direction property. box-direction is applied
to the parent element and has the following syntax:

E { box-direction: keyword; }

The keyword value can be either normal, which is the initial or default value, or reverse. Given
a value of reverse, all of the flexible box elements display in the opposite order to their position in
the document: The last element displays first and vice versa. To see this in action, let’s duplicate the
markup from one of the examples shown in Figure 15-8 but use a different value for box-
direction.
Here’s the CSS:

div[class^='box-holder'] {
 display: box;
 box-orient: vertical;
}
.box-holder-one { box-direction: normal; }
.box-holder-two { box-direction: reverse; }
div[class^='flex'] { box-flex: 1; }

You can see the result in Figure 15-10.

Figure 15-10. Comparing values for the box-direction property: normal (left) and reverse (right)

I added numbers to the titles to more clearly show the difference in ordering. The three boxes in the
left column have a box-direction value of normal and so display in the order in which they
appear in the markup. But the boxes in the right column have a value of reverse, so they appear in
reverse order: The third box is displayed first, the second box remains in place, and the first box is
displayed last.

Further Control over Ordering
If you want even finer control over the order of box elements, you can use the box-ordinal-
group property, which is applied to the child elements and has this syntax:

E { box-ordinal-group: number; }

The number value is a positive integer with a default value of 1. The number provided as a value
sets the order that the box elements are displayed in, from low to high, regardless of their position in
the markup. For example, an element with a box-ordinal-group value of 2 displays before an
element with a value of 3. If multiple elements are given the same value, they form a group; elements
within that group display in the order in which they appear in the markup but still before or after
elements with a different number value.
To show you how this works in practice, let’s return to the markup from the example in Figure 15-8
but this time show the effects of different values for box-ordinal-group. Here’s the CSS:

div[class^='box-holder'] {
 display: box;
 box-orient: vertical;
}
 .box-holder-one .flex-one { box-ordinal-group: 2; }
 .box-holder-one .flex-two { box-ordinal-group: 3; }
 .box-holder-one .flex-three { box-ordinal-group: 1; }
 .box-holder-two .flex-one { box-ordinal-group: 2; }
 .box-holder-two .flex-two,

 .box-holder-two .flex-three { box-ordinal-group: 1; }
div[class^='flex'] { box-flex: 1; }

You can see the results illustrated in Figure 15-11.

Figure 15-11. Two examples using different values for the box-ordinal-group property

In the examples in the left column, I set a unique value for box-ordinal-group on each element
(, ,), which displays them in the order assigned: 3, 1, 2. In the right column, I gave the first
element () a value of 2 and the second and third elements () a value of 1. Therefore, the first
element displays after the second and third elements. The second and third elements display in the
order in which they appear in the document. The result is that the elements display in the order 2, 3, 1.

Alignment
Depending on the properties assigned to your box elements, you can quite often end up with boxes that
don’t stretch to fill the entire width or height of the parent and, as a result, empty spaces. Whether that
empty space appears horizontally or vertically depends on the parent’s box-orient value, but
where that space appears in relation to the children can be set on the parent by using the box-align
property. Here’s the syntax:

E { box-align: keyword; }

keyword has a number of possible values. The default is stretch, which gives you the behavior
you’ve already seen in this chapter, increasing the element’s height or width to fill its parent. The
start keyword places the element at the left of its parent if box-orient is set to horizontal
or at the top if set to vertical; similarly, the end keyword places the element to the right if
horizontal and to the bottom if vertical. If the value is center, the element is given equal
space on both sides either horizontally or vertically, again depending on the box-orient value.

NOTE
The box-align property works on the opposite axis from its orientation. If box-orient is set to horizontal, box-align
will distribute the space on the vertical axis and vice versa.

I’ll demonstrate some of the possibilities in the next example, using the following code:
div[class^='box-holder'] { display: box; }
 div.box-holder-one { box-align: center; }
 div.box-holder-two { box-align: start; }
 div.box-holder-three, div.box-holder-four { box-orient: vertical; }
 div.box-holder-three { box-align: end; }
 div.box-holder-four { box-align: center; }

div.flex { box-flex: 1; }

The results are illustrated in Figure 15-12.

Figure 15-12. Different values for the box-align property

Since we haven’t specified a box-orient value for the first (far left) example (), it uses the
default value of horizontal, and the box-align value of center gives the element equal space
above and below and positions it in the vertical center of its parent. The second (left) example () is
also oriented horizontally but has a box-align value of start, placing it at the top edge of its

parent. For the next two examples the box-orient property is set to vertical (); the third (right)
example () has a box-align value of end, moving the element to the right edge of its parent,
while the final (far right) example () also has a value of vertical for box-orient but a value
of center for box-align, positioning it horizontally within its parent.
One further value is mentioned in the specification, which is baseline. What baseline should
do is align all the child elements by their baseline and then align the element with the greatest height
to the top of the parent. However, try as I might I can’t get this to display as intended — baseline
behaves exactly the same as the start keyword value. Either this value has not been correctly
implemented or I’ve misunderstood it entirely!

Same-Axis Alignment
I mentioned in the last section that the box-align property works on the opposite axis to its
orientation, but what do you do if you want to distribute space on the same axis? For this, you have
the box-pack property. Again, you also apply it to the parent element. Here’s the syntax:

E { box-pack: keyword; }

The keyword values are very similar to those for box-align: center distributes the space on
either side of the child elements (either horizontally or vertically depending on the box-orient
value) and start and end add space either after or before the elements (respectively). One new
keyword value is justify, which is used only when two or more child box elements are present.
justify aligns the first element to the start of the parent and the last to the end and adds all the
extra space in between them.
I’ll illustrate some possible combinations using this code:

div[class^='box-holder'] { display: box; }
 div.box-holder-one { box-pack: center; }
 div.box-holder-two, div.box-holder-three { box-pack: end; }
 div.box-holder-three, div.box-holder-four { box-orient: vertical; }
 div.box-holder-four { box-pack: center; }

div.flex { box-flex: 0; }

You can see the results in Figure 15-13.
The first and second examples have the default box-orient value of horizontal, and the third
and fourth examples have the value of vertical. In the first example (), the box-pack property
has the value center, so the horizontally oriented element has the extra space distributed on either
side of it on the horizontal axis. The second () and third () examples both have a box-pack
value of end, but each is oriented to a different axis: For the second example (), the space is to the
child’s left; and in the third example (), the space is above the child element. The final example (
) has two child elements, and the parent has a box-pack value of justify, so the first child is at
the top of the parent and the second at the bottom.

Figure 15-13. Different values for the box-pack property

This property can also be used to perform a function that has been difficult to do for far too long:
centering an element inside a parent on both axes. Until now, you had to perform various tricks to do
this, such as combining positioning with negative margins:

div {

 height: 100px;
 left: 50px;
 margin: −50px 0 0 −50px;
 position: absolute;
 top: 50%;
 width: 100px;
}

Using the Flex Box layout, you can do this much more easily, without needing to specify heights or
calculate margins:

div.box-holder {
 display: box;
 box-align: center;
 box-pack: center;
}
div.flex { box-flex: 0; }

The element has the value of center for both box-align and box-pack, meaning all the extra
space around it is distributed equally on both axes, centering the child both horizontally and
vertically. You can see this in action in Figure 15-14.

Multiple Rows or Columns
The final new property is not currently implemented in Firefox, and although this property is listed as
being implemented in WebKit, rigorous testing seems to show that it doesn’t work in this browser at
all. As the property could be fixed or implemented by the time you read this, I’ll talk through it
anyway.

Figure 15-14. An element centered on both axes using box-align and box-pack

The property is box-lines, and it deals with the potential issue of a row (in horizontal orientation)
or column (in vertical orientation) of flexible children exceeding the dimensions of the parent. Here’s
the syntax:

E { box-lines: keyword; }

The keyword value can be single or multiple. The default value is single and declares
that only one row or column can continue outside the bounds of the parent — subject to the value of
the overflow property. The alternative value is multiple. If only one element exceeds its
parents’ dimensions, this value is ignored and all the elements are resized to fit; however, if multiple
elements exceed the parent dimensions, they will be moved to a subsequent row (or column) if the
dimensions allow it.
As I mentioned, box-lines currently remains unimplemented. How this will work in practice
remains to be seen.

Cross-Browser Flex Box with JavaScript
Although Flex Box is only currently implemented in Firefox and WebKit, you can get it to work
across all browsers by using a neat little piece of JavaScript called Flexie
(http://www.flexiejs.com/). Installing Flexie is very easy. You need to use it in conjunction with
another JavaScript library (any one will do; in this example, I’m using jQuery, which you can get at
http://www.jquery.com/). Download the files and link to them in your document like this:

<script src="jquery.js"></script>
<script src="flexie.js"></script>

To get the JavaScript to work with your code, you just add the nonprefixed properties after the
prefixed ones in your CSS:

E {
 -moz-box-flex: 1;
 -ms-box-flex: 1;
 -webkit-box-flex: 1;
 box-flex: 1;
}

The script checks to see whether your browser supports Flex Box natively and replicates its effects if
it doesn’t. The developer has also put together a very useful test page
(http://www.flexiejs.com/playground/) where you can alter various Flex Box values and see the
results updated on the fly.

http://www.flexiejs.com/
http://www.jquery.com/
http://www.flexiejs.com/playground/

Stop the Presses: New Syntax
As I was finalizing this chapter, the W3C’s CSS Working Group announced that the next draft of the
specification will feature substantial alterations. These alterations include the following:

The value for display will change from box to flexbox. All properties listed in this chapter
that begin with box-* will now be changed to flex-*, so box-align becomes flex-
align, box-pack becomes flex-pack, and so on.
box-direction and box-orient will be combined into a single property: flex-
direction.
box-flex will be split into two properties: flex-grow and flex-shrink.
The box-ordinal-group will be renamed either flex-index or flex-order.

At the time of writing, these changes have not yet made it into the draft specification, much less into
any browser, so all of the properties included in this chapter will continue to operate as explained. If
you want to see the new syntax, it currently resides at http://dev.w3.org/csswg/css3-flexbox/.

http://dev.w3.org/csswg/css3-flexbox/

Summary
The Flexible Box Layout Module currently has Working Draft status, and its implementation remains
patchy. Many inconsistencies need to be resolved — even in WebKit browsers, which currently lead
Firefox in terms of these properties. But I think Flex Box is a quite elegant and logical proposal that
provides a solution to several common problems in website layouts. Once the implementation issues
are resolved, I can see Flex Box being adopted pretty quickly. I know the Firefox team is keen to
bring its execution of this module into line with the WC3 proposal, so you could see this module
moving ahead fairly quickly in the near future.
Implementation in IE9 remains limited at the time of writing this book, but I’m hopeful that the final
release version of the browser will offer full support, which would be a big step toward being able
to use the Flexible Box Layout and freeing ourselves from the tyranny of floats!

Flexible Box Layout: Browser Support
 WebKit Firefox Opera IE

Flexible Box Layout Yes (with prefix) Yes (with prefix) No No (possibly in IE9, with prefix)

Chapter 16. Template Layout

The next new layout proposal — the Template Layout Module — was authored by Bert Bos, one of
the authors of the original CSS specification and, therefore, someone who should really know what
he’s talking about! The Template Layout Module (http://www.w3.org/TR/css3-layout/) allows for the
declaration of columns and rows, similar to the HTML table system.
This module is somewhat unique in that, although not currently implemented in any browsers, you can
still use it! Thanks to developer Alexis Deveria, you can use a very clever JavaScript function that
simulates the effects of the Template Layout Module by interpreting the CSS properties and values. I
encourage you to visit the website (http://code.google.com/p/css-template-layout/) to read more about
this fantastic tool.
The specification still has Working Draft status (last updated in April 2010), and none of the major
browser makers seem to be planning for implementation in the near future, so the module will not be
in widespread use anytime soon. But with the help of the JavaScript tool, you can practice using the
Template Layout Module and, if you so desire, provide some helpful feedback that might move it
toward implementation in the long term.

http://www.w3.org/TR/css3-layout/
http://code.google.com/p/css-template-layout/

Setting Up the JavaScript
As I mentioned in the introduction, to emulate the Template Layout Module, you need to use Alexis
Deveria’s JavaScript tool. This tool uses the jQuery library (http://www.jquery.com/), which I’m
sure many of you are familiar with. In the head of your page, you use script tags to link to first
jQuery and then to Alexis’s CSS Template script:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.5/jquery.min.js"></script>
<script src="http://css-template-layout.googlecode.com/files/
jquery.tpl_layout1.1.6.js"></script>

NOTE
The version numbers in this code — 1.x for jQuery and 1.1.6 for the Template Layout — are the most up to date as I write (February
2011), but you may need to update the version numbers by the time you read this.

After linking to the script, you run the JavaScript functions when the page is ready. You do this with
jQuery’s ready() event, which calls the setTemplateLayout function:

<script>$(document).ready(function() { $.setTemplateLayout() });</script>

This code is what I’ll use for my examples as all of my CSS will be embedded in the page. If you
want to use an external stylesheet, however, you must supply a path to the document as an option of
the function:

<script>$(document).ready(function() { $.setTemplateLayout('style.css') });</script>

Many further options are available; I advise you to read the supplied documentation
(http://code.google.com/p/css-template-layout/) to see what else is possible with this fine script.
Now that the setup is complete, let’s move on and see the new module in action.

http://www.jquery.com/
http://code.google.com/p/css-template-layout/

Using position and display to Create Rows
The Template Layout method requires that you set at least two different properties for it to work, so
I’ll talk through both of these before showing the results. The two properties already exist in CSS2.1,
but I’ll give them new values.
The first property is position, which you should remember has the values absolute, fixed,
relative, or static. But in this new method position is used a little differently. To show you
how it works, I’ll call on the same page elements that I used for the demonstrations in Chapter 15: a
parent element and three children. I usually show the CSS involved before the markup that you apply
it to, but in this case, I’ll make an exception. Here’s the markup first:

<div id="tpl-holder">
 <div class="tpl-one">
 <h3>20,000 Leagues Under The Sea</h3>
 <p>...</p>
 </div>
 <div class="tpl-two">
 <h3>Great Expectations</h3>
 <p>...</p>
 </div>
 <div class="tpl-three">
 <h3>The Hound Of The Baskervilles</h3>
 <p>...</p>
 </div>
</div>

Here you have three child div elements, each with the class name tpl-*. To create a layout with
the Template method, I assign each of them a letter of the alphabet as a value for the position
property:

.tpl-one { position: a; }

.tpl-two { position: b; }

.tpl-three { position: c; }

The letters themselves are arbitrary — you can use any letter of the alphabet — although only a single
letter is allowed for each element. (A keyword is also available; I’ll return to it later in this section.)
So far, so meaningless. What do these letters represent? For that, you need to take a look at the other
key property: display. Again, you should be familiar with this property; it currently permits values
like block, inline, and list-item, and is used to set an element’s box type. But in the
Template method, you use it to set the order of the elements, which I assigned the letters to previously.
The value for the display property is a string of letters inside quotation marks; the string represents
a horizontal row of elements — I’ll refer to them as row strings throughout the rest of this chapter.
For example, here are the three elements I introduced earlier laid out in a row in alphabetical order:

#tpl-holder { display: "abc"; }
.tpl-one { position: a; }
.tpl-two { position: b; }
.tpl-three { position: c; }

NOTE
The specification says only that the letters should be declared in a string, so either single or double quotation marks can be used; but
the JavaScript I’m using to emulate these properties accepts only double quotation marks, so I’ll use those throughout this chapter.

To see the result of this code, take a look at Figure 16-1. Here, you can see the elements are displayed
in the order of the characters I assigned to them, ABC, in a row — that is, horizontally — within the
parent, without using any floats or other layout methods. As no width property value was set on any
of the three elements, they are distributed into three equal columns whose combined width (including
padding, border, and margin) equals the width of their parent.

Figure 16-1. A row of elements ordered using the Template Layout method

You can just as easily display the child elements in a different order by changing the order of the
letters in the string. Consider this:

#tpl-holder { display: "bca"; }

Compare the result in Figure 16-1 with the new result in Figure 16-2. You can see that the boxes have
been reordered by changing the letter order in the string to BCA; again, the distribution of the widths
is equal to the width of the parent.

Figure 16-2. The example elements from Figure 16-1 reordered by changing the display property

Before moving on, I want to return to the new keyword value permitted on the position property,
which I mentioned previously. The value is same, and it does what it sounds like it should do: sets
the position of an element to be the same as the last specified position of a sibling element. Consider,
for example, the following code:

.div-one { position: a; }

.div-two { position: b; }

.div-three { position: same; }

The elements .div-two and .div-three would both have the position value of b; this
would be exactly the same as if you used this code:

.div-one { position: a; }

.div-two, .div-three { position: b; }

Multiple Rows
So far what I’ve shown is fine for laying out elements horizontally in a single row, but what happens
if you want to have more than one row? Doing this is actually very easy. You can have as many row-
string values on the display property as you like; you just need to list the strings with a space
separating each one. To see what I mean, take a look at this example:

#tpl-holder { display: "ab" "cc"; }

This code sets two rows; in the first are the elements with the position values a and b, each
occupying half of the width; in the second row, I repeat c so it appears twice, matching the two
elements in the row above, meaning it occupies the full width. You can see how this appears in
Figure 16-3.

Figure 16-3. Elements laid out in two rows

The elements in positions a and b are in the first row and have a width of half that of the parent,
whereas the element in position c occupies the full width of the second row.
There are two important rules to remember about row strings: The elements within each string are by
default distributed proportionally, and each string must contain an equal number of characters. These
two rules mean you can change the ratio of distribution by repeating letters in a string, like this:

#tpl-holder { display: "abb" "ccc"; }

Take a look at the output of this code in Figure 16-4.

Figure 16-4. Changing the distribution of the elements by repeating characters in the display property

Each row now has three letters; therefore, three elements will be distributed equally in each row. But
the first row has one a and two b values, so the element in position b expands to fill two-thirds of the
width. In the second row, the element in position c again occupies the full width — this row also has
three characters, matching the count of characters in the previous row.

Slots and the ::slot() Pseudo-element
You can also have elements that span multiple rows, but before I show how this works, I need to
introduce the concept of slots. The letters in a row string create an area known as a slot. All of the
examples used in this chapter so far have three slots — positions a, b, and c — although the slots
vary in size depending on how many places they occupy in the row strings. In the example shown in
Figure 16-4, the element in position b is twice the width of the element in position a, and the element
in position c is three times the width of the element in position a; however, each occupies only a
single slot.

NOTE
The height of each row is calculated automatically based on the height of the elements within it — although you can adjust this
manually, as you’ll see later in this chapter.

If I remove the border from the elements in Figure 16-4 and change the colors somewhat, you’ll be
able to see the slots more clearly. I’ll do this with the help of the new ::slot() pseudo-element,
which allows you to apply a (limited) range of properties directly to each slot. I’ve highlighted
::slot() in the relevant code shown here:

#tpl-holder { display: "abb" "ccc"; }
.tpl-one { position: a; }
.tpl-two { position: b; }
.tpl-three { position: c; }
#tpl-holder::slot(b) { background-color: #555; }
#tpl-holder::slot(c) { background-color: #DDD; }
.tpl-two * { color: white; }

You can see the results illustrated in Figure 16-5.

Figure 16-5. Exposing the layout slots with the ::slot() pseudo-element

As you can see, the element in slot b has a dark gray (#555) background-color applied to it,
whereas the element in slot c has a lighter gray (#DDD) background. Below that, note that I use the
element’s class name rather than the slot to apply the white text color. You might be wondering why
I didn’t use this instead:

#tpl-holder::slot(b) * { color: white; }

The slot is only a construct, however; it doesn’t appear in the document tree, and isn’t actually the
parent of the elements inside it. Don’t worry if you don’t understand that — all you need to know is

that the ::slot() pseudo-element can’t be used as part of a selector except to select itself.
Now that you understand slots, I can more easily demonstrate how elements can span multiple rows.
The explanation is really quite simple: You use the same letter in the same position in the rows that
you want the element to span. Here’s a straightforward illustration:

#tpl-holder { display: "ab" "cb"; }

As you can see, the b is the second character in both rows; if you want to see that laid out more
clearly, let’s format the code in a different way:

#tpl-holder { display:
"ab"
"cb"
; }

That’s a perfectly valid way to write your code, by the way, so if you start designing more complex
layouts, you might want to consider it. Anyway, let’s see the result of this code in Figure 16-6.

Figure 16-6. A slot spanning multiple rows

The elements in positions a and c occupy half of the width of their respective rows, whereas the
element in position b not only occupies half of the width but also spans the two rows. Spanning rows
is a technique you should be familiar with from using HTML tables, and the technique works in a
similar way here.
You probably noticed that the content in the element in position b is aligned vertically to the middle
of the slot. I did this by using another of the few properties I mentioned were permitted with the
::slot() pseudo-element:

#tpl-holder::slot(b) {
 background-color: #555;
 vertical-align: middle;
}

All of the background-* properties are permitted, as well as vertical-align and
overflow. Some have suggested adding box-shadow and direction to that short list, but that
change hasn’t been made to the module at the time of writing.

Creating Empty Slots
In addition to letters, a few special characters are permitted in the row strings. The first of these is the
period (.), which is used as a spacer to create an empty slot, as in this example:

#tpl-holder { display: "c.b" "aab"; }

You can see this demonstrated in Figure 16-7.

Figure 16-7. The period character creates spacer slots.

This example has two rows and is divided into three columns (each column is a third of the width of
the parent). In the code, the second character in the first row string is a period, so an empty slot is
created in the middle column of the first row, as shown.

Setting Height and Width on Rows and Columns
Until now I’ve allowed the layout algorithm to distribute the heights and widths of all of the slots
equally, but the Template Layout method also gives you fine control over your layouts, permitting you
to set the row height and column width explicitly. Both are easy to set, but I’ll begin with the former
as row height is the easier of the two to set.
By default, a row’s height is set by the slots within it, and a slot is as high as the combined height of
the elements contained inside it. But to overrule that and set a fixed height, you have only to specify a
length value after the row string that you want to apply the height to, using a forward slash (/) to
separate the two:

E { display: "abc" / length; }

Here you can see a real-world example, with the result shown in Figure 16-8:
#tpl-holder { display: "cb" / 200px "ab"; }

Figure 16-8. The height of the first row was set manually.

This layout has two rows and two columns — the element in position b spans both rows. After the
string that lays out the first row ("cb"), you have a forward slash and the value 200px; this sets the
first row to be 200px high. If this value isn’t supplied, this row would be the same height as the one
below it (in position c).
Setting the width of a column is only slightly more complicated. At the end of the display property,
you specify a length value for each column without the forward slash:

E { display: "abc" length length length; }

The number of length values given must equal the number of columns, but if you don’t want to set the
value of a column explicitly you can use an asterisk (*) instead. Here’s how that looks in practice:

#tpl-holder { display: "cb" "ab" * 33%; }

You can see the results illustrated in Figure 16-9.

Figure 16-9. The width of second column was set manually.

This same markup was used for Figure 16-8, but instead of specifying the row height, here I specified
the column width. After the row strings, you see two values: an asterisk and 33 percent. As there are
two columns, the first uses an automated value and the second a width of 33 percent of the parent —
if I hadn’t specified any width, the column width would have defaulted to 50 percent.

Width Keyword Values
As well as length and percentage values, a few keywords are available for setting column widths.
The first is max-content, which specifies the column should be at most only as wide as the widest
content that it contains; its opposite is min-content, which indicates the column should be at least
as wide as the widest content within it, but it can be wider.
The minmax function accepts two values — a minimum and maximum — which provide a range
within which the column width may be set. You can use either length values or the max-
content/min-content keywords. Here’s an example:

E { display: "abc" * minmax(min-content,500px); }

This code sets the column to be at least as wide as its content, up to a limit of 500px.
The final keyword value is fit-content, which is shorthand for minmax(min-
content,max-content) — that is, make the column exactly as wide as the widest content it
contains.

Setting Both Row Height and Column Width
Specifying both row height and column width in a declaration can begin to look a little confusing.
What you need to remember is if you’re setting a width on the last row, the first value after the
forward slash is the row height and the remaining values are the column widths:

#tpl-holder { display: "cb" "ab" / 200px * 33%; }

If that’s confusing, remember you can reformat your code to make it easier to see:
#tpl-holder { display:
"cb"
"ab" / 200px
* 33%
;}

This layout makes the code a little more straightforward to read, but how you lay out your code is for
you to decide. However the code is laid out, the result is the same, which you can see in Figure 16-
10.

Figure 16-10. The dimensions for second row and second column were set manually.

The example in Figure 16-10 has two rows of two columns: The second row has a height of 200px,
the second column has a width of 33 percent, and the first column is dynamically sized to fit the
remaining width of the parent.

Default Content: The @ Sign
I mentioned earlier in this chapter, when introducing the period (.) used for spacing, that certain
characters can be used in the row string. The other permitted character is the at sign (@), which is
used to represent the default content in an element, by which I mean any child element that has not
been assigned a slot. Here’s how it looks:

E { display: "@"; }

This code simply displays the content in its natural position, which isn’t perhaps very useful. But
consider a more practical example, as in this next demonstration, which utilizes the example markup
I’ve used throughout this chapter:

#tpl-holder { display: "a" "@"; }
.tpl-three { position: a; }

You can see how this works in Figure 16-11.

Figure 16-11. The element in position c has been moved above the rest of the content by using the at sign (@).

Here the layout is composed of two rows. The element in the first row is the element with the
position value of a, which is the last child element in the example markup; the second row string
contains the @ character, which represents everything that is not specified, so any content not inside
the element in position a is placed in this row.
By changing the display value, I can easily rearrange the elements:

#tpl-holder { display: "@a" * 33%; }
.tpl-three { position: a; }

Figure 16-12 shows this result.
Here, I have only a single row, and the element in position a, with a width of 33 percent, now sits in a
column to the right of the rest of the content in the element.

WARNING
In Figure 16-12, the default content doesn’t wrap and is hidden under the column on the right. I can’t tell whether this error is in the
specification or in the JavaScript implementation, and until browsers begin to implement this module, we probably won’t know.

Figure 16-12. The @ sign is used again to position the element to the right of the default content.

You can only have one @ slot per layout (although the slot can span multiple rows or columns), and
slots can only be rectangular in shape. The following uses are, therefore, not permitted:

E { display: "@.@"; }
E { display: "@." ".@"; }
E { display: "@." "@@"; }

In both the first and second cases, two @ slots would be required, and in the third, the @ slot would
form an L shape; all of these examples are invalid.

Summary
Considering this layout method is fairly new to me, this chapter was surprisingly easy to write — not
something that I’m attributing to any talent on my part but to how easy this syntax is to grasp. Every
developer should be familiar with columns, rows, and spans from using HTML tables, and this syntax
cleverly leverages that knowledge to become quite intuitive.
Huge thanks must go to Alexis Deveria for writing the script that made this whole chapter possible. I
have no doubt his script will be referred to often when browser makers are implementing the
Template Layout Module natively.
As well as the demonstrations in this chapter, you can find further examples of the possibilities
available with the Template Layout Module at the sites of Alexis Deveria
(http://a.deveria.com/csstpl/) and Neal Grosskopf (http://www.nealgrosskopf.com/tech/thread.asp?
pid=46). Both are well worth your time if you’re experimenting.

http://a.deveria.com/csstpl/
http://www.nealgrosskopf.com/tech/thread.asp?pid=46

Template Layout: Browser Support
 WebKit Firefox Opera IE

Template Layout No[a] No[a] No[a] No[a]

[a] Not implemented natively but works using JavaScript.

Chapter 17. The Future of CSS

Almost all of the properties featured in this book so far have been implemented in at least one
browser and are likely to be implemented in more in the near future as the modules mature. But you
must remember: CSS3 is still in a state of flux in many areas, with a constant flow of new properties
being defined and old properties being updated.
In this final chapter, we’ll look at properties that have limited implementation or no implementation at
all, at modules that have been written but remain in indefinite status, and at proposals for new
modules that have yet to be ratified. Although you most likely can’t use these properties in the next
year, you may be able to use them in the years that follow.
The properties in this chapter give you the ability to perform mathematical operations and define
constants and variables, letting CSS dip its toes into the waters of programming languages; they
borrow from print design to create layout grids; they greatly extend the possibilities of background
images — and more. Don’t take for granted that you’ll see any of these new properties in your
browser any time soon, if at all. A lot of negotiating and hard work needs to be done before these
make it beyond the theoretical stage. But if anything in this chapter excites or enrages you, make it
known publicly; the W3C pays attention to discussions by website authors — especially if
constructive criticism is involved.
That said, let’s take a look at the (possible) future of CSS.

Mathematical Operations
I mentioned briefly the CSS3 Values and Units Module (http://www.w3.org/TR/css3-values/) when
introducing the appearance property in Chapter 10. Although the module is currently undergoing
revision and so not even at Working Draft status yet, a few of its interesting new functions deserve to
be highlighted. These functions are big steps forward, taking CSS beyond being a descriptive
presentational language and moving it toward being a programming (or, at least, computational)
language. As such, anyone with experience using JavaScript or PHP (among others) should have no
trouble grasping the concepts I’m about to introduce.

http://www.w3.org/TR/css3-values/

Calculation Functions
In CSS2, all length values are declared and fixed, which can cause problems if you want to create
layouts that mix length units. Consider, for example, an element with a width of 60 percent and
margin-right of 10px. To float another element to its right, you would have to know the width of
the parent element — to get the width of the element in question — and then calculate that width
minus 10px to get the width value of the new floating element. Add to that any borders or padding
the elements may have, and figuring placement out becomes tricky and time-consuming at best and, in
some cases, impossible.
CSS3 introduces the calc() function, which aims to take care of calculations such as these, thus
allowing for more dynamic, flexible layouts. Its syntax is as follows:

E { property: calc(calculation); }

I haven’t specified a property in the code as calc() can be applied to any property that accepts
length values: border-width, font-size, height, margin, padding, to name but a few.
The calculation value supports simple arithmetic using five basic operators: plus (+), minus
(−), multiply (*), divide (/), and mod.

NOTE
Everyone probably understands the first four operators, but mod may need some explaining. A mod value is written a mod b ;
basically, mod is the value that remains when a has been divided by b a whole number of times. For example: 20 mod 3 equals 2,
because 20 can be divided by 3 six times, leaving a remainder value of 2 (3 × 6 = 18; 20 − 18 = 2).

These operators can be used with length values or numbers, such as in these following examples:
E { property: calc(80% + 10px); }
E { property: calc(100% - 5em); }
E { property: calc(25em * 5); }
E { property: calc(75% / 4); }
E { property: calc((75% / 4) - 20px); }
E { property: calc(150px mod 10em); }

In the hypothetical example I used at the beginning of this section, I could use calc() to account for
the margin-right and padding of the first element:

div.one {
 margin-right: 10px;
 padding: 10px;
 width: 60%;
}
div.two { width: calc(40% - 30px); }

You can see the result in Figure 17-1. In the first (left) example, the width of the box is set to 40
percent, but the second box is pushed onto a new row by the extra margin and padding on the first
box. In the second (right) example, the value provided to calc() compensates for the margin and
padding, so the two boxes remain on the same horizontal line. Without calc() I would, as I
mentioned, have to know the exact width of the parent in order to make the same adjustment —
somewhat defeating the object of using flexible widths for layout.

Figure 17-1. In the second example, I set the width of the right column with the calc() function.

You can do more than simple calculations, however, as the following example shows. Take a look at
this code:

.calc {
 border: 2px solid black;
 margin: 10px;
 padding: 1em;
 width: 100%;
}
#calc { width: calc(100% - (2em + 24px)); }

The result is shown in Figure 17-2. Here, you see two identical elements, each given 100 percent
width. The extra width given by the border, padding, and margin makes the example on the left too
wide for its containing element, and the overflow is cropped on the right side. In the second example,
however, I used the calc() function to subtract those values from the width, so it fits within its
parent element — and what’s really useful is that I was able to mix three different length units
(percentage, em, and px) in doing so.

Figure 17-2. I used the calc() function to set the width of the example on the right so the child doesn’t overflow its parent
element.

IE9 will be the first browser to implement calc() fully, although Firefox 4 Beta has an
implementation using the -moz- prefix:

E { property: -moz-calc(calculation); }

Two more calculation functions can be used on elements with length values: max() and min().
Here’s the syntax:

E { property: max(value,value); }
E { property: min(value,value); }

These functions compare the values supplied to them and apply the one that fits the stated criteria; that
is, if I supplied the same two values to each, the max() function would apply the largest, and the
min() function would apply the smallest. Let’s look at an example:

E { property: max(150%,20px); }
E { property: min(150%,20px); }

These functions act as shorthand for the logical statement: “Apply the value of 150 percent or 20px,

whichever is the larger/smaller.” So if you presume that the 150 percent value is equivalent to 15px,
the max() function applies the value of 20px to the property — 20px being greater than 15px — and
thus, the min() function applies the 150 percent (15px) value.
The max() and min() calculation functions currently exist only in the Editor’s Draft of the Values
and Units Module. Firefox nightly builds had implemented these functions with the -moz- prefix, but
they seem to have been removed from later builds.

Cycle
Another common function in programming languages is cycling, which is a repetition process that
works through a range of values. Given values a,b,c, the cycle would start at a, move to b, and then c,
and then back to a to begin the cycle again. Not currently in the Values and Units Module, although
apparently planned for inclusion, is a method for cycling in CSS. The syntax is quite simple:

E { property: cycle(values); }

The values are a comma-separated list of values that are permitted with the specified property —
so you couldn’t apply a color value to the font-size property, for example; these values are then
cycled through, in order, under certain conditions. Let’s look at a practical example. First here’s a
CSS snippet:

p.italic { font-style: italic; }
em { font-style: cycle(italic, normal); }

And I’ll apply this snippet to this example markup:
<p>The next word will be emphatic.</p>
<p class="italic">The next word will be emphatic.</p>

In the first sentence, which can be considered “normal” circumstances, the word contained in the em
element has a value of italic applied to its font-style property; the word is applying the first
value from the cycle() notation. In the second sentence, however, the word in the em element has
inherited the italic value from its parent already, so the next value in the cycle, normal, would
be applied instead.
As I mentioned, cycle isn’t currently in the specification but is expected to be included in the near
future. Although not implemented in any browser at the time of writing, cycle is listed for inclusion
in a future version of Firefox.

The Grid Positioning Module
In addition to the two proposed new layout methods featured previously in Chapter 15 and
Chapter 16, a third method, the Grid Positioning Module (http://www.w3.org/TR/css3-grid/) has also
been proposed — although this module hasn’t currently been implemented in any browsers. The
module’s major advantage is that you can use it to extend other modules or stand alone. The Grid
Positioning Module is made up of three core concepts: implicit and explicit grids, the grid unit (gr),
and extended floats.

http://www.w3.org/TR/css3-grid/

Implicit and Explicit Grids
Some HTML and CSS properties create natural grid structures. The most obvious example is the
table element (or elements laid out with the display: table family of CSS declarations),
which provides regular numbers of rows and columns. But the multi-column layout (introduced in
Chapter 7) also creates a grid structure — a single row with many columns (and the gaps between
columns, which are set with the column-gap property, also counting as columns). In the language
of the Grid Positioning Module, these grids are referred to as implicit grids.
If elements in a page layout do not form an implicit grid, then you can impose a grid using two new
proposed properties:

E {
 grid-columns: length;
 grid-rows: length;
}

Grids are defined by the lines that divide them, and both of these two properties accept a list of
space-separated values — either length units, percentages, or fractions (more on this soon) — which
set the position of the lines that define the grid’s columns and rows. Here’s an example:

div {
 grid-columns: 20% 60%;
 grid-rows: 2em 4em;
}

This example creates a 3-by-3 grid, where the column lines are placed at 20 percent and 60 percent
of the grid’s width — so the first column is 20 percent wide, the second and third 40 percent wide.
The row lines are placed 2em and 4em from the top of the parent — so the first and second rows are
both 2em high, and the third is the remaining height of the parent. Assuming the div is 100px wide by
100px high, and that 1em is equal to 10px, you would see the grid shown in Figure 17-3.
To aid in the layout of more complex grids, the repeat() notation is available, which can be used
to repeat values to fill the length of the parent. Here’s an example:

div { grid-columns: 25% repeat(1em 3em); }

This code creates one column that is 25 percent of its parent’s width; the remaining width is then
filled with alternating columns of 1em and 3em widths.

Figure 17-3. Illustration of grid lines making rows and columns

As I mentioned, you can also use the fraction unit. Fraction is a number followed by the unit fr —
for example, 1fr, 3fr, or 4.5fr — and is used as a ratio to divide nonallocated lengths (similar
to the Flexible Box Layout, which I covered in Chapter 15). To see what I mean, take a look at this
example:

div { grid-columns: 40px 2fr 3fr 80%; }

This code creates a grid with four columns. The first grid line is 40px from the left, and the last is 20
percent from the right; the third grid line is a point in between them, where the remaining width is
divided by the ratio 2:3. Suppose the element is 200px wide; the first and last columns would be
40px wide (20 percent of 200px equals 40px). This leaves 120px of space divided by the ratio 2:3,
meaning the second column is 48px and the third is 72px . You can see how this would appear in
Figure 17-4.

Figure 17-4. A grid created with fraction values

A grid that's formed by using these properties is, in the syntax of this module, known as an explicit

grid.

The Grid Unit (gr)
Once you have your grid, whether implicit or explicit, you can begin to place elements in it. For this,
you need to use the new grid length unit, abbreviated to gr. You can use gr on any block element
property that accepts length units as values, and its value is a number that is used to measure a grid
unit (or cell, if you prefer). So if you want an element to span three columns, you would use this code:

E { width: 3gr; }

You can also use the gr unit to make an element span rows and as an offset for positioning, as shown
here:

E {
 height: 2gr;
 width: 2gr;
 position: absolute;
 left: 1gr;
 top: 1gr;
}

This example has an element that spans two rows and two columns and is absolutely positioned one
column from the left and one row from the top, as illustrated in Figure 17-5.

Figure 17-5. Illustration of positioning an element with the gr unit

Extended Floats
The final component of the Grid Positioning Module lifts a concept from the CSS GCPM (Generated
Content for Paged Media) Module (http://www.w3.org/TR/css3-gcpm/), which is a bit of a
mouthful. The concept it lifts is that of an extended float property, which accepts a wider range of
values, allowing you to place an element in a grid and have content flow around it.

NOTE
I haven’t covered the GCPM Module at all in this book because it deals specifically with printed or print-like matter.

As you know, float currently only permits the values left, right, or none. But in the Grid
Positioning Module, you can assign further positional values and combine those with the gr length
unit to give you more granular control over placing an element. Consider this example:

E {
 float: left bottom;
 width: 2gr;
}

Here the element would float at the bottom and to the left of the column in which it is specified, and it
would span two columns.
Predicting whether this module will ever be implemented is hard. This module was authored by
Microsoft staff so it has a good pedigree, but they haven’t updated it since 2008 and so seems to face
an uncertain future.

http://www.w3.org/TR/css3-gcpm/

Extending the Possibilities of Images
CSS3 introduces a number of new methods to combat issues that have up till now been resolved by
using images (rounded corners, drop shadows, and so on). Images are still an integral part of using
CSS, however — from decorative backgrounds to the CSS sprites method and the like. With this
being the case, that you have only really one way to set an image on a property seems a little limiting:

E { property: url('image-path'); }

The method is functional but not very flexible. A heavily in-development new specification, the Image
Values and Replaced Content Module (http://www.w3.org/TR/css3-images/), henceforth known as
the Images Module for brevity, aims to change that by extending what you can do with graphics in
CSS.

http://www.w3.org/TR/css3-images/

Image Fallback
The first major stumbling block comes if a specified image isn’t found or the file type of the image is
not supported — you don’t have a fallback option available to display an alternative. With the
background-image property, you do have the option to provide multiple values, but this
property, which has its drawbacks, isn’t really intended to act as a fallback provider. For example, if
the first-choice element has a transparent background, the second-choice element shows through from
beneath the first.
The proposed solution is the new image() notation, which has the following syntax:

E { property: image('image-path' resolution or color); }

The first value, image-path, is the same as used in the url() notation: a path to an image file.
After that, you have an optional resolution value and an optional keyword or with a color
value that can be used as the background color if the image path provided is invalid. Let’s see a
practical example:

div { background-image: image('image.png' 150dpi or #F00); }

This code means “show the image image.png at a resolution of 150dpi (dots per inch), or set the
background-color to #F00.” You can add further image options by listing them, comma-
separated, after the image and resolution values. This solution works in a similar way to
background-image (with multiple values) but will only display the first valid image, ignoring
any subsequent items in the list.
Here’s a further example showing multiple image paths:

div { background-image: image('image.svg', 'image.png' 150dpi, 'image.gif' or #F00); }

Here, I’ve extended the previous example so its logical statement is now “show image.svg as a first
choice, or image.png at 150dpi as a second choice, or image.gif as a third choice, or set the
background-color to #F00 if none of those images are available.”

Image Slices
Back in Chapter 8, I showed you Firefox’s suggested image-rect() notation to define an area of
an image for clipping. The CSS3 Images Module has an alternative suggestion that extends the
url() notation. Here’s the syntax:

E { property: url('image-path#xywh=x-co-ord,y-co-ord,width,height'); }

As before, the image-path value is the path to a valid image but followed by #xywh and four
integer values: The first pair of those four values defines an x- and y-coordinate on the image from
which the top-left corner of a rectangle will be created, and the second pair defines the width and
height of that rectangle. The rectangle, of course, is the area of the image that will be displayed.
Consider this example:

div { background-image: url('image.png#xywh=20,10,50,100'); }

Here, a div element has the image file image.png set as its background-image. But instead the
whole image, only an area that is 50px wide and 100px high and that starts 20px from the left and
10px from the top of the image file is shown.
To further demonstrate, let’s look back to Chapter 8 at the first example in Figure 8-7. In this example,
I clipped an image using the image-rect() syntax:

.white { background-image: -moz-image-rect(url('bunny_sprite.png'),0,57,100,0); }

Here’s how I would do this in the new suggested syntax:
.white { background-image: url('bunny_sprite.png#xywh=0,0,57,100'); }

I’m actually using the same coordinate values in both syntaxes, just in a different order. Neither of
these syntaxes has been decided upon yet (as far as I know). My own feeling is that image-rect()
seems more in keeping with existing CSS syntax, but the alternative suggestion is undeniably more
compact.

Image Sprites
The Images Module also mentions a dedicated Image Sprites syntax, which I briefly referenced in
Chapter 8. Two candidates have been proposed, and no decision has yet been made as to which will
be implemented. The first proposal is for a new @sprite rule that defines a grid matrix that can be
referred to by using a unique id and matrix coordinates. Here’s the syntax:

@sprite id {
 sprite-image: image-path;
 sprite-offsets-x: int;
 sprite-offsets-y: int;
}

In the first line, I create a unique id for the sprite, which I’ll use to refer to it in later rules, and in the
second line, I specify the image file. The properties in the final two lines accept a space-separated
list of integers, which refer to coordinates on the image and create a grid matrix.
Here’s a simple example:

@sprite example {
 sprite-image: image.png;
 sprite-offsets-x: 0 10 20;
 sprite-offsets-y: 0 10 20;
}

The unique sprite identifier is example, and the image I’m using is image.png, which, for the
purposes of this example, I assume is 30px wide and high. I then set three x-coordinates at 0, 10px,
and 20px and three y-coordinates at the same values, which means the example image is divided into
a matrix of nine equally sized (10px by 10px) cells, as shown in Figure 17-6.

Figure 17-6. Illustration of a 3-by-3 grid matrix

The next step is to refer to the sprite id and matrix coordinate on the element I want to apply the
sprite to:

div { background-image: sprite(example, 2, 2); }

On this div, I use the sprite() notation to refer to the sprite with the identifier of example, and
use the portion of the image that’s at the matrix coordinates 2,2. Each column and row is numbered
sequentially from 0 (zero), so the first column in the first row has the coordinates 0,0. That being the

case, the cell at 2,2 in the example matrix is at the bottom right, as illustrated in Figure 17-7. This
portion of the image is displayed.

Figure 17-7. The cell located at matrix coordinates 2,2

The second proposal under consideration is somewhat less well defined but again uses an at-rule —
this time the @define notation (which is also proposed in the CSS Variables syntax I’ll introduce
later in this chapter). In this proposal, all of the sprites are assigned a unique variable name using this
syntax:

@define image-vars{
 id { rect(top,right,bottom,left) url('image-path')}
}

Here, you use the @define rule to call your image variables. Then you give each variable a unique
id and define the area of the image to use with the rect() notation. The four integers represent
values for the top, right, bottom, and left of the image area, all calculated in pixels from the top-left
corner, in exactly the same way as the CSS2 clip() property (and the CSS3 image-rect()
property shown in Chapter 8).
After that, the url() notation defines which image to use for this sprite. As many sprites as required
can be created by repeating the whole notation in a comma-separated list:

@define image-vars{
 id { rect(top,right,bottom,left) url('image-path')},
 id { rect(top,right,bottom,left) url('image-path')}
}

Here’s a simple real-world example:
@define image-vars{
 example { rect(10,20,20,10) url('image.png')}
}

This code creates a variable with the identifier example and clips an image that is 10px wide and
10px high, offset by 10px from the left and top of the image image.png — exactly the same as the
example I used to illustrate the first proposal. I then refer to the id on the property that I want the
sprite to be applied to:

div { background-image: var(example); }

The first proposal has the advantage of being more precise and less repetitive and is more suitable
for slicing up a single large image. The second is more repetitive but has the advantage of reusing a
lot of existing syntax and is perhaps more suitable if many different images need to be sliced. As to
which will become the official proposal — I have no idea. Perhaps neither!

Grouping Selectors
Although CSS2 syntax provides for most eventualities, one of its drawbacks is the amount of
repetition that can occur in stylesheets, especially for larger or more complicated web pages. For
example, having a page with three different types of list elements — ordered (ol), unordered (ul),
and the new HTML5 menu element — each with nested lists inside them is not improbable. Then, as
a further complication, those lists can be inside different container elements, some of which you want
to select and some that you don’t. After all that, to select those nested list items with CSS2, you’d
have to use something like this:

article ul ul li, div ul ul li, ol ul li, menu ul li { property: value; }

And I think that’s a pretty conservative example. I’ve seen (and used) a lot more complicated code
than that. To help eliminate this kind of repetition, Firefox has recently implemented a new selector,
called the Grouping Selector, that acts to collect duplicated patterns. Here’s the syntax:

:-moz-any(selectors) { property: value; }

The selectors value is a comma-separated list of simple selectors — that is, no combinators or
pseudo-elements — that apply if any of the selection criteria are met. I can perhaps better explain this
by showing how to apply it to the first example in this section:

:-moz-any(article ul,div ul,ol,menu) ul li { property: value; }

Here you can see I’ve used :-moz-any() to provide a group of alternatives; basically I’m saying
“select any list item that is the child of an unordered list, which is the child of any one of these
elements.” I save only a few characters here but avoid a lot of repetition (repeating ul li at the end
of each of the four selector rules).
The Grouping Selector is currently only a proposal and still has unresolved issues relating to
specificity. As such, Grouping Selector hasn’t been suggested for any of the CSS3 modules yet, but
you should be able to experiment with it in Firefox 4.

Constants and Variables
In Chapter 10 I introduced currentColor, which has the distinction of being the first variable in
CSS. Just in case you’ve no programming background, variables and constants are strings of
characters that represent data and whose value can be changed (a variable) or is fixed (a constant).
By way of illustration, consider this fairly typical set of declarations:

E {
 background-color: #F00;
 border: 1px solid #F00;
 color: #F00;
}

This same color value could be used in many stylesheets, but if you ever needed to change it, you
would have to update every instance of it — at the very least, a find-and-replace task. But the
advantage of variables and constants is that you can define a character string to represent that value
— let’s say you use the string mainColor and assign it the value of #F00 — and use that string
instead:

E {
 background-color: mainColor;
 border: 1px solid mainColor;
 color: mainColor;
}

Now if you want to change the color, you just update the value of mainColor, and the new color is
applied automatically to all of the elements you set it on. That’s the theory.
The notion of defining a syntax for variables or constants in CSS has been floated many times, but
until recently had yet to be taken up by the CSS Working Group. Although some firm opposition seems
to coming from within the CSSWG, two competing proposals have been put forth. The first was
created by Daniel Glazman, co-chairman of the CSS Working Group, and Dave Hyatt, a leading light
at WebKit, so this proposal has a pretty good pedigree. Their concept for CSS Variables
(http://www.disruptive-innovations.com/zoo/cssvariables/) is notionally similar to the example I
used in the introduction to this section and is persuasively simple. The first step is to use the new
@variables at-rule to define string and value pairs:

@variables {
 exampleColor: #F00;
 exampleLength: 10em;
}

These strings can then be used as values in the var() notation, applying the value to relevant
properties:

E {
 background-color: var(exampleColor);
 width: var(exampleLength);
}

The second proposal, CSS Constants (http://fantasai.inkedblade.net/style/specs/constants/), was
created by another CSS Working Group member and is more flexible, allowing for three different
types of constants: values, style-sets, and selectors. The first of those, values, works in a similar way
to the CSS Variables proposal I just described, setting values in the @define at-rule:

@define values {

http://www.disruptive-innovations.com/zoo/cssvariables/
http://fantasai.inkedblade.net/style/specs/constants/

 exampleColor: #F00;
 exampleLength: 10em;
}

In this proposal, constants are then called using the backtick character (`):
E {
 background-color: `exampleColor;
 width: `exampleLength;
}

Where CSS Constants go further than CSS Variables, however, is that you can use them to define
whole sets of styles, as in the next code example:

@define style-sets {
 exampleSet {
 background-color: #F00;
 width: 10em;
 }
}

You then apply this whole style-set to a property by simply using the constant string, again with the
backtick:

E { `exampleSet; }

This proposal also allows you to assign groups of selectors to a constant:
@define selectors {
 exampleSelector : ul ul li;
}

Once again, you refer to the constant (with a backtick) in the selector chain:
`exampleSelector E { <property>: <value>; }

As well as the differing syntaxes, the two proposals are distinguished from one another in terms of
their scope: The values in CSS Variables are automatically inherited by other stylesheets, which are
called using the @import rule, whereas those in CSS Constants would not be inherited by default,
although you would have the option to allow it if required.
Both proposals have their attractions — the simplicity of Variables, the flexibility of Constants —
and in an ideal world, I’d like to see a mixture of the two. I don’t think selector constants are truly
necessary, but values and style-sets are both great ideas. Here’s hoping that the CSS Working Group
comes to a decision about this.

WebKit CSS Extensions
As this book was going to press, the WebKit team announced that it is going to implement many new
experimental features in its browser over the coming months. These are based on some of the extra
features provided by programmer-created CSS extensions that run on the server, such as SASS
(http://www.sass-lang.com/).
These features have not (at the time of writing) been proposed to the W3C — indeed, WebKit has not
produced any written specifications yet — and are, therefore, some way from being implemented. In
addition, these new features are not backward-compatible, so you may have to wait many years
before they gain enough traction to be used on a day-to-day basis.

http://www.sass-lang.com/

CSS Variables
I discussed two existing CSS Variables proposals in the previous section, but the WebKit proposal is
yet another alternative. This proposal is similar to the first proposal I showed. First, you define the
variables and values with the @var rule:

@var $exampleColor #F00;

You then put this value in your declarations by using the defined name with a string character ($)
before it:

E { background-color: $exampleColor; }

In this example element, E is given a background-color value of #F00.

Extending Variables Using Mixins
The syntax just introduced is useful for creating simple variables, but the proposal goes further with
the introduction of mixins, which are blocks of reusable code. To use these, you first declare your
blocks of properties with the @mixin rule:

@mixin exampleBlock {
 background-color: #F00;
 font-size: 150%;
}

Then you insert the blocks into your other rules by using the @mix directive with the defined mixin
name:

E {
 color: #000;
 @mix exampleBlock;
}

Even better, you can pass parameters into mixins so they act like JavaScript functions, meaning you
could extend your mixin like this:

@mixin exampleBlock($exampleColor #F00) {
 background-color: $exampleColor
;
 font-size: 150%;
}

The defined name of the mixin now has a variable name in parentheses after it ($exampleColor)
with a default value following it (#F00). The background-color property has this variable as a
value. If no other parameter is provided, this property uses the default value. A parameter can be
provided, however, when the @mix directive is used:

E {
 color: #000;
 @mix exampleBlock(#00F
);
}

Here, the mixin is called and a value of #00F passed to it as a parameter, replacing the default
provided in the original @mixin. Mixins make CSS into a much more programmatic language,
sacrificing some of its simplicity for extensibility.

CSS Modules
As programmers know, once you begin to introduce variable names you begin to run into problems of
scope — that is, how variables defined in a function can affect other functions if given the same name.
CSS variables and mixins all have global scope: Once defined anywhere, they apply everywhere. Not
a problem if you’re building a site yourself, but when many different developers are put into the mix,
the chance of a variable name being defined twice and causing conflicts increases exponentially.
CSS Modules have been proposed to avoid this. You define a module with the @module rule and
declare variables and mixins within it:

@module exampleModule {
 @var $exampleColor #F00;
 @mixin exampleBlock {
 background-color: #F00;
 font-size: 150%;
 }
}

Now to use a variable or mixin from this module, you either prefix it with the module name:
E {
 border-bottom-color: $exampleModule.exampleColor;
 @mix exampleModule.exampleBlock;
}

or use the @use directive:
E {
 @use exampleModule;
 border-bottom-color: $exampleColor;
 @mix exampleBlock;
}

This way, if you have two different variables called $exampleColor in two different modules,
only the one in the exampleModule module will be used, avoiding scope conflicts.

Nested Rules
The final new planned feature is the ability to nest rules. This feature is aimed at avoiding repetition
in your code and is performed by using the ampersand character (&) before a nested selector:

article header h1 {
 font-size: 200%;
 & a {
 color: #F00;
 & :hover {
 color: #000;
 }
 }
}

At present, you write the same rules like this:
article header h1 { font-size: 200%; }
article header h1 a { color: #F00; }
article header h1 a:hover { color: #000; }

In just this simple code, you have a lot of repetition; imagine how much more repetition occurs on a
large website with multiple stylesheets. Nested rules help to remove the repetition and make styles
easier to maintain.

Haptic Feedback
As we move into the era of portable computing, the power of touch is becoming more important.
Some touchscreen devices now provide haptic feedback — that is, they use force and vibration to
emulate the sensation of touching physical objects. A new idea from Nokia, CSS Haptics
(http://www.starlight-webkit.org/CSS/css3-haptics.html) proposes enabling haptic technology
through CSS.
This proposal involves two new properties: haptic-tap-type and haptic-tap-
strength. The first sets the feel of an element being tapped, and the second sets the strength of the
feedback. For example, you might have something like this:

E {
 haptic-tap-type: latched-button-down;
 haptic-tap-strength: strong;
}

This code provides the feel of a button that remains depressed after you push it with strong feedback.
You could also provide the same values with the haptic-tap shorthand:

E { haptic-tap: latched-button-down strong; }

This proposal is brand new, so no decision has been made as to its future. However, haptic feedback
is an example of what you might see as we move into a bold new age of personal computing using
CSS.

http://www.starlight-webkit.org/CSS/css3-haptics.html

Summary
Everything I’ve covered in this chapter faces an uncertain future — the implementation of CSS
depends not on any kind of mandate from the W3C but from the willingness of browser makers to
adopt it. Modules or individual properties remain unimplemented for many reasons, not all of them
obvious: business decisions, resources, or just plain politics could all stand in the way of any of these
new features becoming a standard.
But CSS is clearly moving beyond its humble beginnings as a way to provide simple decoration to
text documents and toward a future where it becomes almost a language in itself, capable of adapting
to the many devices that you will use to access the Web in the future.
I haven’t covered everything in this book — I could never hope to — but I think I’ve covered enough
to at least make you curious to find out what the next stages in the evolution of CSS will be. I urge you
to stay connected to the conversation that surrounds styling elements for the Web, to download
preview releases of browsers and create your own experiments, and to let the browser makers and
W3C know the results of your experiments. CSS3 has (mostly) been molded around the desires of
web developers, and your opinion and feedback is vital.
What changes are made to CSS3 as the specification reaches maturity will be interesting to see —
and whether a future revision of this book varies wildly from the one you’ve just read. But if the fluid
and uncertain nature of the final CSS3 spec doesn’t leave you excited about the possibilities of its
future, consider this: Work has already begun on the first module of CSS4.

Future CSS: Browser Support
 WebKit Firefox Opera IE

calc() No No (expected in Firefox 4; with prefix) No No (expected in IE9)

max() No No No No

min() No No No No

cycle() No No (expected in “a future version” of Firefox) No No

Grid Positioning No No No No

image() No No No No

Image Slices No No No No

Image Sprites No No No No

Grouping Selector No No (expected in Firefox 4; with prefix) No No

Constants and Variables No No No No

WebKit CSS extensions No No No No

Haptic Feedback No No No No

Appendix A. CSS3 Support in Current
Major Browsers

This appendix collects the browser support tables that are shown at the end of each chapter,
providing an at-a-glance summary of the implementation of the CSS3 properties and rules featured in
this book.
This listing is somewhat complicated by two factors: The first is that, as I’ve mentioned repeatedly,
CSS3 is still in a state of flux, and some properties are still very subject to change (box-shadow
was dropped and reinstated in the time I spent writing this book, for example); the second is that new
versions of browsers are released regularly and consistently, and each release sees a host of new
implementations.
In the following tables, I indicate implementation status in the four major browser types: WebKit,
Firefox, Opera, and Internet Explorer. The most up-to-date versions of those browsers I had available
to me when I began writing this book were:

WebKit Safari 4.04 and Chrome 6.0

Firefox Firefox 3.6 and Beta releases of Firefox 4.0

Opera Opera 10.5

Internet Explorer Internet Explorer 8

During the period I was writing this book, Safari 5, Opera 11, and Chrome 10.0 were officially
released, and Betas of Internet Explorer 9 (IE9) were also made available. Where possible, I updated
the support tables with any new or changed properties that were implemented in those browsers, but I
can’t be certain that they are 100 percent accurate — especially where IE9 is concerned.
I plan to keep updated versions of these tables on the website that accompanies this book
(http://www.thebookofcss3.com/), so check there regularly, particularly if you want to find out what’s
in store from Microsoft — IE9 is looking like an impressive new browser that could catapult certain
aspects of CSS3 into the mainstream.

http://www.thebookofcss3.com/

Media Queries (Chapter 2)
 WebKit Firefox Opera IE

Media Queries Yes Yes Yes No (expected in IE9)

Selectors (Chapter 3)
 WebKit Firefox Opera IE

Attribute Selectors Yes Yes Yes Yes

General Sibling Combinator Yes Yes Yes Yes

Pseudo-classes and Pseudo-elements (Chapter 4)
 WebKit Firefox Opera IE

Structural Pseudo-classes Yes Yes Yes No (expected in IE9)

:target Yes Yes Yes No (expected in IE9)

:empty Yes Yes Yes No (expected in IE9)

:root Yes Yes Yes No (expected in IE9)

:not Yes Yes Yes No (expected in IE9)

Pseudo-elements (new syntax) Yes Yes Yes No (expected in IE9)

UI element states Yes Yes Yes No (expected in IE9)

:selection Yes Yes Yes No (expected in IE9)

Web Fonts (Chapter 5)
 WebKit Firefox Opera IE

@font-face Yes Yes Yes Yes (.eot only; other formats expected in IE9)

font-size-adjust No Yes No No

font-stretch No No No No

Text Effects and Typographic Styles (Chapter 6)
 WebKit Firefox Opera IE

text-shadow Yes Yes Yes No

text-outline No No No No

text-stroke Yes No No No

text-align (new values) Yes Yes No No

text-align-last No No No Yes

word-wrap Yes Yes Yes Yes

text-wrap No No No No

text-rendering No Yes No No

Multiple Columns (Chapter 7)
 WebKit Firefox Opera IE

column-count Yes (with prefix) Yes (with prefix) No No

column-width Yes (with prefix) Yes (with prefix) No No

column-gap Yes (with prefix) Yes (with prefix) No No

column-rule Yes (with prefix) Yes (with prefix) No No

columns Yes (with prefix) No No No

column-span No No No No

break-* No No No No

Background Images and Other Decorative Properties
(Chapter 8)
 WebKit Firefox Opera IE

Multiple Background Images Yes Yes Yes No (expected
in IE9)

background-size Yes (with prefix in Safari 4
and earlier)

Yes (with prefix; expected in Firefox 4
without prefix)

Yes No (expected
in IE9)

background-clip Yes (with prefix in Safari 4
and earlier)

Yes (with prefix; expected in Firefox 4
without prefix)

Yes No (expected
in IE9)

background-origin Yes (with prefix in Safari 4
and earlier)

Yes (with prefix; expected in Firefox 4
without prefix)

Yes No (expected
in IE9)

background-repeat (new
values)

No No Yes No (expected
in IE9)

image-rect No Yes (with prefix) No No

mask-* Yes (with prefix) No No No

Border and Box Effects (Chapter 9)
 WebKit Firefox Opera IE

border-radius Yes (with prefix in Safari
4 and earlier)

Yes (with prefix; incorrect syntax on sub-properties;
expected in Firefox 4 without prefix)

Yes No
(expected
in IE9)

border-image Yes (with prefix) Yes (with prefix) Yes No

Multiple border-
color Values

No Yes No No

box-shadow Yes (with prefix) Yes (with prefix) Yes No

box-decoration-
break

No No No No

Color and Opacity (Chapter 10)
 WebKit Firefox Opera IE

opacity Yes Yes Yes No (expected in IE9)

RGBA Values Yes Yes Yes No (expected in IE9)

HSL Values Yes Yes Yes No (expected in IE9)

HSLA Values Yes Yes Yes No (expected in IE9)

currentColor Value Yes Yes Yes No (expected in IE9)

appearance Yes Yes No No

Gradients (Chapter 11)
 WebKit Firefox Opera IE

Gradients Yes (with prefix; incorrect syntax; correct syntax in future versions) Yes (with prefix) No No

Repeating Gradients No Yes (with prefix) No No

2D Transformations (Chapter 12)
 WebKit Firefox Opera IE

2D Transformations Yes (with prefix) Yes (with prefix) Yes (with prefix) No (expected in IE9 with prefix)

box-reflect Yes (with prefix) No No No

Transitions and Animations (Chapter 13)
 WebKit Firefox Opera IE

Transitions Yes (with prefix) No (expected in Firefox 4 with prefix) Yes (with prefix) No

Animations Yes (with prefix) No No No

3D Transformations (Chapter 14)
 WebKit Firefox Opera IE

3D Transformations Yes (with prefix) No No No

Flexible Box Layout (Chapter 15)
 WebKit Firefox Opera IE

Flexible Box Layout Yes (with prefix) Yes (with prefix) No No (possibly in IE9 with prefix)

Template Layout (Chapter 16)
 WebKit Firefox Opera IE

Template Layout No No No No

The Future of CSS (Chapter 17)
 WebKit Firefox Opera IE

calc() No No (expected in Firefox 4 with prefix) No No (expected in IE9)

max() No No No No

min() No No No No

cycle() No No (expected in “a future version” of Firefox) No No

Grid Positioning No No No No

image() No No No No

Image Slices No No No No

Image Sprites No No No No

Grouping Selector No No (expected in Firefox 4 with prefix) No No

Constants and Variables No No No No

WebKit CSS extensions No No No No

Haptic Feedback No No No No

Appendix B. Online Resources

In this appendix, I list some useful resources for finding out more about CSS3 and some tools that
help you build websites using the new properties and features to their full potential. A million and
one sites offer demonstrations and tricks; throw a stone at Google and you’ll hit 500 pages of them.
Although some are useful, many are notably less so, so I’ve tried to steer clear of “30 Awesome
Things You Can Do with CSS3!” blog posts and offer, instead, resources that I think are of more
practical value.
This list is very much a work in progress, and I aim to keep an updated list on the website that
accompanies the book, http://www.thebookofcss3.com/. If you know of any resources that you think I
should add, get in touch through the website and let me know.

http://www.thebookofcss3.com/

CSS Modules
The W3C’s own pages on CSS have a list showing the current status of all of the modules, which
should be your first port of call if you want to know what’s on the horizon. Each of the modules is
shown with its current and upcoming status — for example, the Backgrounds and Borders module
currently has Candidate Recommendation (CR) status and should soon become a Proposed
Recommendation (PR) — and all are grouped by priority, giving some indication of how likely they
are to be accepted. (For example, the Multi-column Layout Module you learned about in Chapter 7 is
High Priority, so you can expect to see it fast-tracked through the process.)
Below the summary list, each module’s journey through the recommendation process is shown, so you
can see its history. Each version is archived and listed so you can, if you so wish, take a look at
which properties survived and which got culled:

http://www.w3.org/Style/CSS/current-work

http://www.w3.org/Style/CSS/current-work

Browsers
Each of the four main browser engines has a dedicated documentation and resource website, which
made writing this book a lot easier than it would have been otherwise. Although I still had to test all
of my examples and demonstrations in each different browser, knowing which properties should be
supported, which require a prefix, and so on, was extremely useful in planning those examples in the
first place.

WebKit
Although the WebKit project itself doesn’t have too much in the way of documentation that’s useful
for your purposes (as is, unfortunately, all too common with many open source projects), Apple has a
wealth of it at their Safari Developer site:

http://developer.apple.com/safari/

The most relevant section is their CSS reference, which lists all of the supported properties,
including those with a -webkit- prefix:

http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef/

http://developer.apple.com/safari/
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef/

Firefox
Firefox bucks the open source documentation trend I just mentioned with their fantastic CSS reference
on their excellent Mozilla Developer Network. This site explains all of the properties in detail, with
examples and illustrations, and I referred to it on many, many occasions while writing this book:

https://developer.mozilla.org/en/CSS_Reference/

They also list all of the -moz- prefixed properties on a single page:
https://developer.mozilla.org/en/CSS_Reference/Mozilla_Extensions/

https://developer.mozilla.org/en/CSS_Reference/
https://developer.mozilla.org/en/CSS_Reference/Mozilla_Extensions/

Opera
The layout engine used in Opera is called Presto, and the latest version is 2.7, which powers Opera
11. Opera’s documentation page helpfully lists all of the CSS supported in Presto, with exhaustively
detailed tables of the exact implementation levels:

http://www.opera.com/docs/specs/presto27/

http://www.opera.com/docs/specs/presto27/

Internet Explorer
The Microsoft Developer Network has a page called CSS Compatibility and Internet Explorer, which
lists all of the CSS features implemented in many versions of their browser:

http://msdn.microsoft.com/en-us/library/cc351024(VS.85).aspx

If IE9 has not yet been released as you read this, the IE9 Guide for Developers contains a wealth of
information about forthcoming CSS3 support:

http://msdn.microsoft.com/en-gb/ie/ff468705.aspx

http://msdn.microsoft.com/en-us/library/cc351024(VS.85).aspx
http://msdn.microsoft.com/en-gb/ie/ff468705.aspx

Browser Support
In addition to the tables I’ve provided in Appendix A, a number of resources are available that show
the level of support for CSS3 in all browsers.

When Can I Use . . .
When Can I Use covers all emerging web technologies (not just CSS3) and shows old, current, and
future versions of browsers, listing the availability of features in each. If a feature is available in a
particular browser, this site shows which version was the first to offer that feature. And if the feature
is not available, the site shows when it may be implemented in the future. When Can I Use is very
complete, and you can find it at:

http://www.caniuse.com/

http://www.caniuse.com/

Quirks Mode
Quirks Mode is a venerable website, which for many years has been documenting and comparing
standards support, bugs, and — as the title suggests — quirks in browsers. They have tables detailing
CSS3 implementation that, although not extensive, are nonetheless quite complete:

http://www.quirksmode.org/css/contents.html

http://www.quirksmode.org/css/contents.html

Find Me By IP
Find Me By IP has a suite of tools to show you which CSS3 (and other technologies’) features are
supported by the browser you’re using. The results are binary: Either your browser supports a feature
or it doesn’t — no concession is made as to whether the implementation has any quirks or
peculiarities. Here’s the URL:

http://www.fmbip.com/#css3

http://www.fmbip.com/#css3

Feature Detection and Simulation
If you’re building a site using CSS3, one of your major considerations must be what happens in
browsers that don’t have support for it (*cough* IE *cough*). Most of the time you can work around
the problem by simply paying attention to the fallback values, but on occasion you will need some
extra help.

Perfection Kills
JavaScript is ideal for this purpose; you can use the Style object to test if a property is supported
and perform actions based on the result of that test. If you want to test on a property-by-property
basis, the Perfection Kills blog has a good overview of how to do so:

http://www.perfectionkills.com/feature-testing-css-properties/

http://www.perfectionkills.com/feature-testing-css-properties/

Modernizr
A better alternative, however, might be to use Modernizr. This lightweight JavaScript library tests the
visitor’s browser for CSS3 support and adds a class to the html element for each property
supported. Here’s an example:

<html class="boxshadow csstransitions opacity">

Then you can use targeted CSS rules, for instance:
div { border: 2px solid black; }
.boxshadow div {
 border: none;
 box-shadow: 2px 2px black;
}

In this example, the div element has a 2px black border in browsers that don’t support box-
shadow and a black shadow but no border in browsers that do. If this is appealing, you can
download Modernizr at:

http://www.modernizr.com/

http://www.modernizr.com/

CSS3 Pie
Taking the opposite approach is CSS3 Pie, which uses proprietary Microsoft features to simulate
some CSS3 properties in IE8 and below. Adding an HTML component to your style with the
behavior property leverages Vector Markup Language (VML), a Microsoft-only graphics feature
similar to SVG, which allows you to use border-image, border-radius, box-shadow, and
more. Whether you should or not is a different matter; I say that designs should be allowed to degrade
gracefully in older browsers, but your mileage may vary. Have a look and make up your own mind:

http://www.css3pie.com/

http://www.css3pie.com/

Code-Generation Tools
Remembering all of the small implementation differences in prefixed properties can be quite difficult
if you don’t have this book on hand, and typing out all of those properties manually can be an onerous
task. A few websites have realized this and created tools that take the donkey work out of writing
cross-browser code.

CSS3, Please!
CSS3, Please! not only helps you get around the repetition of typing all of the different prefixed
properties required for many features but also provides a live preview of the features in question.
Updating a value in any property automatically updates it in all of its sibling properties, so you can
copy and paste the code when you’re satisfied with its output. CSS3, Please! also goes a step further
and replicates some CSS3 features with proprietary Microsoft filters, but if I were you, I’d ignore
those as they’re nonstandard. Here’s the URL:

http://www.css3please.com

http://www.css3please.com

CSS3 Generator
CSS3 Generator performs a similar task but with a few more properties and a quite different
interface. It, too, provides Microsoft-only filters and allows only pixel-length values, but this tool is a
useful little helper:

http://www.css3generator.com/

http://www.css3generator.com/

CSS3 Gradient Generator
Back in Chapter 11, I discussed CSS gradients and spent a long time explaining the difference
between the Firefox and WebKit syntaxes. The CSS3 Gradient Generator takes all of the hard work
and calculation out of creating gradients and generates cross-browser code to your specifications.
Although this tool doesn’t allow for all of the possible options, it should help you out in most cases.
Check it out:

http://gradients.glrzad.com/

http://gradients.glrzad.com/

Type Folly
Type Folly is a tool built solely for experimenting with typographic features. Photoshop users should
be instantly familiar with its interface, which allows you to create and edit text layers, adding font,
text, and 2D transformation properties to each. The tool seems a bit fiddly for my liking, but I’m sure
that with practice, you might find it useful for typographical experimentation:

http://www.typefolly.com

http://www.typefolly.com

Web Fonts
Web fonts are the hot new thing in web design, and a new web font service seems to get launched
every week. Some are free; some you have to pay for; some allow you to host the fonts yourself and
some are cloud-based; some require JavaScript; and others can be called directly in the font stack.
Rather than provide an exhaustive list, I’ll cover a few of the more interesting ones.

Typekit
First to market (I think) was Typekit, which is a subscription service. For a yearly fee, you get access
to a wide range of fonts, which you organize into kits. Each kit has a unique ID that you refer to with a
script element in the head of your page, and you apply the web fonts to your elements with a series
of unique class names. Typekit is a pretty elegant solution, although the annual subscription makes it
perhaps more suitable to those who run a range of websites:

http://www.typekit.com

http://www.typekit.com

Fontdeck
Fontdeck is also subscription-based, but it’s a per-font rather than blanket subscription. Their solution
is somewhat different than Typekit’s: First, you call a unique stylesheet using the link element, and
then you name each of your chosen fonts in the font stack as you usually would. This solution has the
advantage of not requiring JavaScript. The caveat of this service, however, is that each font is
licensed both per-year and per-site, so the price could very quickly start stacking up:

http://www.fontdeck.com

http://www.fontdeck.com

Fonts.com Web Fonts
Another similar service is Fonts.com Web Fonts. This service offers a range of some 9,000 fonts from
some of the most famous type foundries, such as Linotype and Monotype, and includes fonts like
Helvetica and Frutiger, which are unavailable anywhere else. It uses a (somewhat clumsy) pure
JavaScript solution that sits between the implementations of Typekit and Fontdeck in the way it
works. They have a range of pricing options, starting from free:

http://webfonts.fonts.com

http://webfonts.fonts.com

Google Font API
Recently Google entered the game with the Google Font API, which provides an easy way to embed
selected free and open source fonts in your pages. Google uses a very similar method to that of
Fontdeck (but without requiring any account or payment): You call a stylesheet containing the
@font-face rule — either with link or @import — and then place the font in your stack:

<link href="http://fonts.googleapis.com/css?family=Cardo" rel="stylesheet">
<style>
h1 { font-family: Cardo, serif; }
</style>

Only a limited set of fonts are available currently, but the selection is sure to grow over time:
http://code.google.com/webfonts

http://code.google.com/webfonts

Web FontFonts
If renting fonts is not your idea of good value, you’ll probably want to buy them. I mentioned the new
WOFF format in Chapter 5, and one of the first sites to sell the format is FontShop’s Web FontFonts.
They sell a range of fonts (in both WOFF and EOT formats) that you can host yourself; interestingly,
they also have a deal with Typekit that allows you to buy the fonts from FontShop and then host them
with Typekit, which means you can embed them in browsers that don’t support either of the sold
formats. Clever. See it for yourself:

http://www.fontshop.com/fontlist/n/web_fontfonts

http://www.fontshop.com/fontlist/n/web_fontfonts

Font Squirrel
I also mentioned Font Squirrel in Chapter 5, but they deserve another mention here because they
provide a great range of free fonts that come @font-face ready:

http://www.fontsquirrel.com

http://www.fontsquirrel.com

Fontspring
Font Squirrel also has a commercial partner, Fontspring, that provides the same service but with
paid-for fonts. You can buy single-site or unlimited licenses, and the fonts come from a range of
independent foundries:

http://www.fontspring.com

http://www.fontspring.com

Other Resources
The following sites are more general resources; although not as immediately useful as the tools listed
previously, they’re definitely ones you’ll want to refer to in order to immerse yourself in the rich
possibilities of CSS3.

CSS3.info
One of the first blogs to discuss and show the possibilities of CSS3 was CSS3.info, for which I wrote
many articles between 2006 and 2009. This blog features the Automated Selectors Test, which was
used as a benchmark by browser makers, and the articles and subsequent discussions helped to shape
the syntax of some properties (notably, border-radius). With increased competition nowadays,
CSS3.info is no longer as relevant as it used to be (and I’m not just saying that because I no longer
write for them), but it still has a rich archive of tutorials and demonstrations:

http://www.css3.info

http://www.css3.info

CSS3 Watch
CSS3 Watch collects, in their words, “examples of creative, innovative, and unexpected use of
CSS3.” I would add to that list “nonsemantic” and “purely decorative,” as many of the creations they
demonstrate would probably best be done with other technologies. But as a showcase of CSS3’s
possibilities, and perhaps as a source of inspiration, I’d say it’s quite impressive. Check it out:

http://www.css3watch.com

http://www.css3watch.com

CSS3 Cheat Sheet
And finally, if you think this is all too much to remember, Smashing Magazine has provided a five-
page PDF CSS3 Cheat Sheet that lists every single value for every single property in every single
module — quite an achievement and incredibly useful, although be aware that some properties have
changed since this document was created:

http://www.smashingmagazine.com/2009/07/13/css-3-cheat-sheet-pdf

http://www.smashingmagazine.com/2009/07/13/css-3-cheat-sheet-pdf

Appendix C. About the Technical Reviewer
Joost de Valk is a well-known specialist in the fields of search engine optimization (SEO), web
design, and web development, and often speaks on these topics. Currently, Joost is a freelance
consultant in SEO, web development, and online marketing strategy, working for such clients as eBay,
RTL, salesforce.com, and the European Patent Office. He has built many a plug-in for WordPress
(with over 3.5 million downloads), hosts the weekly WordPress Podcast, and blogs about all that and
more on his blog, http://www.yoast.com/.

http://www.yoast.com/

Index
A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index
markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place
in the text in which the marker appears.

Symbols
­ HTML code, A Note on Readability
-moz- prefix, Let’s Get Started: Introducing the Syntax, Let’s Get Started: Introducing the Syntax,
Pixel Ratio, Mozilla-Specific Media Features, font-stretch, Multiple Columns, Multiple Background
Images, Background Clip and Origin, Background Clip and Origin, Background Clip and Origin,
background-repeat, border-radius Shorthand, Using Images for Borders, Gradients, Gradients, Linear
Gradients in WebKit, Radial Gradients in Firefox, Using Radial Gradients, Multiple Gradients,
Multiple Gradients, 2D Transformations, Transforming Elements with Matrices, Transitions and
Animations, Flexible Box Layout, The box Value in Firefox, Cross-Browser Flex Box with
JavaScript, Calculation Functions, Image Slices, Grouping Selectors, CSS Modules

and background-clip property, Background Clip and Origin, Background Clip and Origin
and background-origin property, Background Clip and Origin
and background-size property, Multiple Background Images
and border-radius property, border-radius Shorthand
and box-sizing property, Let’s Get Started: Introducing the Syntax
and calculations, Calculation Functions
and column layout, Multiple Columns
and flexible box layout, Flexible Box Layout, The box Value in Firefox, Cross-Browser Flex Box
with JavaScript
and gradients, Gradients, Gradients, Linear Gradients in WebKit, Radial Gradients in Firefox,
Using Radial Gradients, Multiple Gradients, Multiple Gradients

linear, Gradients, Linear Gradients in WebKit
multiple, Multiple Gradients
radial, Radial Gradients in Firefox, Using Radial Gradients
repeating, Multiple Gradients

and Grouping Selector, Grouping Selectors
and image-rect property, background-repeat, Image Slices
and Media Queries, Pixel Ratio, Mozilla-Specific Media Features
and multicolored borders, Using Images for Borders
and OpenType fonts, font-stretch
and transform property, 2D Transformations, Transforming Elements with Matrices
and transitions, Transitions and Animations

-ms- prefix, Let’s Get Started: Introducing the Syntax, Browser-Specific Prefixes, Resizing Elements,
2D Transformations, Transforming Elements with Matrices, Flexible Box Layout, Cross-Browser
Flex Box with JavaScript

and flexible box layout, Flexible Box Layout, Cross-Browser Flex Box with JavaScript
and text-align property, Resizing Elements
and transform property, 2D Transformations, Transforming Elements with Matrices

-o- prefix, Browser-Specific Prefixes, Restricting Overflow, 2D Transformations, Transforming
Elements with Matrices, Transitions and Animations

and text-overflow property, Restricting Overflow
and transform property, 2D Transformations, Transforming Elements with Matrices
and transitions, Transitions and Animations

-webkit- prefix, Let’s Get Started: Introducing the Syntax, Aspect Ratio, Adding Definition to Text:
text-outline and text-stroke, Setting Text Rendering Options, Multiple Columns, Combining column-
count and column-width, Multiple Background Images, Background Clip and Origin, Image Masks,
border-radius Shorthand, Gradients, Linear Gradients in Firefox, Radial Gradients in Firefox, Using
Radial Gradients, 2D Transformations, Transforming Elements with Matrices, Transforming Elements
with Matrices, Transitions and Animations, Triggers, Key Frames, 3D Transformations, Flexible Box
Layout, The box Value in Firefox, Cross-Browser Flex Box with JavaScript, CSS Modules

and 3D transformations, 3D Transformations
and animations, Triggers, Key Frames
and background-clip property, Background Clip and Origin
and background-size property, Multiple Background Images
and border-radius property, border-radius Shorthand
and column layout, Multiple Columns, Combining column-count and column-width
and flexible box layout, Flexible Box Layout, The box Value in Firefox, Cross-Browser Flex Box
with JavaScript
and gradients, Gradients, Linear Gradients in Firefox, Radial Gradients in Firefox, Using Radial
Gradients

linear, Linear Gradients in Firefox
radial, Radial Gradients in Firefox, Using Radial Gradients

and image masks, Image Masks
and pixel ratio, Aspect Ratio
and reflections, Transforming Elements with Matrices
and text rendering, Setting Text Rendering Options
and text-stroke property, Adding Definition to Text: text-outline and text-stroke
and transform property, 2D Transformations, Transforming Elements with Matrices
and transitions, Transitions and Animations

2D Transformations Module, 2D Transformations, Reflections with WebKit

browser support, Reflections with WebKit
3D elements, 3D Transformations
3D Transforms Module, 3D Transformations, 3D Transformations, Transform Style, Rotation Around

an Axis, Rotation Around an Axis, Translation Along the Axis, Scaling, The Transformation Matrix,
Perspective, Perspective, The perspective and perspective-origin Properties, Showing or Hiding the
Backface, Summary

browser support, Summary
perspective property, Perspective
perspective-origin property, Perspective
showing or hiding backface, Showing or Hiding the Backface
transform property, Transform Style, Rotation Around an Axis, Rotation Around an Axis,
Translation Along the Axis, The Transformation Matrix

perspective function, The Transformation Matrix
rotate function, Rotation Around an Axis
scale function, Translation Along the Axis
translate along axis, Rotation Around an Axis

transform-origin property, The perspective and perspective-origin Properties
transformation matrix, Scaling

::selection pseudo-element, Pseudo-elements, Summary

browser support, Summary
::slot() pseudo-element, Multiple Rows
:active pseudo-class, as trigger, Multiple Transitions
:after pseudo-element, Pseudo-elements
:before pseudo-element, Pseudo-elements
:first-child pseudo-class, Structural Pseudo-classes
:first-letter pseudo-element, Pseudo-elements
:first-line pseudo-element, Pseudo-elements
:hover pseudo-class, Transitions and Animations, Transitions, Shorthand

background color transition for, Transitions and Animations
transition for, Shorthand

@define rule, Image Sprites
@font-face Generator (Font Squirrel), Font Formats
@font-face rule, Web Fonts, Web Fonts, The @font-face Rule, A “Bulletproof” @font-face Syntax,
Using Local Fonts, Using Local Fonts, Web Fonts: Browser Support

and font management software, Using Local Fonts
browser support, Web Fonts: Browser Support
bulletproof syntax, A “Bulletproof” @font-face Syntax
for multiple, The @font-face Rule
src property, Using Local Fonts

@import rule, The Advantages of Media Queries, Constants and Variables
@keyframes rule, Key Frames
@media rule, Syntax
@mix rule, WebKit CSS Extensions
@module rule, Extending Variables Using Mixins
@sprite rule, Image Slices
@use directive, CSS Modules
@var rule, CSS Variables
@variables rule, Constants and Variables
“quirks” mode, Let’s Get Started: Introducing the Syntax
“web-safe” system fonts, Web Fonts

A
accessibility, testing colors for, Multiple Shadows
active animation, setting, Shorthand
adjacent keyword, for punctuation-trim property, Setting Text Rendering Options
Adjacent Sibling Combinator, The General Sibling Combinator
alignment, Aligning Text, Alignment, Alignment

of box elements, Alignment
of text, Aligning Text

all keyword, for transition-property property, Property
Alpha color channel, Color and Opacity, Setting Transparency with the opacity Property, Hue,
Saturation, Lightness

HSL with, Hue, Saturation, Lightness
alternate keyword, for animation-direction property, Delay
& (ampersand character), for nested selector, CSS Modules
ampersand character (&), for nested selector, CSS Modules

and operator, Syntax, Pixel Ratio, Pixel Ratio

for chaining queries, Pixel Ratio
for Media Query, Syntax

Android devices, device-width for, Device Width and Height
angle argument, for linear gradient, Linear Gradients in Firefox
Animations Module, Transitions and Animations, Triggers, More Complex Animations, Key Frames,
Animation Properties, Name, Name, Name, Delay, Delay, Shorthand, Shorthand, The Complete
Animations Example, Multiple Animations, Multiple Animations

browser support, Multiple Animations
complete example, The Complete Animations Example
key frames for, Triggers
multiple, Multiple Animations
properties, Key Frames, Animation Properties, Name, Name, Name, Delay, Delay, Shorthand

animation-delay property, Name
animation-direction property, Delay
animation-duration property, Name
animation-iteration-count property, Delay
animation-name property, Key Frames
animation-play-state property, Shorthand
animation-timing-function property, Name

shorthand, Shorthand
anti-aliasing, Setting Text Rendering Options
antialiased keyword, for -webkit-font-smoothing property, Setting Text Rendering Options
appearance property, The Color Variable: currentColor, Matching the Operating System’s
Appearance, The Future of CSS

browser support, Matching the Operating System’s Appearance
Arbitrary Substring Attribute Value selector, Ending Substring Attribute Value Selector, Prescriptive
Columns: column-count
artificial font faces, vs. true, True vs. Artificial Font Faces
aspect ratio, testing browser's, Orientation
* (asterisk), for Arbitrary Substring Attribute Value selector, Ending Substring Attribute Value
Selector

asterisk (*), for Arbitrary Substring Attribute Value selector, Ending Substring Attribute Value
Selector
@ (at sign), for element default content, Setting Both Row Height and Column Width
at sign (@), for element default content, Setting Both Row Height and Column Width
attribute selectors, Selectors, Attribute Selectors, Attribute Selectors, Beginning Substring Attribute
Value Selector, Ending Substring Attribute Value Selector, Arbitrary Substring Attribute Value
Selector, The General Sibling Combinator

Arbitrary Substring, Ending Substring Attribute Value Selector
Beginning Substring, Attribute Selectors
browser support, The General Sibling Combinator
chaining, Arbitrary Substring Attribute Value Selector
Ending Substring, Beginning Substring Attribute Value Selector

attributes, details based on devices, Media Queries
auto keyword, word-wrap, Different Distribution Methods in Firefox and WebKit, Different
Distribution Methods in Firefox and WebKit

for column-fill property, Different Distribution Methods in Firefox and WebKit
for text-rendering property, word-wrap

axes, Text Effects and Typographic Styles, Translation Along the Axis

B
backface of elements, showing or hiding, Showing or Hiding the Backface
background color of link, changing with target selector, target
background images, Width and Height, Device Width and Height, Background Images, Multiple
Background Images, Multiple Background Images, Background Clip and Origin, background-repeat,
Image Masks, border-radius Shorthand

as borders, border-radius Shorthand
avoiding download, Device Width and Height
basing on browser window size, Width and Height
browser support, Image Masks
clipping, background-repeat
multiple, Background Images
position of, Background Clip and Origin
scaling, Multiple Background Images

background-* properties, Pixel Ratio, Pseudo-elements, Background Images, Background Images,
Background Images, Multiple Background Images, Multiple Background Images, Background Size,
Background Clip and Origin, background-repeat, Multiple color-stop Values, Showing or Hiding the
Backface, Showing or Hiding the Backface, Slots and the ::slot() Pseudo-element

backface-visibility property, Showing or Hiding the Backface
background-clip property, Background Size
background-color property, Pseudo-elements, Multiple Background Images

::selection pseudo-element for applying, Pseudo-elements
background-image property, Background Images, Multiple color-stop Values

for applying gradients, Multiple color-stop Values
background-origin property, Background Clip and Origin
background-position property, Background Images
background-repeat property, Background Images, background-repeat
background-size property, Pixel Ratio, Multiple Background Images
for ::slot() pseudo-element, Slots and the ::slot() Pseudo-element

Backgrounds and Borders Module, Background Images, Giving Your Borders Rounded Corners,
Adding Drop Shadows

browser support, Adding Drop Shadows
` (backtick character), for constants, Constants and Variables
backtick character (`), for constants, Constants and Variables
balance keyword, for column-fill property, Different Distribution Methods in Firefox and WebKit
bandwidth allowances, background image and, Using Media Queries in the Real World
baseline keyword, for box-align property, Alignment
Basic User Interface Module, Matching the Operating System’s Appearance
Beginning Substring Attribute Value selector, Attribute Selectors
behavior property, CSS3 Pie
behavior, vs. presentation, Transitions and Animations
block-axis keyword, for box-orient property, Grouping Flexible Boxes
blur-radius option, Applying Dimensional Effects: text-shadow, Multiple Shadows, Multicolored
Borders, Multicolored Borders

for box-shadow property, Multicolored Borders
for text-shadow property, Applying Dimensional Effects: text-shadow, Multiple Shadows

border-box keyword, Let’s Get Started: Introducing the Syntax, Background Size, Background Size,
Background Clip and Origin

for background-clip property, Background Size
for background-origin property, Background Clip and Origin
for border-box property, Let’s Get Started: Introducing the Syntax

border-color property, RGBA implementation, RGBA and Graceful Degradation
border-image property, border-radius Shorthand, Adding Drop Shadows

browser support, Adding Drop Shadows
border-image-outset property, Using Images for Borders
border-image-repeat property, Using Images for Borders
border-image-slice property, Using Images for Borders
border-image-source property, Using Images for Borders
border-image-width property, Using Images for Borders
border-radius property, Giving Your Borders Rounded Corners, border-radius Shorthand, border-
radius Shorthand, Adding Drop Shadows

browser support, border-radius Shorthand, Adding Drop Shadows
shorthand, border-radius Shorthand

borders, Let’s Get Started: Introducing the Syntax, Image Masks, Border and Box Effects, Giving
Your Borders Rounded Corners, border-radius Shorthand, Using Images for Borders, Adding Drop
Shadows, Adding Drop Shadows

and element width, Let’s Get Started: Introducing the Syntax
browser support, Adding Drop Shadows
effects, Border and Box Effects
images for, border-radius Shorthand
mask as, Image Masks
multicolored, Using Images for Borders
rounded corners, Giving Your Borders Rounded Corners

Bos, Bert, Template Layout
both value, for resize property, Resizing Elements
bottom keyword, Giving Your Borders Rounded Corners, Giving Your Borders Rounded Corners,
Perspective

for border-radius property, Giving Your Borders Rounded Corners
for perspective-origin property, Perspective

box effects, browser support, Adding Drop Shadows
box keyword, for display property, Flexible Box Layout
box-* properties, Cross-Browser Flex Box with JavaScript
box-align property, Alignment, Same-Axis Alignment
box-direction property, Changing Orientation, Cross-Browser Flex Box with JavaScript
box-flex property, Making the Boxes Flexible, Zero Values and Firefox Layouts, Cross-Browser Flex
Box with JavaScript
box-flex-group property, Grouping Flexible Boxes
box-lines property, Same-Axis Alignment
box-ordinal-group property, Reversing the Order, Cross-Browser Flex Box with JavaScript
box-orient property, Grouping Flexible Boxes, Alignment, Cross-Browser Flex Box with JavaScript
box-pack property, Alignment, Same-Axis Alignment
box-shadow property, Multicolored Borders, Adding Drop Shadows, The Alpha Channel

browser support, Adding Drop Shadows
box-sizing property, Module Status and the Recommendation Process, Let’s Get Started: Introducing
the Syntax, Let’s Get Started: Introducing the Syntax
break-after property, Containing Elements within Columns
break-before property, Containing Elements within Columns
break-inside property, Containing Elements within Columns
break-word value, for word-wrap property, Aligning Text
browser support, Mozilla-Specific Media Features, The General Sibling Combinator, Summary, Web
Fonts: Browser Support, Summary, Summary, Elements Breaking over Multiple Columns, Image
Masks, Adding Drop Shadows, Matching the Operating System’s Appearance, Summary, Reflections
with WebKit, Multiple Animations, Multiple Animations, Summary, Summary, Default Content: The
@ Sign, Summary, CSS3 Support in Current Major Browsers, Opera

CSS future possibilities, Summary
for 2D Transformations Module, Reflections with WebKit
for 3D Transforms Module, Summary
for Animations Module, Multiple Animations
for Backgrounds and Borders Module, Image Masks, Adding Drop Shadows
for Color Module, Matching the Operating System’s Appearance
for DOM and attribute selectors, Summary
for Flexible Box Layout Module, Summary
for Fonts Module Level 3, Web Fonts: Browser Support
for Image Values and Replaced Content Module, Summary
for Media Queries Module, Mozilla-Specific Media Features
for Multi-column Layout Module, Elements Breaking over Multiple Columns
for Selectors Level 3 Module, The General Sibling Combinator
for Template Layout Module, Default Content: The @ Sign
for Text Level 3 Module, Summary
for Transitions Module, Multiple Animations
web resources, Opera

browsers, What CSS3 Is and How It Came to Be, A Brief History of CSS3, Let’s Get Started:
Introducing the Syntax, Width and Height, CSS Modules

and prefixes, Let’s Get Started: Introducing the Syntax
implementation of CSS2, A Brief History of CSS3
web resources, CSS Modules
width, Width and Height

buttons, in WebKit on Ubuntu, The Color Variable: currentColor

C
calc() function, The Future of CSS
Candidate Recommendation status, CSS3 Is Modular
canvas element, Gradients
 ̂(caret), for Beginning Substring Attribute Value selector, Attribute Selectors

caret ()̂, for Beginning Substring Attribute Value selector, Attribute Selectors
Cartesian coordinate system, Understanding Axes and Coordinates, 3D Elements in CSS

case sensitivity, attribute selector and, Beginning Substring Attribute Value Selector
center keyword, Perspective, Alignment, Alignment, Alignment

for box-align property, Alignment
for box-pack property, Alignment
for perspective-origin property, Perspective

centering elements inside parent, Same-Axis Alignment
chaining attribute selectors, Arbitrary Substring Attribute Value Selector
checkbox input element, UI Element States
checked pseudo-class selector, not
child boxes, Making the Boxes Flexible, Making the Boxes Flexible, Making the Boxes Flexible

dynamic resizing to fit parent, Making the Boxes Flexible
unequal widths, Making the Boxes Flexible

child elements, opacity property inheritance, Setting Transparency with the opacity Property
Chrome. See WebKit, Web Fonts
Chunk font, The @font-face Rule
circle keyword, Radial Gradients in Firefox, Using Radial Gradients, Using Radial Gradients

for -moz-radial-gradient property, Using Radial Gradients
for radial gradient, Radial Gradients in Firefox

circular radial gradient, Using Radial Gradients
class names, Pseudo-classes and Pseudo-elements
class selectors, Selectors
classes. See pseudo-classes, Pseudo-classes and Pseudo-elements
clip keyword, of text-overflow property, Restricting Overflow
clipping background images, background-repeat
closest-side keyword, for -moz-radial-gradient property, Using Radial Gradients
code-generation tools, CSS3 Pie
color, target, Applying Dimensional Effects: text-shadow, Adding Definition to Text: text-outline and
text-stroke, Using Images for Borders, Multicolored Borders, Color and Opacity, Color and Opacity,
Color and Opacity, Color and Opacity, Setting Transparency with the opacity Property, Setting
Transparency with the opacity Property, Setting Transparency with the opacity Property, Setting
Transparency with the opacity Property, The Alpha Channel, RGBA and Graceful Degradation, Hue,
Saturation, Lightness, The Color Variable: currentColor, Matching the Operating System’s
Appearance, Grouping Selectors

Alpha color channel, Color and Opacity, Setting Transparency with the opacity Property
background, of link, target
currentColor variable, Hue, Saturation, Lightness, Matching the Operating System’s Appearance,
Grouping Selectors
HSL (Hue, Saturation, Lightness), RGBA and Graceful Degradation
in CSS2, Color and Opacity
matching from operating system, The Color Variable: currentColor
multiple for borders, Using Images for Borders
new and extended values, Setting Transparency with the opacity Property
of drop shadow, Multicolored Borders
of text shadow, Applying Dimensional Effects: text-shadow
of text stroke, Adding Definition to Text: text-outline and text-stroke
RGB (Red, Green, Blue) model, Color and Opacity
RGBA (Red, Green, Blue, Alpha) model, Setting Transparency with the opacity Property, The
Alpha Channel

and graceful degradation, The Alpha Channel
Color Module, Color and Opacity, Matching the Operating System’s Appearance

browser support, Matching the Operating System’s Appearance
color property, Pseudo-elements, The Alpha Channel, The Alpha Channel

::selection pseudo-element for applying, Pseudo-elements
alpha value, The Alpha Channel

color stop, Gradients, Using Linear Gradients, Using Linear Gradients

adding to linear gradient, Using Linear Gradients
in gradient, Gradients

color-stop() function, Using Linear Gradients, Radial Gradients in Firefox, Multiple color-stop
Values

for radial gradients, Multiple color-stop Values
for WebKit, Using Linear Gradients

column-count property, Multiple Columns, Different Distribution Methods in Firefox and WebKit

combining with column-width, Different Distribution Methods in Firefox and WebKit
column-fill property, Different Distribution Methods in Firefox and WebKit

column-gap property, Combining column-count and column-width
column-rule property, Combining column-count and column-width
column-rule-color property, Column Gaps and Rules
column-rule-style property, Column Gaps and Rules
column-rule-width property, Column Gaps and Rules
column-span element, Containing Elements within Columns
column-width property, Prescriptive Columns: column-count, Different Distribution Methods in
Firefox and WebKit
columns, Multiple Columns, Multiple Columns, Prescriptive Columns: column-count, A Note on
Readability, A Note on Readability, Combining column-count and column-width, Column Gaps and
Rules, Containing Elements within Columns, Containing Elements within Columns, Elements
Breaking over Multiple Columns, Slots and the ::slot() Pseudo-element

browser support for, Elements Breaking over Multiple Columns
containing elements within, Containing Elements within Columns
elements spanning multiple, Containing Elements within Columns
gaps and rules, Combining column-count and column-width
layout methods, Multiple Columns, Prescriptive Columns: column-count, A Note on Readability

distribution differences in Firefox and WebKit, A Note on Readability
dynamic columns, Prescriptive Columns: column-count

lines between, Column Gaps and Rules
readability, A Note on Readability
setting height and width, Slots and the ::slot() Pseudo-element

combinator, Selectors
common ligatures, OpenType Features
constants, future possibilities, Grouping Selectors
contain keyword, Background Size, Background Size, Using Radial Gradients

for -moz-radial-gradient property, Using Radial Gradients
for background-size property, Background Size

content-box keyword, Let’s Get Started: Introducing the Syntax, Background Size, Background Size,
Background Clip and Origin

for background-clip property, Background Size
for background-origin property, Background Clip and Origin
for border-box property, Let’s Get Started: Introducing the Syntax

coordinates, Text Effects and Typographic Styles
corners for borders, rounded, Giving Your Borders Rounded Corners
cos (cosine) function, Transforming Elements with Matrices
cover keyword, Background Size, Background Size, Using Radial Gradients

for background-size property, Background Size
for radial gradient, Using Radial Gradients

CSS Constants proposal, Constants and Variables
CSS Effects, Image Masks
CSS Pixel unit (px), Pixel Ratio
CSS Variables, Constants and Variables
CSS, future-proofing experimental, Browser-Specific Prefixes
CSS2.1, A Brief History of CSS3, CSS3 Is Modular
CSS3, What CSS3 Is and How It Came to Be, A Brief History of CSS3, The Future of CSS, The
Future of CSS, The Future of CSS, Cycle, The Grid Positioning Module, Extended Floats, Extending
the Possibilities of Images, Grouping Selectors, CSS Modules, Nested Rules, Haptic Feedback

future possibilities, The Future of CSS, Cycle, The Grid Positioning Module, Extended Floats,
Grouping Selectors

constants and variables, Grouping Selectors
cycling, Cycle
GCPM (Generated Content for Paged Media) module, Extended Floats
Grid Positioning Module, The Grid Positioning Module

Haptics, The Future of CSS, Extending the Possibilities of Images, CSS Modules, Nested Rules,
Haptic Feedback

images, Extending the Possibilities of Images
mathematical operations, The Future of CSS
modules, CSS Modules
nested rules, Nested Rules

history, What CSS3 Is and How It Came to Be
modules, A Brief History of CSS3

CSS3 Cheat Sheet, CSS3 Cheat Sheet
CSS3 Generator, CSS3 Generator
CSS3 Gradient Generator, CSS3 Pie
CSS3 Pie, CSS3 Pie
CSS3 Watch, CSS3 Watch
CSS3, Please!, CSS3, Please!
CSS3.info, CSS3.info
cubic-bezier function, for transition-timing-function property, Timing Function
current state, selecting UI elements based on, not
currentColor variable, Hue, Saturation, Lightness, Matching the Operating System’s Appearance,
Grouping Selectors

browser support, Matching the Operating System’s Appearance
cycling, Cycle

D
datetime attribute, Beginning Substring Attribute Value Selector
dConstruct conference, The Advantages of Media Queries, The Advantages of Media Queries
declaration, value of, Let’s Get Started: Introducing the Syntax
decorative elements, Background Images and Other Decorative Properties, border-radius Shorthand

images as borders, border-radius Shorthand
default content for element, @ (at sign) for, Setting Both Row Height and Column Width
default element, for 3D, 3D Elements in CSS
default origin, of element, Understanding Axes and Coordinates
DejaVu Serif font, Setting Text Rendering Options
Deveria, Alexis, Template Layout, Template Layout, Default Content: The @ Sign
device-aspect ratio, testing device's, Orientation
device-height feature, Device Width and Height
device-pixel-ratio, Pixel Ratio
device-width Media Feature, Device Width and Height
direction vector, calculating, Rotation Around an Axis
disabled attribute, of textarea element, not
disabled pseudo-class selector, not

disabling kerning, OpenType Features
discretionary ligatures, OpenType Features
display property, The box Value in Firefox, Cross-Browser Flex Box with JavaScript, Using position
and display to Create Rows, Using position and display to Create Rows, Setting Height and Width on
Rows and Columns

for column and row size, Setting Height and Width on Rows and Columns
for creating rows, Using position and display to Create Rows
row strings on, Using position and display to Create Rows

div element, Let’s Get Started: Introducing the Syntax, Multiple Columns, Multiple Columns

splitting content into columns, Multiple Columns
width calculation, Let’s Get Started: Introducing the Syntax

document tree, selecting first element, empty
$ (dollar sign), for Ending Substring Attribute value selector, Beginning Substring Attribute Value
Selector
dollar sign ($), for Ending Substring Attribute value selector, Beginning Substring Attribute Value
Selector
DOM selectors, Selectors
:: (double colon), for CSS3 pseudo-elements, Pseudo-elements
double colon (::), for CSS3 pseudo-elements, Pseudo-elements
downloading, Device Width and Height, Device Width and Height, Using Local Fonts, Understanding
Axes and Coordinates, Adding Drop Shadows

background image, avoiding, Device Width and Height
drop shadows, Understanding Axes and Coordinates, Adding Drop Shadows
fonts, forcing, Using Local Fonts

duration of animation, Name
dynamic columns, Prescriptive Columns: column-count

E
ease keyword, Timing Function, Name, Name

for animation-timing function property, Name
for transition-timing-function property, Timing Function

ease-in keyword, Timing Function, Name, Name

for animation-timing function property, Name
for transition-timing-function property, Timing Function

ease-in-out keyword, Timing Function, Name, Name

for animation-timing function property, Name
for transition-timing-function property, Timing Function

ease-out keyword, Timing Function, Name, Name

for animation-timing function property, Name
for transition-timing-function property, Timing Function

elements. See also pseudo-elements, Module Status and the Recommendation Process, Understanding
Axes and Coordinates, Restricting Overflow, Containing Elements within Columns, Containing
Elements within Columns, rotate, skew, scale, Transforming Elements with Matrices, The perspective
and perspective-origin Properties, Same-Axis Alignment, Setting Both Row Height and Column
Width, Setting Both Row Height and Column Width, Implicit and Explicit Grids

@ (at sign) for default content, Setting Both Row Height and Column Width
centering inside parent, Same-Axis Alignment
containing within columns, Containing Elements within Columns
flipping, scale
origin, Understanding Axes and Coordinates, The perspective and perspective-origin Properties
positioning with gr unit, Implicit and Explicit Grids
resizing, Restricting Overflow, skew
scaling, Transforming Elements with Matrices
spanning multiple columns, Containing Elements within Columns
total width calculation, Module Status and the Recommendation Process
transformed, position in document flow, rotate

ellipse keyword, for radial gradient, Radial Gradients in Firefox
ellipsis keyword, for text-overflow property, Restricting Overflow
Embeddable Open Type (EOT) font format, A “Bulletproof” @font-face Syntax
empty pseudo-class, empty, Summary

browser support, Summary
enabled pseudo-class selector, not
end keyword, Resizing Elements, Setting Text Rendering Options, Setting Text Rendering Options,
Alignment, Alignment

for box-align property, Alignment
for hanging-punctuation property, Setting Text Rendering Options
for punctuation-trim property, Setting Text Rendering Options
for text-align property, Resizing Elements

end-edge keyword, for hanging-punctuation property, Setting Text Rendering Options
Ending Substring Attribute Value selector, Beginning Substring Attribute Value Selector
EOT (Embeddable Open Type) font format, A “Bulletproof” @font-face Syntax, Using Local Fonts
even keyword, The nth-* Pseudo-classes
Exact Attribute Value Selector, Attribute Selectors
expanded keyword, for font-stretch property, font-stretch
experimental CSS, future-proofing, Browser-Specific Prefixes
explicit grids, Implicit and Explicit Grids
external links, adding icon to signify, Beginning Substring Attribute Value Selector
external stylesheet, for Media Query, The Advantages of Media Queries
extra-condensed keyword, for font-stretch property, font-stretch
extra-expanded keyword, for font-stretch property, font-stretch

F
FaaS (Fonts as a Service), Licensing Fonts for Web Use
fallback for images, Image Fallback
farthest-side keyword, for radial gradient, Using Radial Gradients, Using Radial Gradients
file-type extensions, rules for, Beginning Substring Attribute Value Selector
Find Me By IP, Find Me By IP
Firefox Mobile browser, Pixel Ratio, Mozilla-Specific Media Features
Firefox. See also -moz- prefix, Media Queries, True vs. Artificial Font Faces, Applying Dimensional
Effects: text-shadow, Applying Dimensional Effects: text-shadow, A Note on Readability, Multiple
Background Images, border-radius Shorthand, 2D Transformations, 2D Transformations, Flexible
Box Layout, Triggering the Flexible Box Layout, Zero Values and Firefox Layouts, Grouping Flexible
Boxes, Same-Axis Alignment, Calculation Functions, Grouping Selectors, CSS Modules

2D Transformations Module, 2D Transformations
algorithms for column calculations, A Note on Readability
and artificial font faces, True vs. Artificial Font Faces
and Flexible Box Layout Module, Flexible Box Layout, Triggering the Flexible Box Layout,
Grouping Flexible Boxes
and Media Queries Module, Media Queries
and multiple backgrounds, Multiple Background Images
and text shadows, Applying Dimensional Effects: text-shadow
border-image property, border-radius Shorthand
box-lines property, Same-Axis Alignment
calc() function, Calculation Functions
Grouping Selector, Grouping Selectors
support. See browser support, Applying Dimensional Effects: text-shadow
web resources, CSS Modules
zero values and layouts, Zero Values and Firefox Layouts

first-of-type pseudo-class, first-of-type, last-child, and last-of-type
fit-content keyword, for column widths, Setting Height and Width on Rows and Columns
flat keyword, for transform-style property, Transform Style
flex-direction property, Cross-Browser Flex Box with JavaScript
flex-grow property, Cross-Browser Flex Box with JavaScript
flex-index property, Cross-Browser Flex Box with JavaScript
flex-order property, Cross-Browser Flex Box with JavaScript
flex-shrink property, Cross-Browser Flex Box with JavaScript
Flexible Box Layout Module, Flexible Box Layout, Flexible Box Layout, Making the Boxes Flexible,
Making the Boxes Flexible, Zero Values and Firefox Layouts, Grouping Flexible Boxes, Grouping
Flexible Boxes, Changing Orientation, Reversing the Order, Alignment, Alignment, Same-Axis
Alignment, Same-Axis Alignment, Stop the Presses: New Syntax, Summary

alignment, Alignment
box-ordinal-group property, Reversing the Order
browser support, Summary
changing order of boxes, Changing Orientation
changing orientation, Grouping Flexible Boxes
cross-browser flex box with JavaScript, Same-Axis Alignment
dynamic resizing child boxes to fit parent, Making the Boxes Flexible
grouping boxes, Grouping Flexible Boxes
initiating layout mode, Flexible Box Layout
multiple rows or columns, Same-Axis Alignment
new syntax, Stop the Presses: New Syntax
same-axis alignment, Alignment
unequal ratios, Making the Boxes Flexible
zero values and layouts, Zero Values and Firefox Layouts

flipping elements, scale
float property, Extended Floats
font faces, The @font-face Rule, The @font-face Rule, True vs. Artificial Font Faces

defining different, The @font-face Rule
true vs. artificial, True vs. Artificial Font Faces

font foundries, restrictions, Licensing Fonts for Web Use
Font Squirrel, Font Formats, Font Squirrel
Fontdeck, Fontdeck
fonts, The @font-face Rule, The @font-face Rule, Defining Different Faces, Using Local Fonts, Using
Local Fonts, Font Formats, Licensing Fonts for Web Use, More Font Properties, font-size-adjust, font-
size-adjust, font-stretch, font-stretch, OpenType Features, Web Fonts: Browser Support, Web Fonts:
Browser Support

forcing download, Using Local Fonts
formats, Font Formats
licensing for web use, Licensing Fonts for Web Use
name of, The @font-face Rule
OpenType fonts, font-stretch
properties, The @font-face Rule, Defining Different Faces, More Font Properties, font-size-adjust,
font-stretch, OpenType Features, Web Fonts: Browser Support, Web Fonts: Browser Support

font-family, The @font-face Rule
font-size-adjust, font-size-adjust, Web Fonts: Browser Support
font-stretch, font-stretch, Web Fonts: Browser Support
font-style, Defining Different Faces
font-variant, OpenType Features

x-height ratio estimation, font-size-adjust
Fonts as a Service (FaaS), Licensing Fonts for Web Use
Fonts Module Level 3, Web Fonts, Web Fonts: Browser Support

browser support, Web Fonts: Browser Support
Fonts.com web fonts, Fonts.com Web Fonts
FontShop, Web FontFonts
Fontspring, Fontspring
form elements, UI Element States, UI Element States, UI Element States

cross-browser styling of, UI Element States
states, UI Element States

fraction unit, Implicit and Explicit Grids
from() function, Linear Gradients in Firefox, Radial Gradients in Firefox
from-stop, in gradient, Gradients

G
Gecko, Mozilla-Specific Media Features
General Sibling Combinator, The General Sibling Combinator
Gentium Basic font, True vs. Artificial Font Faces
geometricPrecision keyword, for text-rendering property, word-wrap
Georgia font, font-size-adjust

Glazman, Daniel, Constants and Variables
Google Font API, Google Font API
gr (grid unit), Implicit and Explicit Grids
gradients, Gradients, Gradients, Linear Gradients in Firefox, Linear Gradients in WebKit, Linear
Gradients in WebKit, Radial Gradients, Radial Gradients in Firefox, Radial Gradients in Firefox,
Using Radial Gradients, Multiple color-stop Values, Multiple color-stop Values, Multiple Gradients,
Multiple Gradients, Summary, Reflections with WebKit, CSS3 Pie

browser support, Summary
generator for, CSS3 Pie
in Firefox, repeating, Multiple Gradients
linear, Gradients, Linear Gradients in Firefox, Linear Gradients in WebKit, Linear Gradients in
WebKit

adding color-stop values, Linear Gradients in WebKit
in WebKit, Linear Gradients in Firefox
using, Linear Gradients in WebKit

multiple, Multiple Gradients
radial, Radial Gradients, Radial Gradients in Firefox, Radial Gradients in Firefox, Using Radial
Gradients, Multiple color-stop Values, Multiple color-stop Values

in Firefox, Radial Gradients in Firefox
in WebKit, Radial Gradients in Firefox
multiple color-stop values, Multiple color-stop Values
using, Using Radial Gradients
WebKit advantage, Multiple color-stop Values

with reflection, Reflections with WebKit
graphics. See images, Implicit and Explicit Grids
Grid Positioning Module, The Grid Positioning Module, Extended Floats

float property, Extended Floats
grid unit (gr), Implicit and Explicit Grids
grid-columns property, Implicit and Explicit Grids
grid-rows property, Implicit and Explicit Grids
Grosskopf, Neal, Default Content: The @ Sign
grouping, Grouping Flexible Boxes, Grouping Flexible Boxes, Image Sprites

flexible boxes, Grouping Flexible Boxes
selectors, Image Sprites

H
h2 element, Containing Elements within Columns, Containing Elements within Columns, rotate

break-after for, Containing Elements within Columns
rotation, rotate

hanging-punctuation property, Setting Text Rendering Options
haptic feedback, Haptic Feedback
haptic-tap-strength property, Haptic Feedback
haptic-tap-type property, Haptic Feedback
hardware acceleration for graphics, 3D Transformations
height Media Feature, Width and Height
height of columns and rows, setting, Slots and the ::slot() Pseudo-element
height property, of element, Let’s Get Started: Introducing the Syntax
hidden keyword, Transform Style, Showing or Hiding the Backface, Showing or Hiding the Backface

and transform-style value, Transform Style
for backface-visibility property, Showing or Hiding the Backface

hiding, backface of elements, Showing or Hiding the Backface
horizontal keyword, Aspect Ratio, Aspect Ratio, Resizing Elements, Grouping Flexible Boxes

for aspect ratio, Aspect Ratio
for box-orient property, Grouping Flexible Boxes
for resize property, Resizing Elements

HSL (Hue, Saturation, Lightness), RGBA and Graceful Degradation, Matching the Operating System’s
Appearance

browser support, Matching the Operating System’s Appearance
HSV (Hue, Saturation, Value), Hue, Saturation, Lightness
html element, empty
HTML5, CSS3 Is Not HTML5
Hue, Saturation, Lightness (HSL), RGBA and Graceful Degradation, Matching the Operating System’s
Appearance

browser support, Matching the Operating System’s Appearance

Hue, Saturation, Value (HSV), Hue, Saturation, Lightness
Hyatt, Dave, Constants and Variables
hyperlinks, Beginning Substring Attribute Value Selector, Beginning Substring Attribute Value
Selector, Beginning Substring Attribute Value Selector, target, target

adding icon to signify external, Beginning Substring Attribute Value Selector
background color, target selector to change, target
internal, target
selector for visual clarity, Beginning Substring Attribute Value Selector

hyphenation, A Note on Readability

I
icons, Beginning Substring Attribute Value Selector, Beginning Substring Attribute Value Selector,
Beginning Substring Attribute Value Selector, Image Masks, Reflections with WebKit

for external links, Beginning Substring Attribute Value Selector
for file types, Beginning Substring Attribute Value Selector
image masks, Image Masks, Reflections with WebKit

IE8 (Internet Explorer 8), What CSS3 Is and How It Came to Be, A “Bulletproof” @font-face Syntax
image sprites, Background Image Clipping, Image Sprites
Image Values and Replaced Content Module, Gradients, Summary, Extending the Possibilities of
Images, Image Slices

browser support, Summary
image-rect property, background-repeat, Image Masks

browser support, Image Masks
images. See also background images, background-repeat, Background Image Clipping, border-radius
Shorthand, border-radius Shorthand, Extended Floats, Image Fallback, Image Fallback, Image Sprites

for borders, border-radius Shorthand
future possibilities, Background Image Clipping, Extended Floats, Image Fallback, Image Fallback,
Image Sprites

image slices, Image Fallback
image sprites, Background Image Clipping, Image Sprites
providing fallback, Image Fallback

tiling, background-repeat
img element, Containing Elements within Columns, Containing Elements within Columns, Containing

Elements within Columns

break-before for, Containing Elements within Columns
inside column layout, Containing Elements within Columns

Impact font, More Font Properties
implicit animation, Transitions and Animations
implicit grids, Implicit and Explicit Grids
indent at paragraph start, A Note on Readability
infinite keyword, for animation-iteration-count property, Delay
inheritance, and key frames, Key Frames
inline-axis keyword, for box-orient property, Grouping Flexible Boxes
inline-box, for display property, The box Value in Firefox
inner-center argument, for radial gradient, Radial Gradients in Firefox
inner-radius argument, for radial gradient, Radial Gradients in Firefox
inset keyword, for box-shadow property, Adding Drop Shadows
internal links, target
Internet Explorer 5.5, page layout, Let’s Get Started: Introducing the Syntax
Internet Explorer 8 (IE8), A Brief History of CSS3, A “Bulletproof” @font-face Syntax
Internet Explorer. See also -ms- prefix, True vs. Artificial Font Faces, A “Bulletproof” @font-face
Syntax, Multiple Background Images, 2D Transformations, 2D Transformations, 2D Transformations,
2D Transformations, Calculation Functions, Opera

2D Transformations Module, 2D Transformations
and artificial font faces, True vs. Artificial Font Faces
and calc() function, Calculation Functions
and local() value, A “Bulletproof” @font-face Syntax
and multiple backgrounds, Multiple Background Images
support. See browser support, 2D Transformations
transform property, 2D Transformations
web resources, Opera

iOS, device-width for, Device Width and Height
iPhone, Media Query for, Device Width and Height
irregular quarter ellipse, Giving Your Borders Rounded Corners, Giving Your Borders Rounded
Corners, border-radius Shorthand

italic text, first-of-type, last-child, and last-of-type, True vs. Artificial Font Faces

J
JavaScript, Licensing Fonts for Web Use, Same-Axis Alignment, Cross-Browser Flex Box with
JavaScript, Template Layout, Template Layout, Modernizr

cross-browser flex box with, Same-Axis Alignment
for simulating Template Layout Module, Template Layout
library, Cross-Browser Flex Box with JavaScript
Modernizr, Modernizr
setting up, Template Layout

jQuery, Cross-Browser Flex Box with JavaScript, Setting Up the JavaScript
justify keyword, for box-pack property, Alignment, Alignment
justifying text, A Note on Readability

K
kern parameter, OpenType Features
kerning, Setting Text Rendering Options
KHTML layout engine, Flexible Box Layout

L
landscape value, for orientation Media Feature, Using Media Queries in the Real World
lang attribute, rules applied based on, Attribute Selectors
Language Attribute Selector, Attribute Selectors
Last Call status, CSS3 Is Modular
last-child pseudo-class, first-of-type, last-child, and last-of-type
last-of-type pseudo-class, first-of-type, last-child, and last-of-type
left keyword, Giving Your Borders Rounded Corners, Giving Your Borders Rounded Corners,
Perspective

for border-radius property, Giving Your Borders Rounded Corners
for perspective-origin property, Perspective

legibility, vs. speed, optimization, word-wrap
letterpress effect, Multiple Shadows
licensing fonts for web use, Licensing Fonts for Web Use

ligatures, OpenType Features, Setting Text Rendering Options
linear animation, The Cubic Bézier Curve
linear gradients, Gradients, Linear Gradients in Firefox, Linear Gradients in Firefox, Linear
Gradients in WebKit, Using Linear Gradients, Repeating Linear Gradients

adding color-stop values, Linear Gradients in Firefox, Using Linear Gradients, Repeating Linear
Gradients

in Firefox, Linear Gradients in Firefox, Repeating Linear Gradients
in WebKit, Linear Gradients in Firefox
using, Linear Gradients in WebKit

linear keyword, Timing Function, Name, Name

for animation-timing function property, Name
for transition-timing-function property, Timing Function

lines, between columns, Column Gaps and Rules
link element, Media Queries, The Advantages of Media Queries, Using Media Queries in the Real
World

media attribute, Media Queries
order for stylesheets, Using Media Queries in the Real World

links. See hyperlinks, A “Bulletproof” @font-face Syntax
local fonts, for @font-face rule, A “Bulletproof” @font-face Syntax
logic attribute, for @media rule, Syntax

M
Magnet Studio's Beginners Guide to OpenType, font-stretch
magnification, and quality, Aspect Ratio
Marcotte, Ethan, “Responsive Web Design”, The Advantages of Media Queries
margin, Setting Text Rendering Options, A Note on Readability, A Note on Readability

between paragraphs, A Note on Readability
hanging punctuation into, Setting Text Rendering Options

margin-bottom property, A Note on Readability
mask-box-image value, Reflections with WebKit
masking, Image Masks
mathematical operations, Structural Pseudo-classes, The Future of CSS, The Future of CSS

for nth-* pseudo-classes, Structural Pseudo-classes
future possibilities, The Future of CSS

matrices, transformations with, scale
matrix function, scale, Scaling
matrix3d function, Scaling
max() function, Calculation Functions
max-content keyword, for column widths, Setting Height and Width on Rows and Columns
max-device-pixel-ratio, Aspect Ratio
max-height, for Media Feature, Width and Height
max-width of viewport, Media Features
media attribute, Media Queries, Syntax
Media Queries Module, Media Queries, Media Queries, The Advantages of Media Queries, Syntax,
Media Features, Device Width and Height, Device Width and Height, Using Media Queries in the
Real World, Orientation, Aspect Ratio, Pixel Ratio, Mozilla-Specific Media Features

advantages, Media Queries
browser support, Mozilla-Specific Media Features
media features, Syntax, Media Features, Device Width and Height, Device Width and Height, Using
Media Queries in the Real World, Orientation, Aspect Ratio, Pixel Ratio

aspect ratio, Orientation
chaining multiple queries, Pixel Ratio
device width and height, Device Width and Height
orientation, Using Media Queries in the Real World
pixel rate, Aspect Ratio
real world use, Device Width and Height
width and height, Media Features

syntax, The Advantages of Media Queries
Microsoft Developer Network, CSS Compatibility page, Opera
min() function, Calculation Functions
min-content keyword, for column widths, Setting Height and Width on Rows and Columns
min-device-pixel-ratio, Aspect Ratio
min-height, for Media Feature, Width and Height
min-width of viewport, Media Features

minmax function, Setting Height and Width on Rows and Columns
mixins, extending variables using, WebKit CSS Extensions
mobile features, web browsing with, Media Queries
mod value, Calculation Functions
Modernizr, Modernizr
modules, A Brief History of CSS3, CSS3 Is Modular, Extending Variables Using Mixins, Online
Resources

and recommendation process, CSS3 Is Modular
future possibilities, Extending Variables Using Mixins
web resources, Online Resources

moving, translate, Transitions and Animations, Rotation Around an Axis, Rotation Around an Axis

element along axis, Rotation Around an Axis
elements from default position, translate
properties between states, Transitions and Animations

Mozilla Firefox. See Firefox, Let’s Get Started: Introducing the Syntax, CSS Modules
Mozilla, and Web Open Font Format (WOFF), Using Local Fonts
Multi-column Layout Module, Multiple Columns, Elements Breaking over Multiple Columns

browser support, Elements Breaking over Multiple Columns
multiple keyword, for box-lines property, Same-Axis Alignment
mutiplier, for nth-* pseudo-classes, Structural Pseudo-classes

N
named anchor, target
names of fonts, The @font-face Rule
narrower keyword, for font-stretch property, font-stretch
navigation menu, horizontal or vertical display, Orientation
negative value, Setting Text Rendering Options, Applying Punctuation Properties, The Cubic Bézier
Curve

for text-indent property, Setting Text Rendering Options
for transition-delay property, The Cubic Bézier Curve

negative value (-n) increment, nth-child and nth-of-type
nested rules, Nested Rules

no-repeat keyword, for background-repeat property, background-repeat
Nokia, Haptic Feedback
none keyword, Resizing Elements, word-wrap, Setting Text Rendering Options, Setting Text
Rendering Options, Setting Text Rendering Options, Property

for -webkit-font-smoothing property, Setting Text Rendering Options
for punctuation-trim property, Setting Text Rendering Options
for resize property, Resizing Elements
for text-wrap property, word-wrap
for transition-property property, Property

normal keyword, Defining Different Faces, font-stretch, Aligning Text, word-wrap, Delay, Delay,
Changing Orientation

for animation-direction property, Delay
for box-direction property, Changing Orientation
for font-stretch property, font-stretch
for font-style property, Defining Different Faces
for text-wrap property, word-wrap
for word-wrap property, Aligning Text

not (negation) pseudo-class, empty, Summary

browser support, Summary
not value, for media rule logic attribute, Syntax
nth-* pseudo-classes, Structural Pseudo-classes
nth-child pseudo-class, The nth-* Pseudo-classes
nth-last-child pseudo-class, nth-child and nth-of-type
nth-last-of-type pseudo-class, nth-child and nth-of-type
nth-of-type pseudo-class, The nth-* Pseudo-classes
null value, for local() to force font download, Using Local Fonts

O
odd keyword, The nth-* Pseudo-classes
only keyword, for media rule logic attribute, Syntax
only operator, Device Width and Height
only-child pseudo-class, first-of-type, last-child, and last-of-type

only-of-type pseudo-class, first-of-type, last-child, and last-of-type
opacity property, Color and Opacity, Setting Transparency with the opacity Property, The Alpha
Channel, Matching the Operating System’s Appearance

browser support, Matching the Operating System’s Appearance
vs. rgba property, The Alpha Channel

OpenType fonts, Using Local Fonts, font-stretch, Web Fonts: Browser Support

browser support, Web Fonts: Browser Support
Opera. See also -o- prefix, Applying Dimensional Effects: text-shadow, Applying Dimensional
Effects: text-shadow, Multiple Background Images, Multiple Background Images, Background Clip
and Origin, Background Clip and Origin, Background Clip and Origin, border-radius Shorthand,
border-radius Shorthand, 2D Transformations, Opera

and multiple backgrounds, Multiple Background Images
and text shadows, Applying Dimensional Effects: text-shadow
background-origin property, Background Clip and Origin
background-size, Multiple Background Images
border-clip property, Background Clip and Origin
border-image property, border-radius Shorthand
border-radius property, border-radius Shorthand
support. See browser support, Applying Dimensional Effects: text-shadow
transform property, 2D Transformations
web resources, Opera

operating system, matching appearance, The Color Variable: currentColor
optimization, speed or legibility, word-wrap
optimizeLegibility keyword, for text-rendering property, word-wrap
optimizeSpeed keyword, for text-rendering property, word-wrap
orientation, Using Media Queries in the Real World, Grouping Flexible Boxes, Grouping Flexible
Boxes

for flexible boxes, Grouping Flexible Boxes
for Media Feature, Using Media Queries in the Real World

origin, Understanding Axes and Coordinates, Position in Document Flow, The perspective and
perspective-origin Properties

of 2D transformations, Position in Document Flow
of 3D transformations, The perspective and perspective-origin Properties

outer-center argument, for radial gradient, Radial Gradients in Firefox
outer-radius argument, for radial gradient, Radial Gradients in Firefox
outlines for text, Text Effects and Typographic Styles
overflow property, Same-Axis Alignment, Slots and the ::slot() Pseudo-element
overflow text, restricting, Adding Definition to Text: text-outline and text-stroke

P
padding, Let’s Get Started: Introducing the Syntax, A Note on Readability
padding-box keyword, Let’s Get Started: Introducing the Syntax, Background Size, Background Size,
Background Clip and Origin

for background-clip property, Background Size
for background-origin property, Background Clip and Origin
for border-box property, Let’s Get Started: Introducing the Syntax

page load time, background image and, Using Media Queries in the Real World
paragraphs, indent at start, A Note on Readability
Partial Attribute Value Selector, Attribute Selectors
paused keyword, for animation-play-state property, Shorthand
percentages, in element width calculation, Let’s Get Started: Introducing the Syntax
Perfection Kills blog, Perfection Kills
. (period), as spacer for empty slot, Slots and the ::slot() Pseudo-element
period (.), as spacer for empty slot, Slots and the ::slot() Pseudo-element
perspective function, The Transformation Matrix
pixel grid, Understanding Axes and Coordinates
pixel rate, Aspect Ratio, Pixel Ratio

detection, Pixel Ratio
pixels, for axes measurement, Text Effects and Typographic Styles
point value, for gradient, Gradients
portrait value, for orientation Media Feature, Using Media Queries in the Real World
position property, for creating rows, Template Layout
position, of background images, Background Size

precedence, for properties, empty
prefixes, Let’s Get Started: Introducing the Syntax, Let’s Get Started: Introducing the Syntax,
Browser-Specific Prefixes

browser-specific, Browser-Specific Prefixes
for properties, Let’s Get Started: Introducing the Syntax

presentation, vs. behavior, Transitions and Animations
preserve-3d keyword, for transform-style property, Transform Style
properties, Let’s Get Started: Introducing the Syntax, Browser-Specific Prefixes, empty, More Font
Properties, More Font Properties, Transitions and Animations

moving between states, Transitions and Animations
of fonts, More Font Properties
potential problems from unprefixed, Browser-Specific Prefixes
precedence for, empty
prefix for, Let’s Get Started: Introducing the Syntax

Proposed Recommendation status, CSS3 Is Modular
protocols, link icon for, Beginning Substring Attribute Value Selector
pseudo-classes, Pseudo-classes and Pseudo-elements, Structural Pseudo-classes, Structural Pseudo-
classes, The nth-* Pseudo-classes, The nth-* Pseudo-classes, nth-child and nth-of-type, nth-child and
nth-of-type, first-of-type, last-child, and last-of-type, first-of-type, last-child, and last-of-type, first-
of-type, last-child, and last-of-type, first-of-type, last-child, and last-of-type, first-of-type, last-child,
and last-of-type, only-child and only-of-type, empty, empty, root, Summary

browser support, Summary
empty, empty
first-of-type, first-of-type, last-child, and last-of-type
last-child, first-of-type, last-child, and last-of-type
last-of-type, first-of-type, last-child, and last-of-type
not (negation), empty
nth-*, Structural Pseudo-classes
nth-child, The nth-* Pseudo-classes
nth-last-child, nth-child and nth-of-type
nth-last-of-type, nth-child and nth-of-type
nth-of-type, The nth-* Pseudo-classes
only-child, first-of-type, last-child, and last-of-type
only-of-type, first-of-type, last-child, and last-of-type
root, root
structural, Structural Pseudo-classes
target, only-child and only-of-type

pseudo-elements, Pseudo-classes and Pseudo-elements, Pseudo-elements, Pseudo-elements,
Summary, Multiple Rows

::slot(), Multiple Rows
browser support, Summary
double colon (::) for, Pseudo-elements

pseudo-selectors, Selectors
PT Sans font, font-stretch
punctuation properties, Setting Text Rendering Options, Summary

browser support, Summary
punctuation-trim property, Setting Text Rendering Options
px (CSS Pixel unit), Aspect Ratio

Q
quarter ellipse, Giving Your Borders Rounded Corners
Quirks Mode box model, Zero Values and Firefox Layouts
Quirks Mode website, Opera

R
radial gradients, Adding Extra color-stop Values, Radial Gradients in Firefox, Radial Gradients in
Firefox, Using Radial Gradients, Multiple color-stop Values, Multiple color-stop Values

multiple color-stop values, Multiple color-stop Values
using, Radial Gradients in Firefox, Radial Gradients in Firefox, Using Radial Gradients, Multiple
color-stop Values

in Firefox, Radial Gradients in Firefox
in WebKit, Radial Gradients in Firefox, Multiple color-stop Values

radial keyword, Radial Gradients in Firefox
radius of quarter ellipse, Giving Your Borders Rounded Corners
readability, A Note on Readability
ready() event (jQuery), Template Layout
recommendation process, for modules, CSS3 Is Modular
Recommendation status, CSS3 Is Modular
Red, Green, Blue (RGB) model, Color and Opacity, Hue, Saturation, Lightness

HSL vs., Hue, Saturation, Lightness
Red, Green, Blue, Alpha (RGBA) model, Setting Transparency with the opacity Property, The Alpha
Channel, Matching the Operating System’s Appearance

and graceful degradation, The Alpha Channel
browser support, Matching the Operating System’s Appearance

reflection, scale, scale, Transforming Elements with Matrices, Reflections with WebKit

gradients with, Reflections with WebKit
of element, creating, scale
with WebKit, Transforming Elements with Matrices

regular quarter ellipse, Giving Your Borders Rounded Corners
repeat keyword, background-repeat, background-repeat, Using Images for Borders

for background-repeat property, background-repeat
for border-image property, Using Images for Borders

repeat() function, for complex grids, Implicit and Explicit Grids
repeat-x keyword, for background-repeat property, background-repeat
repeat-y keyword, for background-repeat property, background-repeat

repeating gradients, Multiple Gradients, Summary, Gradients: Browser Support

browser support, Summary
in Firefox, Multiple Gradients

resize property, Restricting Overflow, Summary

browser support, Summary
reusable code, Extending Variables Using Mixins
reverse keyword, for box-direction property, Changing Orientation
reverse play for animation, Delay
RGB (Red, Green, Blue) model, Color and Opacity, Hue, Saturation, Lightness

HSL vs., Hue, Saturation, Lightness
RGBA (Red, Green, Blue, Alpha) model, Setting Transparency with the opacity Property, The Alpha
Channel, Matching the Operating System’s Appearance

and graceful degradation, The Alpha Channel
browser support, Matching the Operating System’s Appearance

rgba() color function, Multiple Shadows
right keyword, Giving Your Borders Rounded Corners, Giving Your Borders Rounded Corners,
Perspective

for border-radius property, Giving Your Borders Rounded Corners
for perspective-origin property, Perspective

root pseudo-class, empty, Summary

browser support, Summary
rotate function, rotate, Rotation Around an Axis, Rotation Around an Axis

for three dimensions, Rotation Around an Axis
for transform property, rotate

rotate3d function, Rotation Around an Axis
rotation of element, with skew, skew, Transforming Elements with Matrices
round keyword, background-repeat, background-repeat, Using Images for Borders, Using Images for
Borders

for background-repeat property, background-repeat
for border-image property, Using Images for Borders, Using Images for Borders

rounded corners for borders, Giving Your Borders Rounded Corners

row strings, Using position and display to Create Rows, Using position and display to Create Rows,
Multiple Rows

on display property, Using position and display to Create Rows
rules for, Multiple Rows

rows, Template Layout, Slots and the ::slot() Pseudo-element, Slots and the ::slot() Pseudo-element

setting height and width, Slots and the ::slot() Pseudo-element
Template Layout Module for creating, Template Layout

rules (lines), between columns, Column Gaps and Rules
running keyword, for animation-play-state property, Shorthand

S
Safari browser for Mac OS X. See also WebKit, A “Bulletproof” @font-face Syntax, A “Bulletproof”
@font-face Syntax, Understanding Axes and Coordinates, border-radius Shorthand

and text shadows, Understanding Axes and Coordinates
local() value, font-name argument for, A “Bulletproof” @font-face Syntax
support, border-image property, border-radius Shorthand

same keyword, for position property, Using position and display to Create Rows
Samsung Galaxy S, pixel density, Aspect Ratio
Scalable Vector Graphics (SVG), Font Formats, Font Formats, 2D Transformations

font type, Font Formats
language, 2D Transformations

scale function, skew, Translation Along the Axis

for 3D transformations, Translation Along the Axis
scale3d function, Translation Along the Axis
scaleZ function, Translation Along the Axis
scaling, Multiple Background Images, Multiple Background Images, Transforming Elements with
Matrices

background images, Multiple Background Images
elements, Transforming Elements with Matrices

scope, and variables names, Extending Variables Using Mixins
screen, width of, Device Width and Height
selectors, Let’s Get Started: Introducing the Syntax, Selectors, Attribute Selectors, Attribute

Selectors, Beginning Substring Attribute Value Selector, Ending Substring Attribute Value Selector,
Arbitrary Substring Attribute Value Selector, The General Sibling Combinator, Summary, Slots and
the ::slot() Pseudo-element, Image Sprites, CSS Modules

::slot() pseudo-element and, Slots and the ::slot() Pseudo-element
attribute, Attribute Selectors, Attribute Selectors, Beginning Substring Attribute Value Selector,
Ending Substring Attribute Value Selector, Arbitrary Substring Attribute Value Selector

Arbitrary Substring, Ending Substring Attribute Value Selector
Beginning Substring, Attribute Selectors
chaining, Arbitrary Substring Attribute Value Selector
Ending Substring, Beginning Substring Attribute Value Selector

browser support, The General Sibling Combinator, Summary
grouping, Image Sprites
nested, CSS Modules

Selectors Level 3 Module, Selectors, The General Sibling Combinator

browser support, The General Sibling Combinator
semi-condensed keyword, for font-stretch property, font-stretch
semi-expanded keyword, for font-stretch property, font-stretch
setTemplateLayout function, Template Layout
shadows, Text Effects and Typographic Styles, Understanding Axes and Coordinates, Multiple
Shadows, Multicolored Borders, Adding Drop Shadows

for box elements, Multicolored Borders
for text, Text Effects and Typographic Styles, Understanding Axes and Coordinates, Multiple
Shadows

multiple, Multiple Shadows
shape argument, for radial gradient, Radial Gradients in Firefox
Simple Attribute Selector, Attribute Selectors
sine function, Transforming Elements with Matrices
single keyword, for box-lines property, Same-Axis Alignment
size of elements, Restricting Overflow, Restricting Overflow, skew, skew, Making the Boxes
Flexible

changing, Restricting Overflow, skew
dynamic resizing child boxes to fit parent, Making the Boxes Flexible

skew function, translate
skewing element, with matrices, Transforming Elements with Matrices
slices, Using Images for Borders, Using Images for Borders, Using Images for Borders, Using Images
for Borders, Image Fallback

for frame image, Using Images for Borders, Using Images for Borders
for images, Image Fallback

slots, Slots and the ::slot() Pseudo-element, Slots and the ::slot() Pseudo-element, Slots and the
::slot() Pseudo-element

creating empty, Slots and the ::slot() Pseudo-element
spanning multiple rows, Slots and the ::slot() Pseudo-element

small-caps keyword, for font-variant property, OpenType Features
Smashing Magazine, CSS3 Cheat Sheet
smcp property, OpenType Features
soft hyphens, adding, A Note on Readability
space keyword, background-repeat, background-repeat, Using Images for Borders

for background-repeat property, background-repeat
for border-image property, Using Images for Borders

spacer for empty slot, period (.) as, Slots and the ::slot() Pseudo-element
speed, vs. legibility, optimization, word-wrap
spread value, negative, for box-shadow property, Adding Drop Shadows
src property, Web Fonts, A “Bulletproof” @font-face Syntax, Using Local Fonts, Using Local Fonts

for @font-face rule, Using Local Fonts
for font file location, Web Fonts, A “Bulletproof” @font-face Syntax

local() value, A “Bulletproof” @font-face Syntax
stack, for @font-face rule src property, Using Local Fonts
standardization process, Introducing CSS3
start keyword, Resizing Elements, Setting Text Rendering Options, Setting Text Rendering Options,
Alignment, Alignment

for box-align property, Alignment
for hanging-punctuation property, Setting Text Rendering Options
for punctuation-trim property, Setting Text Rendering Options
for text-align property, Resizing Elements

states, moving properties between, Transitions and Animations
stretch keyword, Using Images for Borders, Using Images for Borders, Using Images for Borders,
Using Images for Borders, Alignment

for border-image property, Using Images for Borders, Using Images for Borders
for box-align property, Alignment

structural pseudo-classes, Pseudo-classes and Pseudo-elements, Summary

browser support, Summary
styles, for different media, Media Queries
stylesheets, The Advantages of Media Queries, The Advantages of Media Queries, Using Media
Queries in the Real World, Image Sprites

external, for Media Query, The Advantages of Media Queries
order of mobile or desktop, Using Media Queries in the Real World
repetition in, Image Sprites

subpixel-antialiased keyword, for -webkit-font-smoothing property, Setting Text Rendering Options
suppress value, for text-wrap property, word-wrap
SVG (Scalable Vector Graphics), Using Local Fonts, Font Formats, 2D Transformations

font type, Font Formats
language, 2D Transformations

syntax, Module Status and the Recommendation Process
system fonts, “web-safe”, Web Fonts

T
table element, Implicit and Explicit Grids
tables for weather forecast, nth-child and nth-of-type
tan (tangent) function, Transforming Elements with Matrices
target pseudo-class, only-child and only-of-type, Summary, Multiple Transitions

as trigger, Multiple Transitions
browser support, Summary

Template Layout Module, Template Layout, Template Layout, Template Layout, Using position and
display to Create Rows, Multiple Rows, Default Content: The @ Sign

browser support, Default Content: The @ Sign
jQuery for, Template Layout
multiple rows, Using position and display to Create Rows
position and display to create rows, Template Layout
slots and ::slot() pseudo-element, Multiple Rows

testing, Orientation, Orientation, Letterpress Effect

aspect ratio, Orientation
colors for accessibility, Letterpress Effect

text, Text Effects and Typographic Styles, Understanding Axes and Coordinates, Multiple Shadows,
Multiple Shadows, Adding Definition to Text: text-outline and text-stroke, Adding Definition to Text:
text-outline and text-stroke, Adding Definition to Text: text-outline and text-stroke, Resizing Elements,
Wrapping Text, Setting Text Rendering Options, Summary, A Note on Readability

adding definition to, Adding Definition to Text: text-outline and text-stroke
aligning, Resizing Elements
browser support for effects, Summary
justifying, A Note on Readability
punctuation properties, Setting Text Rendering Options
restricting overflow, Adding Definition to Text: text-outline and text-stroke
shadows, Text Effects and Typographic Styles, Understanding Axes and Coordinates, Multiple
Shadows, Multiple Shadows

letterpress effect, Multiple Shadows
multiple, Multiple Shadows

wrapping, Wrapping Text
text keyword, for border-clip property, Background Clip and Origin
Text Level 3 Module, Text Effects and Typographic Styles
text-align property, Resizing Elements, Summary, A Note on Readability

browser support, Summary
text-align-last property, Resizing Elements, Summary

browser support, Summary
text-fill-color property, Adding Definition to Text: text-outline and text-stroke

text-indent property, Setting Text Rendering Options
text-outline property, Adding Definition to Text: text-outline and text-stroke, Summary

browser support, Summary
text-outlining, Text Effects and Typographic Styles
text-overflow property, Restricting Overflow, Summary

browser support, Summary
text-rendering property, word-wrap, Summary

browser support, Summary
text-shadow property, Understanding Axes and Coordinates, Applying Dimensional Effects: text-
shadow, Multiple Shadows, Summary, The Alpha Channel

alpha value, The Alpha Channel
blur-radius option for, Applying Dimensional Effects: text-shadow, Multiple Shadows
browser support, Summary

text-stroke property, Adding Definition to Text: text-outline and text-stroke, Summary

browser support, Summary
text-stroke-color property, Adding Definition to Text: text-outline and text-stroke
text-stroke-width property, Adding Definition to Text: text-outline and text-stroke, Adding Definition
to Text: text-outline and text-stroke
text-wrap property, word-wrap, Summary

browser support, Summary
textarea element, not, not, Resizing Elements

disabled attribute of, not
resizing, Resizing Elements

thead element, selecting children, nth-child and nth-of-type
three-dimensional. See 3D elements; 3D transformations, background-repeat
tiling images, background-repeat
time requirement for transition, Property
to() function, Linear Gradients in Firefox, Radial Gradients in Firefox
to-stop, in gradient, Gradients
top keyword, Giving Your Borders Rounded Corners, Giving Your Borders Rounded Corners,
Perspective

for border-radius property, Giving Your Borders Rounded Corners
for perspective-origin property, Perspective

touchscreen devices, Mozilla-Specific Media Features, Mozilla-Specific Media Features, Haptic
Feedback

applying rules to elements on, Mozilla-Specific Media Features
haptic feedback, Haptic Feedback

transform property, 2D Transformations, rotate, rotate, translate, translate, Transform Style

and element position in document flow, rotate
for 3D transformations, Transform Style
rotate function, rotate
skew function, translate
translate function, translate

transform-origin property, Position in Document Flow, The perspective and perspective-origin
Properties

for 3D transformations, The perspective and perspective-origin Properties
transform-style property, Transform Style
transformations. See also 3D transformations, scale, scale, Multiple Transformations

multiple, Multiple Transformations
with matrices, scale

transitions, Transitions and Animations, Property, Property, Timing Function, Timing Function,
Timing Function, The Cubic Bézier Curve, Shorthand, Shorthand, The Complete Transition Example,
The Complete Transition Example, Multiple Transitions, Multiple Animations

adding multiple, The Complete Transition Example
browser support, Multiple Animations
complete example, Shorthand
shorthand, Shorthand
transition-delay property, The Cubic Bézier Curve
transition-duration property, Property
transition-property property, Property, The Complete Transition Example
transition-timing-function property, Timing Function, Timing Function, Timing Function

cubic-bezier function, Timing Function
keywords, Timing Function

triggers, Multiple Transitions
Transitions Module, Transitions and Animations, Transitions, Multiple Animations

browser support, Multiple Animations
translate function, translate, Transforming Elements with Matrices
translate3d function, Rotation Around an Axis, Translation Along the Axis
translateX function, translate, Rotation Around an Axis
translateY function, translate, Rotation Around an Axis
translateZ function, Rotation Around an Axis, Translation Along the Axis
transparency, opacity property for, Setting Transparency with the opacity Property
triggers, for transitions, Multiple Transitions
TrueType font format, Using Local Fonts
Type Folly, Type Folly
type selectors, Selectors
Typekit, Licensing Fonts for Web Use, Typekit
Typotheque, Licensing Fonts for Web Use

U
Ubuntu, buttons in WebKit, The Color Variable: currentColor
UI element states, UI Element States, Summary

browser support, Summary
ultra-condensed keyword, for font-stretch property, font-stretch

ultra-expanded keyword, for font-stretch property, font-stretch
underline text, first-of-type, last-child, and last-of-type
unprefixed property, potential problems, Browser-Specific Prefixes
unrestricted value, for text-wrap property, word-wrap
url() notation, Image Fallback, Image Sprites

V
Values and Units Module, Mathematical Operations
var() notation, Constants and Variables
variables, Hue, Saturation, Lightness, Hue, Saturation, Lightness, Image Sprites, Grouping Selectors,
WebKit CSS Extensions, WebKit CSS Extensions

currentColor, Hue, Saturation, Lightness
extending using mixins, WebKit CSS Extensions
future possibilities, Grouping Selectors
sprites assigned, Image Sprites
WebKit alternatives, WebKit CSS Extensions

Vector Markup Language (VML), CSS3 Pie
vertical keyword, for box-orient property, Grouping Flexible Boxes
vertical value, Aspect Ratio, Aspect Ratio, Resizing Elements

for aspect ratio, Aspect Ratio
for resize property, Resizing Elements

vertical-align property, Slots and the ::slot() Pseudo-element, Slots and the ::slot() Pseudo-element
viewpoint, from perspective function, Perspective
visible keyword, for backface-visibility property, Showing or Hiding the Backface
visual impairments, letterpress effect and, Multiple Shadows
VML (Vector Markup Language), CSS3 Pie

W
weather forecast table, nth-child and nth-of-type
Web FontFonts, Web FontFonts
web fonts, Web Fonts, Licensing Fonts for Web Use, Web Fonts: Browser Support, CSS3 Gradient
Generator

browser support for, Web Fonts: Browser Support
real-world example, Licensing Fonts for Web Use
web resources, CSS3 Gradient Generator

Web Open Font Format (WOFF), Using Local Fonts, Licensing Fonts for Web Use
web pages, layers, Transitions and Animations
web resources, The Advantages of Media Queries, UI Element States, The @font-face Rule,
Licensing Fonts for Web Use, font-size-adjust, font-stretch, OpenType Features, background-repeat,
Linear Gradients in Firefox, Summary, Transforming Elements with Matrices, Transforming Elements
with Matrices, Property, The Cubic Bézier Curve, 3D Transformations, 3D Transformations, 3D
Elements in CSS, Rotation Around an Axis, Scaling, Zero Values and Firefox Layouts, Cross-
Browser Flex Box with JavaScript, Cross-Browser Flex Box with JavaScript, Cross-Browser Flex
Box with JavaScript, Template Layout, Default Content: The @ Sign, Cycle, Extending the
Possibilities of Images, CSS3 Support in Current Major Browsers, Online Resources, Online
Resources, CSS Modules, Opera, Find Me By IP, CSS3 Pie, CSS3 Gradient Generator

456 Berea Street blog, UI Element States
book website, 3D Elements in CSS, CSS3 Support in Current Major Browsers
browser support, Opera
browsers, CSS Modules
Chunk font, The @font-face Rule
code-generation tools, CSS3 Pie
CSS modules, Online Resources
estimation tool for x-height ratio, font-size-adjust
feature detection and simulation, Find Me By IP
Flexie, Cross-Browser Flex Box with JavaScript
font foundries, Licensing Fonts for Web Use
Image Values and Replaced Content Module, Summary, Extending the Possibilities of Images
jQuery, Cross-Browser Flex Box with JavaScript
Magnet Studio's Beginners Guide to OpenType, font-stretch
Media Queries gallery, The Advantages of Media Queries
on 3D matrix, Scaling
on 3D transforms, 3D Transformations
on angle argument, Linear Gradients in Firefox
on Cartesian coordinate system, 3D Transformations
on cubic Bézier curves, The Cubic Bézier Curve
on direction vector calculation, Rotation Around an Axis
on flexible box layout, Cross-Browser Flex Box with JavaScript
on fonts, OpenType Features
on Grid Positioning Module, Cycle
on image sprites, background-repeat
on matrices, Transforming Elements with Matrices
on Quirks Mode box model, Zero Values and Firefox Layouts
on Template Layout Module, Template Layout, Default Content: The @ Sign
on transitions, Property
trigonometric functions, Transforming Elements with Matrices
web fonts, CSS3 Gradient Generator

web use, licensing fonts for, Licensing Fonts for Web Use
WebKit, Module Status and the Recommendation Process, True vs. Artificial Font Faces, A Note on
Readability, Multiple Background Images, Background Clip and Origin, Background Clip and Origin,
Giving Your Borders Rounded Corners, border-radius Shorthand, RGBA and Graceful Degradation,
The Color Variable: currentColor, The Transformation Origin, The Transformation Origin, Same-
Axis Alignment, WebKit CSS Extensions, WebKit CSS Extensions, CSS Modules

algorithms for column calculations, A Note on Readability
and artificial font faces, True vs. Artificial Font Faces
and multiple backgrounds, Multiple Background Images
background-origin property, Background Clip and Origin
border overlap issue, RGBA and Graceful Degradation
border-clip property, Background Clip and Origin
border-radius property, Giving Your Borders Rounded Corners, border-radius Shorthand
box-lines property, Same-Axis Alignment
button appearances on Ubuntu, The Color Variable: currentColor
CSS extensions, WebKit CSS Extensions
support. See browser support, The Transformation Origin
transform-origin subproperties, The Transformation Origin
variables, alternatives, WebKit CSS Extensions
web resources, CSS Modules

Westciv, 3D Elements in CSS
When Can I Use, When Can I Use . . .
wider keyword, for font-stretch property, font-stretch
widescreen, query for multiple options, Pixel Ratio
width, Module Status and the Recommendation Process, Slots and the ::slot() Pseudo-element, Slots
and the ::slot() Pseudo-element

of columns and rows, setting, Slots and the ::slot() Pseudo-element
total for element, Module Status and the Recommendation Process

width Media Feature, Syntax
windows, decorative header for browser, Media Features
WOFF (Web Open Font Format), Using Local Fonts, Licensing Fonts for Web Use
word-wrap property, Aligning Text, Summary

browser support, Summary
Working Draft status, Module Status and the Recommendation Process
wrapping text, Aligning Text

X
x-axis, Understanding Axes and Coordinates
x-height, font-size-adjust
x-offset, Applying Dimensional Effects: text-shadow, Multiple Shadows

Y
y-axis, Understanding Axes and Coordinates
y-offset, Applying Dimensional Effects: text-shadow, Multiple Shadows

Z
z-axis, 3D Transformations, 3D Elements in CSS
zebra striping for tables, nth-child and nth-of-type

About the Author
Peter Gasston has been a web developer for over 10 years in both agency and corporate settings. He
was one of the original contributors to CSS3.info, the leading online destination for CSS3. Peter has
been published in the UK's .net magazine, gives talks about CSS and web technologies at developer
conferences, and runs the web development blog Broken Links. He lives in London, England.

The Book of CSS3
Peter Gasston
Copyright © 2011
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names
mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the
preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

No Starch Press

2012-11-02T10:29:31-07:00

	The Book of CSS3
	Dedication
	Foreword
	Preface
	Introduction
	The Scope of This Book
	A Quick Note About Browsers and Platforms
	The Appendices and Further Resources

	1. Introducing CSS3
	What CSS3 Is and How It Came to Be
	A Brief History of CSS3
	CSS3 Is Modular
	Module Status and the Recommendation Process
	CSS3 Is Not HTML5

	Let’s Get Started: Introducing the Syntax
	Browser-Specific Prefixes
	Future-Proofing Experimental CSS

	Getting Started

	2. Media Queries
	The Advantages of Media Queries
	Syntax
	Media Features
	Width and Height
	Device Width and Height
	Using Media Queries in the Real World
	Orientation
	Aspect Ratio
	Pixel Ratio
	Multiple Media Features
	Mozilla-Specific Media Features

	Summary
	Media Queries: Browser Support

	3. Selectors
	Attribute Selectors
	New Attribute Selectors in CSS3
	Beginning Substring Attribute Value Selector
	Ending Substring Attribute Value Selector
	Arbitrary Substring Attribute Value Selector
	Multiple Attribute Selectors

	The General Sibling Combinator
	Summary
	Selectors: Browser Support

	4. Pseudo-classes and Pseudo-elements
	Structural Pseudo-classes
	The nth-* Pseudo-classes
	nth-child and nth-of-type
	nth-last-child and nth-last-of-type

	first-of-type, last-child, and last-of-type
	only-child and only-of-type

	Other Pseudo-classes
	target
	empty
	root
	not
	UI Element States

	Pseudo-elements
	The selection pseudo-element

	Summary
	DOM and Attribute Selectors: Browser Support

	5. Web Fonts
	The @font-face Rule
	Defining Different Faces
	True vs. Artificial Font Faces

	A “Bulletproof” @font-face Syntax
	Using Local Fonts
	Font Formats
	The Final “Bulletproof” Syntax
	The Fontspring Bulletproof Syntax

	Licensing Fonts for Web Use
	A Real-World Web Fonts Example
	More Font Properties
	font-size-adjust
	font-stretch

	OpenType Features
	Summary
	Web Fonts: Browser Support

	6. Text Effects and Typographic Styles
	Understanding Axes and Coordinates
	Applying Dimensional Effects: text-shadow
	Multiple Shadows
	Letterpress Effect

	Adding Definition to Text: text-outline and text-stroke
	More Text Properties
	Restricting Overflow
	Resizing Elements
	Aligning Text
	Wrapping Text
	word-wrap
	text-wrap

	Setting Text Rendering Options
	Applying Punctuation Properties

	Summary
	Text Effects: Browser Support

	7. Multiple Columns
	Column Layout Methods
	Prescriptive Columns: column-count
	Dynamic Columns: column-width
	A Note on Readability
	Different Distribution Methods in Firefox and WebKit
	Combining column-count and column-width

	Column Gaps and Rules
	Containing Elements within Columns
	Elements Spanning Multiple Columns
	Elements Breaking over Multiple Columns

	Summary
	Multiple Columns: Browser Support

	8. Background Images and Other Decorative Properties
	Background Images
	Multiple Background Images
	Background Size
	Background Clip and Origin
	background-repeat
	Background Image Clipping

	Image Masks
	Summary
	Background Images: Browser Support

	9. Border and Box Effects
	Giving Your Borders Rounded Corners
	border-radius Shorthand
	Differences in Implementation Across Browsers

	Using Images for Borders
	Multicolored Borders
	Adding Drop Shadows
	Summary
	Border and Box Effects: Browser Support

	10. Color and Opacity
	Setting Transparency with the opacity Property
	New and Extended Color Values
	The Alpha Channel
	RGBA and Graceful Degradation
	Border Overlap Issue in WebKit

	Hue, Saturation, Lightness
	HSLA
	The Color Variable: currentColor

	Matching the Operating System’s Appearance
	Summary
	Color and Opacity: Browser Support

	11. Gradients
	Linear Gradients
	Linear Gradients in Firefox
	Linear Gradients in WebKit
	Using Linear Gradients
	Adding Extra color-stop Values

	Radial Gradients
	Radial Gradients in Firefox
	Radial Gradients in WebKit
	Using Radial Gradients
	Multiple color-stop Values
	The WebKit Advantage

	Multiple Gradients
	Repeating Gradients in Firefox
	Repeating Linear Gradients
	Repeating Radial Gradients

	Summary
	Gradients: Browser Support

	12. 2D Transformations
	The transform Property
	rotate
	Position in Document Flow
	transform-origin

	translate
	skew
	scale
	Multiple Transformations
	Transforming Elements with Matrices
	Reflections with WebKit
	Summary
	2D Transformations: Browser Support

	13. Transitions and Animations
	Transitions
	Property
	Duration
	Timing Function
	Timing Function Keywords
	The Cubic Bézier Curve

	Delay
	Shorthand
	The Complete Transition Example
	Multiple Transitions
	Triggers

	More Complex Animations
	Key Frames
	Animation Properties
	Name
	Duration
	Timing Function
	Delay
	Iteration Count
	Direction
	Shorthand
	Play State

	The Complete Animations Example
	Multiple Animations

	Summary
	Transitions and Animations: Browser Support

	14. 3D Transformations
	3D Elements in CSS
	Transform Style
	The Transformation Functions
	Rotation Around an Axis
	Translation Along the Axis
	Scaling
	The Transformation Matrix
	Perspective

	The perspective and perspective-origin Properties
	The Transformation Origin
	Showing or Hiding the Backface
	Summary
	3D Transformations: Browser Support

	15. Flexible Box Layout
	Triggering the Flexible Box Layout
	The box Value in Firefox
	Inline Boxes

	Making the Boxes Flexible
	Unequal Ratios
	Zero Values and Firefox Layouts

	Grouping Flexible Boxes
	Changing Orientation
	Changing the Order of Flexible Boxes
	Reversing the Order
	Further Control over Ordering

	Alignment
	Same-Axis Alignment
	Multiple Rows or Columns
	Cross-Browser Flex Box with JavaScript
	Stop the Presses: New Syntax
	Summary
	Flexible Box Layout: Browser Support

	16. Template Layout
	Setting Up the JavaScript
	Using position and display to Create Rows
	Multiple Rows
	Slots and the ::slot() Pseudo-element
	Creating Empty Slots
	Setting Height and Width on Rows and Columns
	Width Keyword Values
	Setting Both Row Height and Column Width

	Default Content: The @ Sign
	Summary
	Template Layout: Browser Support

	17. The Future of CSS
	Mathematical Operations
	Calculation Functions
	Cycle

	The Grid Positioning Module
	Implicit and Explicit Grids
	The Grid Unit (gr)
	Extended Floats

	Extending the Possibilities of Images
	Image Fallback
	Image Slices
	Image Sprites

	Grouping Selectors
	Constants and Variables
	WebKit CSS Extensions
	CSS Variables
	Extending Variables Using Mixins
	CSS Modules
	Nested Rules

	Haptic Feedback
	Summary
	Future CSS: Browser Support

	A. CSS3 Support in Current Major Browsers
	Media Queries (Chapter 2)
	Selectors (Chapter 3)
	Pseudo-classes and Pseudo-elements (Chapter 4)
	Web Fonts (Chapter 5)
	Text Effects and Typographic Styles (Chapter 6)
	Multiple Columns (Chapter 7)
	Background Images and Other Decorative Properties (Chapter 8)
	Border and Box Effects (Chapter 9)
	Color and Opacity (Chapter 10)
	Gradients (Chapter 11)
	2D Transformations (Chapter 12)
	Transitions and Animations (Chapter 13)
	3D Transformations (Chapter 14)
	Flexible Box Layout (Chapter 15)
	Template Layout (Chapter 16)
	The Future of CSS (Chapter 17)

	B. Online Resources
	CSS Modules
	Browsers
	WebKit
	Firefox
	Opera
	Internet Explorer

	Browser Support
	When Can I Use . . .
	Quirks Mode
	Find Me By IP

	Feature Detection and Simulation
	Perfection Kills
	Modernizr
	CSS3 Pie

	Code-Generation Tools
	CSS3, Please!
	CSS3 Generator
	CSS3 Gradient Generator
	Type Folly

	Web Fonts
	Typekit
	Fontdeck
	Fonts.com Web Fonts
	Google Font API
	Web FontFonts
	Font Squirrel
	Fontspring

	Other Resources
	CSS3.info
	CSS3 Watch
	CSS3 Cheat Sheet

	C. About the Technical Reviewer
	Index
	About the Author
	Copyright

