THE BOOK OF

CSS3

A DEVELOPER'S GUIDE TO THE
FUTURE OF WEB DESIGN

PETER GCGASSTON




The Book of CSS3

TABLE OF CONTENTS

Dedication
Foreword
Preface
Introduction

The Scope of This Book
A Quick Note About Browsers and Platforms
The Appendices and Further Resources




1. Introducing CSS3
What CSS3 Is and How It Came to Be
A Brief History of CSS3
CSS3 Is Modular

Module Status and the Recommendation Process
CSS3 Is Not HTMLS5

Let’s Get Started: Introducing the Syntax
Browser-Specific Prefixes
Future-Proofing Experimental CSS

Getting Started




2. Media Queries
The Advantages of Media Queries

Syntax
Media Features
Width and Height
Device Width and Height
Using Media Queries in the Real World
Orientation
Aspect Ratio
Pixel Ratio
Multiple Media Features
Mozilla-Specific Media Features

Summary
Media Queries: Browser Support




3. Selectors

Attribute Selectors
New Attribute Selectors in CSS3

Beginning Substring Attribute Value Selector
Ending Substring Attribute Value Selector
Arbitrary Substring Attribute Value Selector
Multiple Attribute Selectors

The General Sibling Combinator

Summary
Selectors: Browser Support




4. Pseudo-classes and Pseudo-elements

Structural Pseudo-classes

The nth-* Pseudo-classes
first-of-type, last-child, and last-of-type
only-child and only-of-type
Other Pseudo-classes
target
empty
root

not
Ul Element States

Pseudo-elements

The selection pseudo-element

Summary
DOM and Attribute Selectors: Browser Support




5. Web Fonts
The (@font-face Rule

Defining Different Faces
True vs. Artificial Font Faces

A “Bulletproof” (@font-face Syntax

Using Local Fonts

Font Formats

The Final “Bulletproof” Syntax
The Fontspring Bulletproof Syntax

Licensing Fonts for Web Use
A Real-World Web Fonts Example
More Font Properties

font-size-adjust
font-stretch
OpenType Features

Summary
Web Fonts: Browser Support




6. Text Effects and Typographic Styles
Understanding Axes and Coordinates

Applying Dimensional Effects: text-shadow
Multiple Shadows
Letterpress Effect

Adding Definition to Text: text-outline and text-stroke
More Text Properties

Restricting Overflow

Resizing Elements
Aligning Text

Wrapping Text
Setting Text Rendering Options

Applying Punctuation Properties

Summary
Text Effects: Browser Support




7. Multiple Columns
Column Layout Methods

Prescriptive Columns: column-count

Dynamic Columns: column-width
A Note on Readability

Difterent Distribution Methods in Firefox and WebKit
Combining column-count and column-width

Column Gaps and Rules
Containing Flements within Columns

Elements Spanning Multiple Columns
Elements Breaking over Multiple Columns

Summary
Multiple Columns: Browser Support




8. Background Images and Other Decorative Properties

Background Images
Multiple Background Images
Background Size
Background Clip and Origin
background-repeat

Background Image Clipping

Image Masks

Summary
Background Images: Browser Support




9. Border and Box Effects
Giving Your Borders Rounded Corners
border-radius Shorthand

Differences in Implementation Across Browsers
Using Images for Borders
Multicolored Borders
Adding Drop Shadows

Summary
Border and Box Effects: Browser Support




10. Color and Opacity

Setting Transparency with the opacity Property
New and Extended Color Values

The Alpha Channel
Hue, Saturation, Lightness

HSLA
The Color Variable: currentColor

Matching the Operating System’s Appearance

Summary
Color and Opacity: Browser Support




11. Gradients

Linear Gradients
Linear Gradients in Firefox
Linear Gradients in WebKit

Using Linear Gradients
Adding Extra color-stop Values

Radial Gradients
Radial Gradients in Firefox
Radial Gradients in WebKit

Using Radial Gradients
Multiple color-stop Values

The WebKit Advantage
Multiple Gradients
Repeating Gradients in Firefox

Repeating Linear Gradients
Repeating Radial Gradients

Summary
Gradients: Browser Support




12. 2D Transformations

The transform Property
rotate

Position in Document Flow
transform-origin

translate

skew

scale

Multiple Transformations
Transforming Elements with Matrices
Reflections with WebKit

Summary
2D Transformations: Browser Support




13. Transitions and Animations
Transitions

Property

Duration

Timing Function

Delay

Shorthand

The Complete Transition Example
Multiple Transitions

Triggers

More Complex Animations

Key Frames

Animation Properties

The Complete Animations Example
Multiple Animations

Summary
Transitions and Animations: Browser Support




14. 3D Transformations

3D Elements in CSS
Transform Style

The Transformation Functions
Rotation Around an Axis
Translation Along the Axis
Scaling
The Transformation Matrix
Perspective
The perspective and perspective-origin Properties
The Transformation Origin
Showing or Hiding the Backface

Summary
3D Transformations: Browser Support




15. Flexible Box Layout

Triggering the Flexible Box Layout

The box Value in Firefox
Inline Boxes

Making the Boxes Flexible

Unequal Ratios
Zero Values and Firefox Layouts

Grouping Flexible Boxes

Changing Orientation

Changing the Order of Flexible Boxes
Reversing the Order
Further Control over Ordering

Alignment

Same-Axis Alignment

Multiple Rows or Columns
Cross-Browser Flex Box with JavaScript
Stop the Presses: New Syntax

Summary
Flexible Box Layout: Browser Support




16. Template Layout

Setting Up the JavaScript

Using position and display to Create Rows
Multiple Rows

Slots and the ::slot() Pseudo-element

Creating Empty Slots
Setting Height and Width on Rows and Columns

Width Keyword Values

Setting Both Row Height and Column Width
Default Content: The @ Sign

Summary
Template Layout: Browser Support




17. The Future of CSS
Mathematical Operations

Calculation Functions
Cycle

The Grid Positioning Module
Implicit and Explicit Grids
The Grid Unit (gr)
Extended Floats

Extending the Possibilities of Images

Image Fallback

Image Slices

Image Sprites
Grouping Selectors
Constants and Variables
WebKit CSS Extensions

CSS Variables

Extending Variables Using Mixins
CSS Modules

Nested Rules

Haptic Feedback

Summary
Future CSS: Browser Support

A. CSS3 Support in Current Major Browsers

Media Queries (Chapter 2)

Selectors (Chapter 3)

Pseudo-classes and Pseudo-elements (Chapter 4)
Web Fonts (Chapter 5)

Text Effects and Typographic Styles (Chapter 6)
Multiple Columns (Chapter 7)

Background Images and Other Decorative Properties (Chapter 8)
Border and Box Effects (Chapter 9)

Color and Opacity (Chapter 10)

Gradients (Chapter 11)

2D Transformations (Chapter 12)

Transitions and Animations (Chapter 13)

3D Transformations (Chapter 14)

Flexible Box Layout (Chapter 15)

Template Layout (Chapter 16)
The Future of CSS (Chapter 17)

B. Online Resources




CSS Modules
Browsers

WebKit

Firefox

Opera

Internet Explorer
Browser Support

WhenCanl Use . . .
Quirks Mode
Find Me By IP

Feature Detection and Simulation

Perfection Kills
Modernizr
CSS3 Pie

Code-Generation Tools

CSS3, Please!
CSS3 Generator
CSS3 Gradient Generator
Type Folly

Web Fonts
Typekit
Fontdeck
Fonts.com Web Fonts
Google Font API
Web FontFonts
Font Squirrel
Fontspring

Other Resources
CSS3.info

CSS3 Watch
CSS3 Cheat Sheet

C. About the Technical Reviewer
Index







The Book of CSS3

Peter Gasston

Published by No Starch Press






Dedication

To my wife, Ana, for her patience and support






Foreword

CSS3 used to be a topic for people who were in it for the long haul. Back in 2006, I started
CSS3.info, and Peter joined me in writing posts about the development of the standard and real-life
examples of what it looked like in browsers. Although I started the site, Peter was always the most
prolific writer, and it’s only fitting that while I wrote this foreword, he wrote the book.

CSS3 has finally gone mainstream. With the new age of browsers (such as Firefox 4, Google Chrome,
and Internet Explorer 9), we as a web design community are finally getting the power and flexibility
we’ve been waiting for. We can now manage media queries for different browsers, have smarter
background images, and handle fonts in a way that doesn’t drive us nuts.

If you plan on using CSS3, this book is the most hands-on guide you’ll find. It shows you what works
and what doesn’t, and no caveat is forgotten. Peter even provides a clear explanation for how
transitions and transformations work. This 1s no small feat; as you’ll see for yourself when reading
those chapters, the matrix functions are not for every user. Luckily you won’t have to use those when
you’re taking advantage of the other — far more accessible — functions in CSS3.

More is to come: CSS3 is an ever-expanding standard that promises to help web designers do great
things. I, for one, am very curious about where it will lead us. For now, though, this book is all you
need to start uncovering the treasures within CSS3.

Joost de Valk
CEO and Founder, Yoast.com






Preface

This book is the culmination of five years’ writing about CSS3, both on the Web and in print. The
browser and CSS landscape has changed a lot in that short time and continues to change today,
bringing new features and implementations at a rate that’s difficult to keep up with. The CSS3
specification is written in (often dense) technical language that’s intended for implementers rather
than end users, and my intent in writing this book was to bridge the gap between specification and
web developer.

I wrote about the CSS properties in the earlier chapters of this book with certainty, because they’re
well implemented and used on a daily basis. As I progressed through the book, I was able to learn
more from experimentation and the work of pioneers and early adopters. By the final few chapters I
had to rely on interpretation of the CSS3 specification to explain how future properties will behave. I
would hope that there are few mistakes, but I accept that any that exist are based on my own
misunderstanding.

In addition to the CSS3 specification itself, an invaluable resource was the Mozilla Developer
Network (https://developer.mozilla.org/), a peerless collection of articles about anything web related
— not least CSS — which is all the more amazing for being written by volunteers. The text used in
many of the code examples is taken from books in the public domain which are available at
http://www.gutenberg.org/. All images in the book that are not my own creations are credited in the
relevant chapters.

This book would not have been possible without the guidance of the team at No Starch Press,
especially Serena Yang and my editor, Keith Fancher, who made me write more clearly and helped
me transition from blogger to author. I’d also like to thank Joost de Valk, who not only acted as my
technical editor but also gave me my first opportunity to write about CSS3 when he created the
website http://www.css3.info/ five years ago.

I’d also like to thank my colleagues at Preloaded and Poke for their support and encouragement,
everyone at the many London web community meet-ups, my mum for teaching me the value of hard
work, and my dad for buying me my first computer some almost thirty years ago — I promised I’d pay
him back one day, and hopefully this book will go some way toward that debt.


https://developer.mozilla.org/
http://www.gutenberg.org/
http://www.css3.info/




Introduction

Let me tell you a little about who I think you are: You’re a web professional who’s been hand-coding
HTML and CSS for a few years; you’re pretty comfortable with creating complex layouts, and you
know not only your div from your span but also your bold from your st rong; you’ve read a little
about CSS3 and may even have started experimenting with some of its more decorative features like
rounded corners, but you want to gain a deeper understanding of the fundamentals.

The Book of CSS3 helps you leverage the excellent knowledge you have of CSS2.1 in order to make
learning CSS3 easier. I won’t explain the fundamentals of CSS (except for the occasional reminder)
as I assume you know them already. I won’t talk you through step-by-step demonstrations of using
CSS to make a listed navigation or an image gallery because I assume you can apply the examples in
this book to anything you want to build on your own.

What I aim to do with this book is introduce you to what you can do with CSS3 now and what you’ll
be able to do with it in the future. I want to take the dense technical language of the CSS3
specification and translate it into language that’s plain and practical.

In short, I want to give you some new tools for your toolkit and let you make cool stuftf with them.



The Scope of This Book

CSS can be used across many types of media; almost any device that’s capable of displaying HTML
or XML can also display CSS rules, albeit in a limited form sometimes. CSS3 has two modules
devoted exclusively to paged media, such as PDF or printed materials, and also supports braille,
handheld mobile devices (i.e., cellphones rather than smartphones), teletypes, and televisions. The
range and breadth of possibilities is so vast that [ can’t cover them all.

What this book focuses on is CSS for the computer screen. All of the demonstrations were written for
(and tested in) the most common desktop browsers, and they’re optimized for users of desktop and
laptop computers. Although many of the new features in this book will still work if you’re developing
for other devices — especially smartphones and tablets — I make no guarantees or assurances that
everything will display exactly as shown in the examples contained herein.



A Quick Note About Browsers and Platforms

I wrote the majority of this book — and, therefore, the majority of the demonstrations and examples
— on a computer running Ubuntu 10.04 with Firefox, Chrome, and Opera installed. Other portions
were written on a MacBook Pro with Safari installed. Tests for Internet Explorer were performed
using Windows 7. (The exact versions of all of the browsers used can be found in the introduction to
Appendix A.)

Throughout this book, I mostly make reference to Firefox and WebKit. The perspicacious among you
will notice that Firefox is a type of browser, whereas WebKit is a type of layout engine, and wonder
why I don’t refer to the Gecko layout engine used by Firefox or to any WebKit-based browser by
name.

The reason i1s quite simple: Firefox is clearly the preeminent Gecko-based browser, whereas Chrome
and Safari dispute the eminence of WebKit between them. As a simple space-saving exercise, [ will
say “WebKit” rather than “Chrome and Safari.” The exception to this rule is when a specific feature
or syntax only appears in one type of WebKit browser — such as hardware-accelerated 3D
transformations in Safari — in which case, I refer to the name of the browser in question.



The Appendices and Further Resources

At the end of this book are two appendices containing further information beyond what’s discussed in
the various chapters. The first provides a quick reference guide to the implementation of the features
included in this book across the different versions of browsers, and the second is a list of online
resources, useful tools, and interesting demonstrations.

A website accompanies this book at http://www.thebookofcss3.com/; here I’ll keep updated versions
of both appendices and all of the examples and demonstrations used in this book. God forbid I should
make any mistakes, but on the super-rare possibility that I do, I’ll also keep a full list of errata.

In addition to the accompanying website, | write more about CSS3 (and other emerging web
technologies) at my blog, Broken Links (http://www.broken-links.con/). Feel free to comment or get
in touch with me through either of these websites.


http://www.thebookofcss3.com/
http://www.broken-links.com/




Chapter 1. Introducing CSS3

In this first chapter, I’ll introduce a new CSS3 property in order to demonstrate the code conventions
used in this book, but before getting to that, I’'ll explain a little about the history of CSS3. Obviously,
you don’t need to know its history in order to use CSS3, but I think having some context about the
current state of CSS3 1s important.

(CSS3 1s a specification in flux. Some parts of the spec are considered stable and have been well
implemented in modern browsers; other parts should be considered experimental and have been
partially implemented to varying degrees; yet others are still theoretical proposals and have not been
implemented at all. Some browsers have created their own CSS properties that don’t belong in any
CSS3 specification and perhaps never will.

All of this means that knowing how the standardization process works and the levels of
implementation for each new property is vital to understanding how you can use CSS3 in your code
both now and in the future.



What CSS3 Is and How It Came to Be

First, I want to discuss what CSS3 1s — and isn’t — and the form it takes. The W3C’s approach to
CSS3 is quite different from its approach to CSS2, so this overview should help you understand how
and when you can use CSS3 and why it has such varied implementation across different browsers.



A Brief History of CSS3

The version of CSS in current use 1s CSS2.1, a revision of the CSS2 specification that was originally
published in 1997. Despite ongoing development and review since that time, many people are
surprised to learn that CSS2 hasn’t actually become an “official” recommendation of the W3C yet.
(I’11 talk more about the recommendation process shortly.) More surprising still is the fact that
Internet Explorer 8 (IE§) — released in 2009 — lays claim to being the first browser to support the
entire CSS2.1 specification fully.

In the last few years, the talk has been about the new revision — CSS3. I say “new,” but in fact work
on CSS3 began back in 1998, the year after CSS2 was published. Browser implementation of CSS2
continued to be so frustratingly inconsistent, however, that the W3C decided to halt work on any new
revision and work on CSS2.1 instead, standardizing the way CSS had been implemented in the real
world. In 2005, all of the CSS3 modules were moved back to draft status, and the editing and review
process began all over again.

For many years, Internet Explorer dominated the ever-expanding market of Internet users and showed
no sign of wanting to implement CSS3. But int he last few years, a whole new range of browsers has
appeared to compete for users, and this plethora of choice has led to a features arms race. One
beneficiary of that arms race has been CSS3. Each of the browsers wants to offer developers and
users the latest in web technologies, and with the CSS3 spec already mostly written, implementing
and even adding new features has been a no-brainer.

So here we are today, with the CSS3 specification under active development, a broad range of
browsers working on implementing it, and a community of interested developers building with it,
studying it, and writing about it. A healthy situation, and one we couldn’t have foreseen just a few
years ago.



CSS3 Is Modular

Being the default styling language for every markup-based document in the world is an enormous
undertaking, and the W3C was aware that it would take many years to come to fruition. W3C
members, conscious that they didn’t want to hold up some of the more obvious, in-demand features
while they were considering and debating some of the more esoteric ones, made the decision to split
CSS3 into various modules. Each of the modules could then be worked on by different authors at
different paces, and the implementation and recommendation process — which I’ll discuss shortly —
could be staggered.

This is why, instead of a single, monolithic CSS3 specification document, you have CSS3 Basic User
Interface Module, Selectors Level 3, Media Queries, and so on. Some of these modules are revisions
of CSS2.1, and some are newly created, but all fall under the banner of CSS3.

One of the few things I find irritating (I’'m an easy-going guy) is that on many blogs you’ll hear people
complaining, “I want to use CSS3, but it won’t be ready for years.” This is nonsense; some modules
of CSS3 already have very stable implementation in all modern browsers, and many more are just
months away from prime time. If you want to wait until all of the modules are 100 percent
implemented across every browser in existence, you’ll be waiting a long time.

But CSS3 is here, and some of it is ready to use right now — you just have to be mindful about how
you use it.



Module Status and the Recommendation Process

As I move through this book and discuss each of the different modules, I’'1l also refer to that module’s
status. Status is set by the W3C, and it indicates the module’s progress through the recommendation
process; note, however, that status is not necessarily an indication of a module’s degree of
implementation in any browser.

When a proposed document is first accepted as part of CSS3, its status is designated Working Draft.
This status means that the document has been published and is now ready for review by the
community — 1n this case, the community being browser makers, working groups, and other
interested parties. A document may stay as a Working Draft for a long period, undergoing many
revisions. Not all documents make it past this status level, and a document may return to this status on
many occasions.

Before a document can progress from a Working Draft, its status changes to Last Call. This means the
review period is about to close and usually indicates the document is ready to progress to the next
level.

That next level 1s Candidate Recommendation, which means the W3C is satisfied that the document
makes sense, that the latest reviews have found no significant problems, and that all technical
requirements have been satisfied. At this point, browser makers may begin to implement the
properties in the document to gather real-world feedback.

When two or more browsers have implemented the properties in the same way and if no serious
technical issues have come to light, the document may progress to being a Proposed
Recommendation. This status means that the proposal is now mature and implemented and ready to
be endorsed by the W3C Advisory Committee. When this endorsement has been granted, the proposal
becomes a Recommendation.

To reiterate what I briefly touched on before, the recommendation process and the implementation
process do not always work in the same way. For example, later on in this book, I’ll introduce a set
of modules proposed by the WebKit team a few years ago, which includes 2D Transformations
(Chapter 12). Despite the proposal still having Working Draft status, the properties are already well
implemented in Firefox, Opera, and WebKit.

As I mentioned earlier in this chapter, not even CSS2.1 — which we’ve all been using for many years
now — has reached full Recommendation status. Although CSS2.1 is as good as finished, a few
matters of syntax and phrasing still need to be resolved. Obviously, that hasn’t stopped the browsers
from implementing it fully and moving on to CSS3.

As a result, I’ve written this book in a loose order of implementation, rather than recommendation
status. Earlier chapters discuss features that have full implementation across all browsers (or should
by the time this book is released), later chapters cover features that are implemented in some
browsers only — often with browser-specific prefixes — and chapters toward the end of the book
deal with potential, speculative, or partial implementations of properties.



CSS3 Is Not HTML5

One of the current buzzwords around the Internet is HTMLS. HTMLS is, of course, a genuine (and
exciting) new technology that has somehow broken out of the technical press and through to the
mainstream media. Just about everywhere you turn people are discussing it. On that journey, however,
its correct meaning seems to have been lost.

Before I discuss what that real meaning is, I should point out that the media are not solely responsible
for obfuscating the true meaning of HTMLS. Many developers are falling over themselves to make
flashy “HTMLS demos”; but if you look more closely at these demos (or view their source code),
more often than not you’ll find they involve few-to-no actual new HTMLS features and an awful lot of
CSS3 (yes, Apple, I’'m looking at you: see http://www.apple.com/html5/).

Although HTMLS5 will bring a lot of cool new features to the Web, CSS3 is bringing the really fancy
visual stuff: rotating, scaling, and animating in two and three dimensions; dynamic and decorative text
effects; drop shadows; rounded corners; and gradient fill effects. All this is possible with CSS3 (and
I’1l show you how to do it all in this book).

What the media refers to as HTMLS is really that new revision of the markup language combined with
CSS3, SVG, and JavaScript — what many people (myself included) prefer to call part of the Web
Stack (or, Open Web Stack).


http://www.apple.com/html5/

Let’s Get Started: Introducing the Syntax

With the introductions and explanations out of the way, let’s get to the meat of CSS3. Throughout this
book, I use a certain syntactical convention to demonstrate each of the new rules and properties.
Rather than simply describe that convention, I thought you’d find it more interesting if I explain it at
the same time as I introduce the first new CSS3 property.

The property is box-sizing, which allows you to set how an element’s dimensions are calculated.
As you know, an element’s total width — without including its margin — is usually calculated from
its stated (or inherited) width value, plus its left and right padding, plus its border-width.
Let’s take as an example the following code, which should be very familiar to you.
div {
border: 10px solid black;
padding: 10px;
width: 150px;
}
In this example, the div has a total width of 190px — 150px width plus 20px padding plus 20px
border. This code is fine and uncontentious when you’re using absolute values for width, but it
becomes problematic when you start mixing in percentages:
div {
border: 10px solid black;
padding: 10px;
width: 15%;
}
Now the width has become a lot harder to calculate because you first need to know the width value
of the parent element before you can know how much 15 percent of that is and add the pixel values.
Calculations can become very complicated very quickly, making percentage-based layouts tricky to
manage properly.

At this point, the box~-sizing property comes in handy. With this, you can set from which part of
the box model — the content itself or the border — the width of the element is calculated. So now
that I’ve covered the reason for the new property’s existence, I’ll begin the demonstration with a look
at its syntax, using the convention that will be standard in this book:

E { box-sizing: keyword; }

In this code example, the selector is represented with E. Of course, in HTML, this selector doesn’t
exist; I’'m merely using it as an indicator that any selector can be used here. In the case of the
examples used at the beginning of this section, the £ represents the div element.

Next, you have the property itself: box-sizing. This property is implemented in all major
browsers but with browser-specific prefixes in some: In Firefox, the property uses the —moz - prefix
— that is, the property is —-moz-box-sizing;and in WebKit, it has the ~-webk i t - prefix, so it
would be —webkit-box-sizing. Rather than obfuscate the code with all of the different
prefixes, I use only the correct property name according to the CSS3 specification and note in the text
when a prefix is required, as I’ve just done here. (I’ll explain more about these browser prefixes in
the following section.)

The value of the declaration is the word keyword, but again the value is only an indicator; it
represents a range of possible values. For box—-sizing the permitted values are border-box



and content-box.

With all of that in mind, if you used actual values, one possible real-world application of this new
property might look like this:

div { box-sizing: content-box; }

So what does this property do? As mentioned, box-sizing sets the point of the element from
which the width is calculated. The default is content-box, which means the stated width of the
element applies to the content, and the padding and border values are added on as usual.

A value of border-box means the stated width value is the total width of the content, the
padding, and the border — in other words, the entire box (without the margin). To illustrate this, let’s
return to the previous example code and add the property:
div {
border: 10px solid black;
box-sizing: border-box;
padding: 10px;
width: 150px;
}
Now the width of 150px includes the padding and border. As each of those is 10px on both sides, the
content of the div element has a calculated width of 110px — 150px minus the 20px padding and

20px border.

Before illustrating the difference between the two values visually, I should also mention that Firefox
(withits -moz-box-sizing property) has an extra permitted value that other browsers don’t:
padding-box. Using this value, the width of the element is calculated from its padding and its
content and doesn’t include the element’s border. Here’s an example:
div {
border: 10px solid black;
-moz-box-sizing: padding-box;
padding: 10px;
width: 150px;
}
In this code, the 150px width includes the padding, so the width of the content itself would be 130px.
You can see the difference among the values when rendered in Firefox in Figure 1-1.

Moving through the examples from left to right: The first div has the default content-box value
for box-sizing, so the stated width — 150px — is the width of the content, and the border and
padding are added to the content. In the second example, the value is border-box, meaning the
150px width includes the border and padding, making the content 110px wide. Finally, the div on the
right uses Firefox’s own -moz-box-s1izing property with the value of padding-box, so the
150px includes the content and padding but not the border, putting the content’s width at 130px.



content-box border-box padding-box
lorem ipsum lorem ipsum lorem ipsum

dolor sit amet dolor sit dolor sit amet
amet

150px 130px

e
—

F |

110px

Figure 1-1. The effects of different values on the box-sizingproperty

Please note that although I only discuss the width property in all of these examples, the exact same
rules apply to an element’s height property. (You may also note that this works in exactly the same
way as a browser that is put into “quirks” mode.)

NOTE

If you’re a younger developer you may not remember “quirks” mode. It’s a system that emulates the incorrect way that Internet
Explorer 5.5 used to lay out web pages; you can read more about it on Wikipedia (http://en.wikipedia.org/wiki/Quirks mode).

I use the box-sizing property ina few examples throughout this book, so if the effects (and
benefits) aren’t immediately apparent right now, they should become clearer as you work through the
rest of the chapters.


http://en.wikipedia.org/wiki/Quirks_mode

Browser-Specific Prefixes

In the previous section, I briefly discussed using browser-specific prefixes on the box-sizing
property. As CSS3 is still in a state of change and revision, you’ll see these mentioned a lot
throughout the rest of this book, so I’ll take some time to talk about these in more detail.

When a module is still under active review, as much of CSS3 i1s, a lot is subject to change; the syntax
of a property may be revised, or properties may be dropped entirely. On occasion, even the wording
of the draft itself is perhaps a little nebulous and open to interpretation.

At the same time, browsers need to implement these features so we can see how they work in
practice. But consider the difficulties that would occur if two separate browsers implemented the
same property but interpreted it slightly differently: Your code would appear differently — perhaps
radically so — in each of the browsers. To prevent this from happening, each of the different browser
engines prefixes a short code to the beginning of experimental properties. Let’s imagine a property
called monkeys (I’ve always wanted a monkeys property), which is brand new in the
specification, and that all of the browsers have decided to implement it to see how it works. In this
case, you would use the following code:

E
{

-moz-monkeys: value ; /* Firefox */
-ms-monkeys: value ; /* Internet Explorer */
-o-monkeys: value ; /* Opera */
-webkit-monkeys: value; /* WebKit */

}

The amount of repetition may seem somewhat unnecessary, but the repetition is for our own good; the
last thing you want is for all the browsers to implement the monkeys property differently, leading to

total chaos. (You’ll see a great example of the benefits of prefixes when I discuss gradients in
Chapter 11.)



Future-Proofing Experimental CSS

Quite often people will suggest that when using prefixed, experimental CSS properties, you also add
the unprefixed property at the end:
E A
-moz-monkeys: value; /* Firefox */
-ms-monkeys: value; /* Internet Explorer */
-o-monkeys: value; /* Opera */
-webkit-monkeys: value; /* WebKit */
monkeys: value;

}
The theory is that this future-proofs the code; when the property is fully implemented in the browsers,
you don’t need to go back and add the property to your stylesheets. I used to agree with this technique,
but now I’m not so sure. I think future-proofing is okay if more than one browser has already fully
implemented the property in a compatible way, as that usually means the specification is stable.
However, if the spec is still under review, then the syntax is subject to change. Adding the unprefixed
property could cause problems when browsers actually implement the updated syntax — or, indeed, it
may not work at all.

Some properties in this book — such as background-size in Chapter 8 — are semi-
implemented, which is to say they are prefixed in some browsers, but unprefixed in others. In this
case, you will obviously have to use a mixture of the two states if you want to use those properties
across browsers. Others — like the aforementioned gradient properties in Chapter 11 — are
immature, still open to review, and far from final, so you should probably not use the future-proofing
method with them just yet.



Getting Started

That should be everything you need to get started with this book — except, of course, an inquisitive
nature. [ have a lot of ground to cover in CSS3, so I’'ll move fairly quickly, but each chapter should
give you the knowledge you need to build your own tests, demonstrations, and sites that take
advantage of the flexibility and rich features that CSS3 provides.

We’ll begin with a look at one of the simplest — and yet potentially the most disruptive (and I mean
that in a good way) — new features: Media Queries.






Chapter 2. Media Queries

Back when the World Wide Web was some thing you only accessed via a browser on your desktop or
laptop, writing CSS was fairly straightforward. Although you had to consider cross-browser and
cross-platform issues, at least you knew with reasonable certainty that everyone was using
fundamentally similar devices to view your website. Over the last few years, however, we’ve seen an
explosion of new devices for accessing the Web — from game consoles to mobile devices such as the
1Phone or iPad. Presenting your content to everybody in the same way no longer makes sense when
they could be viewing your website on a widescreen desktop monitor or a narrow handheld screen.

CSS has had a way to serve different styles to different media types for quite some time, using the
media attribute of the 1 ink element:

<link href="style.css" rel="stylesheet" media="screen">

But using this 1s like wielding a pretty blunt instrument when the screen in question can be between
3.5 inches and 32 inches in size. The CSS3 solution to this problem is the Media Queries Module
(http://www.w3.org/TR/css3-mediaqueries/). Media Queries extend the media types by providing a
query syntax that lets you serve styles far more specifically to your user’s device, allowing a tailored
experience. The description may sound quite dry, but this feature is actually one of the most
revolutionary in the entire CSS3 specification. Media Queries give you the freedom to make websites
that are truly device-independent and give your users the best possible experience no matter how they
choose to visit your site.

The Media Queries Module has Candidate Recommendation status so is considered ready for
implementation. The module is already well implemented in Firefox, WebKit, and Opera, and will be
in Internet Explorer from version 9.


http://www.w3.org/TR/css3-mediaqueries/

The Advantages of Media Queries

As a quick demonstration of the power and flexibility of Media Queries, I want to show an example
of how websites can be optimized for mobile browsers without requiring a great deal of extra
development.

People visiting your site on a mobile device may well struggle to use it: The text may appear too
small, and zooming in means a lot of scrolling to find navigational elements; those navigational
elements may involve drop-down functionality that is triggered by hovering over them, an action that
often doesn’t exist on mobile devices; large images may take a long time to download over a weak
data connection and use a substantial portion of your monthly bandwidth allowance. Some sites plan
for this by providing mobile-friendly versions, but these generally involve a lot of development work.
A subdomain has to be set up with stylesheets and HTML templates that differ from the parent site,
images have to be resized to better fit small screens, and a script has to be created to detect whether a
mobile browser is being used and to redirect to the mobile site accordingly. This approach can cause
problems: Your script has to be kept up to date with all mobile browser versions, and maintenance
often involves duplication to keep both mobile and desktop versions in sync.

Media Queries address many of these issues. For a start, they detect devices based on their attributes,
so no browser-sniffing scripts are required. They allow you to target stylesheets directly for a
device’s capabilities, so if a device with a small screen is detected, CSS rules will be tailored to that
screen size, removing extraneous elements from the screen, serving smaller images, and making text
clearer.

For example, take a look at the website of the dConstruct conference from 2010
(http://2010.dconstruct.org/), as shown in Figure 2-1.

When viewed in a desktop browser, the site features large images of the speakers, and text is
displayed in columns laid out horizontally. Through the power of Media Queries, when you see the
same site viewed in a narrower browser — as smartphones such as the iPhone would use — the
speaker images are removed, the links to the speakers’ pages are more prominent, and all of the text
on the page is moved into a single column, which is ideal for scrolling down.


http://2010.dconstruct.org/

ML MIDILE  WORK

d[hna\rucl, O mosrmmnne

DESIGN
CREATIVITY

v i s

AL PEBEFY B 1 S Il (e w-ﬁ\
s il theew Fuvey W can Ihﬂ A ‘H
TREW

W COATES

LATEST NEWS

Figure 2-1. The dConstruct website viewed in a desktop browser (left) and a mobile browser (right)

Of course, the Web is appearing on more than just desktop and smartphone devices, and we really
need to be working toward an era of websites optimized for any device. I urge you to read Ethan
Marcotte’s article, “Responsive Web Design” (http://www.alistapart.com/articles/responsive-web-
design/), which provides a great introduction to this new paradigm of web design.

And 1f you want to see what other people have been doing with Media Queries there’s a great gallery
online at http://www.mediaqueri.es/, which showcases some of the better examples of what’s
possible.


http://www.alistapart.com/articles/responsive-web-design/
http://www.mediaqueri.es/

Syntax

A Media Query sets a parameter (or series of parameters) that displays associated style rules if the
device used to view the page has properties that match that parameter. You can use Media Queries in
three ways, all of which match the different ways that CSS can be applied to a document. The first is
to call an external stylesheet using the 1 ink element:

<link href="file" rel="stylesheet" media="logic media and (expression)">

The second is to call an external stylesheet using the @import directive:
@import url ('file') logic media and (expression);

The third is to use Media Queries in an embedded sty 1e element or in the stylesheet itself with the
extended @media rule:

@media logic media and (expression) { rules }

This method is the one I’ll use throughout the rest of this chapter, as it’s clearer for demonstration
purposes. Which method you use will largely depend on your own preference and the demands of
your existing stylesheet structure.

Now that I’ve introduced the declaration methods, let’s explore the syntax. You should already be
familiar with the media attribute — it declares the media types that the styles are applied to, just as
inthe HTML 11ink tag;

<link href="style.css" rel="stylesheet" media="screen, projection">
As with the current syntax, you can use a comma-separated list to choose multiple media types.

The first new attribute for the @media rule 1s 1ogic. This optional keyword can have the value of
either only or not:

@media only media and (expression) { rules }
@media not media and (expression) { rules }

The only value is used if you want to hide the rule from older browsers that don’t support the
syntax; for browsers that do support it, on1y is effectively ignored. The not value is used to negate
the Media Query; you use not to apply the styles if the parameters you set are not met.

The next attribute is expression, which is where the main selection takes place. You declare
expression by using the and operator and use it to set parameters beyond the media type. These
parameters are known as Media Features, and they’re critical to the power of Media Queries. That
being the case, let’s explore them in detail.



Media Features

Media Features are information about the device that’s being used to display the web page: its
dimensions, resolution, and so on. This information is used to evaluate an expression, the result
of which determines which style rules are applied. That expression could be, for example,
“apply these styles only on devices that have a screen wider than 480 pixels” or “only on devices that
are orientated horizontally.”

In Media Queries, most Media Feature expressions require that a value be supplied:

@media media and (feature:value) {rules}

This value is required to construct the example expressions I just mentioned. In a few cases, however,
the value can be left out and just the existence of the Media Feature itself tested against:

@media media and (feature) {rules}

Expressions will become clearer as I talk through the Media Features and explain when values are
required or optional.

With the syntax covered, let’s meet some of the more prominent Media Features. The ones I introduce
next are the most applicable to color display screens used for accessing the Web and are the ones
you’re most likely to use on a day-to-day basis. Other Media Features are available, but they’re more
likely to be used for alternative devices such as TVs or fixed-grid terminals.



Width and Height

The width Media Feature describes the width of the rendering viewport of the specified media type,
which, in practice, usually means the current width of the browser (including the scroll bar) for
desktop operating systems. The basic syntax requires a length value:

@media media and (width:600px) { rules}

In this case, the rules are applied only to browsers that are set to be exactly 600px wide, which is
probably far too specific. width also accepts one of two prefixes, however, max—- and min-,
which allows you to test for a minimum or maximum width:

@media media and (max-width:480px) {rules}
@media media and (min-width:640px) {rules}

The first query applies the rules in browsers that are no wider than 480px, and the second in
browsers that are at least 640px wide.

Let’s look at a practical example. Here, I’ll take advantage of browser window sizes by providing a
decorative header for wider windows:
@media screen and (min-width: 400px) {
hl {
background: black url('landscape.jpg') no-repeat 50% 50%;
color: white;
height: 189px;
margin-bottom: O;
padding: 20px;

}

This Media Query is testing for browser windows that are at least 400px wide and applying a
background image to the h1 element when that is the case. If my browser window is at least 400px
wide, I see the image; if I resize it to be narrower, only a text header is shown. You can see this
example illustrated in Figure 2-2.



Fla ok Nikw Wgory Bockmaric ook Weip Fle Edt yiow Higtary Heotmais Took  Hel
@ |8 Mlejiremeimastgeenbioe | = @ - = amm . - e o M

) Figure 2.2 5t | B rgrez2 w v

The Page Title

The Carpat-Bag (One)

I stufted & shirl or two into my old carpel-bag,
tuckad it under my arm, and slarted for Cape
Hom and the Pacthic, It was an a Saturday naght

in December.
Thea Carpat-Bag (Two)
The Carpel-Bag (One)
Much wag | dicappoinbed upon arming that the
| stuftod @ shirt of two inte My ol carpel-bag. tucked it under my arm, and slared for little pache! for Nantucket hiad alveady safled, and
Cape Hom and the Padtic. It was on a Saturday night in Decsmibes that no way of reaching Lhal place wou'd offer, @l
the lolowing.
The Carpel-Bag (Two) Dane =

Much was [ dsappointed upon leaming lhat e e packet lor Nantucket had already
sied, and that no way of reaching that plase woulkd offer, il the flowing...

Done T -

o
e

Figure 2-2. Different style rules applied with the width Media Query

The height Media Feature works in the same way, except that it targets browsers based on their
height instead of width. The syntax is the same as width and also permits using max- and min-
prefixes:

@media media and (height:value) {rules}
@media media and (max-height:value) {rules}
@media media and (min-height:value) {rules}

Because of the prevalence of vertical scrolling, however, height is used much less frequently than
width.



Device Width and Height

The device-width Media Feature functions in a similar way, but it describes the width of the
device that is rendering the page. When dealing with web pages, the device width is the width of the
screen that’s displaying the page rather than the width of the browser window. As with width and
height, the basic syntax requires a length value and can be prefixed in the same way:

@media media and (device-width:1024px) {rules}

@media media and (max-device-width:320px) {rules}
@media media and (min-device-width:800px) {rules}

device-width becomes most useful when designing for mobile devices, which have smaller
display areas. Using this feature, you can cater your designs to those smaller devices without having
to create a whole new version of the site designed for the mobile web.

For example, I’ll optimize some content for display on two different devices. I’ll use two boxes of
content that, by default, will be floated to sit next to each other on the horizontal plane. For smaller
devices (I’1l use an iPhone in this example) the boxes will not be floated and, instead, will sit one on
top of the other, making better use of the narrower device. Here’s the code:
.container { width: 500px; }
.container div {
float: left;
margin: 0 15px 0 O;
width: 235px;
}

@media only screen and (max-device-width: 320px) {
.container { width: auto; }
.container div {
float: none;
margin: 0;
width: auto;

}

By default, I have a 500px container element, with two floated div elements inside it that are 235px
wide and have horizontal margins of 15px. Then I create a Media Query (using the on1y operator to
hide it from older browsers) that applies only to devices with a maximum width of 320px (the default
1Phone width). This query sets rules that remove the explicit values fromthe width and margin
properties and prevents the boxes from floating. You can see the results in Figure 2-3. The content is
more appropriately formatted for its target device, without losing any readability or requiring a
special “mobile version.”



fann c533.02-03 i
2lelal: 0 G | S CTED
The Carpet-Bag (One)

| stuffed & shifl or teo into my ofd carpet-bag,
Tuckiag It UnGer rey arm, and Started of Cape

The Carpet-Bag (One) The Carpet-Bag (Twa)

I stuffed 2 shirt or two into my old Much was I disappointed upon

carpet-bag, tucked it under my learning that the little packet for Horm and the Paciic. 1t was on a Saturday night
arm, and started for Caps Homn Mantucket had already sailed, and in Decambar
and the Pacific. It was on & that mo way of reaching that place
Saturday night in Decamber. waould offer, till the following. ..
The Carpet-Bag (Twa)

Much was | disappointed uon lzaming that the
WTthg packet 1or Nantuckel had aready saled.
vl that no way of reaching thal place woulkd
oiffiar, Uil he Dliowing. ..

< + M @

Figure 2-3. The device-width Media Query displays content differently on a desktop (left) and iPhone (right).

NOTE

iOS (iPhone, iPad, etc.) and Android devices measure device-width by the shorter pair of the four screen sides; that is, given a
device with dimensions of 320x480, the device-width will be 320px, regardless of whether you're viewing it in portrait or

landscape mode.

The device-width feature also has a counterpart device-height, which operates as
height does to width. Once more, device-height uses a similar syntax, also with max-

and min- prefixes:

@media media and (device-height:value) {rules}
@media media and (max-device-height:value) {rules}
@media media and (min-device-height:value) {rules}

Much like height, device-height is used less frequently than device-width because
vertical scrolling is easier than horizontal scrolling.



Using Media Queries in the Real World

In the examples thus far, I’ve tended to create a site that is optimized for larger browsers or devices
first, with Media Queries used to provide different styles for smaller (mobile) devices. This has been
useful for demonstration purposes, but in your own sites you’ll probably want to do this the other way
round.

The reason for this is because of the way that some browsers load page assets, such as images, that
are included in stylesheets. Some early adopters of Media Queries would write their code the way
we’ve seen in my examples, using large background images and then setting a value of display:
none to hide them from mobile devices. However, those background images can still be downloaded
and held in the cache even though they aren’t displayed. This increases the page’s load time and can
consume bandwidth allowances — neither of which is good for mobile device users without wireless
connections.

A better way to create your pages is to make a basic stylesheet for your mobile audience first and then
one with larger assets for desktop or tablet users that is loaded using a Media Query such as
device-width:

<link href="basic.css" rel="stylesheet" media="screen">

<link href="desktop.css" rel="stylesheet"
media="screen and (min-device-width: 480px) ">

When the stylesheets are separated in this way, the file desktop.css won’t be loaded for devices with
a screen width of less than 480px, so none of those large assets will be downloaded in the
background.

This will work for the great majority of browsers from the past few years; any really old browsers
will get the basic stylesheet instead, which is probably better for them as they won’t be able to cope
with the advanced features I’1l be teaching throughout the rest of this book.

The big exception to this is Internet Explorer (get used to that sentence; you’ll be reading it a lot).
While IE9 does have Media Query support, previous versions don’t. To get around that you just need
to load the desktop file using a conditional comment that only Internet Explorer recognizes:

<link href="basic.css" rel="stylesheet" media="screen">

<link href="desktop.css" rel="stylesheet" media="screen

and (min-device-width: 480px) ">
<! — [if 1t IE 9]>
<link href="desktop.css" rel="stylesheet" media="screen">

<![endif] — >
This simply means: “If you’re using Internet Explorer below version 9, load the file desktop.css.” It’s
a small bit of repetition, but it will solve this problem and let you build your websites in a
progressive way.



Orientation

If you’re less concerned with the actual dimensions of the viewing device but want to optimize your
pages for either horizontal (like a typical web browser) or vertical (like an ebook reader) viewing,
the Media Feature youneed is orientation. Here is its syntax:

@media media and (orientation:value) {rules}

value can be one of two options: 1andscape or portrait. The landscape value applies
when the width of your browser is greater than its height, and the portrait value applies when the
opposite is true. Although orientation can certainly be applied to desktop browsers, you’ll find
it most useful when dealing with handheld devices that the user can easily rotate, such as the new
generation of smartphones and tablets.

For example, you canuse orientation to display a navigation menu hori zontally or vertically,
depending on the visitor’s browser orientation. The code looks like this:

ul { overflow: hidden; }

1i { float: left; }

@media only screen and (orientation: portrait) {
1i { float: none; }

}

By default, the 11 elements have a f1oat value of 1eft, making them stack horizontally across the
page. If the same page is viewed ina portrait orientation — either by resizing the browser to be
taller than it is wide or by viewing the page in a device with a portrait orientation — the float is
removed and the 11 elements stack vertically instead. You can see the result in Figure 2-4.

K% Figure 2-4 w k3 Figure 24 m

Home | Prosue About Lis Bog Contact | Homg

Abaut LU

Blog

Contact

Figure 2-4. The orientation Media Query on an Android browser: 1andscape (left) and portrait (right)

As only two values are possible for the orientation feature, if you apply differentiating rules
using one value, then the other tacitly becomes the opposite. In this example, I only used the
portrait value, so, by default, all of the rules outside of that function apply to the 1andscape
orientation.



Aspect Ratio

You can also create queries that apply when a certain width-to-height ratio is met. Use aspect -
ratio to test the browser’s aspect ratio or device-aspect-ratio to test the device’s aspect
ratio. Here is the syntax for these two features:

@media media and (aspect-ratio:horizontal/vertical) {rules}
@media media and (device-aspect-ratio:horizontal/vertical) {rules}

The horizontal and vertical values are positive integers that represent the ratio of the width and
height (respectively) of the viewing device’s screen, so a square display would be 1/1 and a
cinematic widescreen display would be 16/9.

Selecting by aspect ratio is potentially fraught with caveats. For example, some device manufacturers
define widescreen as 16:9, some as 16:10, and some as 15:10. This variation means you have to
include all of these as parameters if you want to apply a “widescreen” set of rules.



Pixel Ratio

In general, the CSS Pixel unit (px) 1s a measurement of a single pixel on the computer screen — if
your screen is 1024x768 resolution and you give an element a width of 1024px, you expect it to fill
the screen horizontally. This 1s not always the case with smartphone and mobile devices, however.
Reading websites on their small screens often involves zooming in, and this magnification causes a
screen pixel to be larger than a CSS pixel. For example, magnifying a page by 100 percent means 1
CSS pixel is displayed on the screen by 4 device pixels (2x2).

Magnification is fine for scalable content such as text and vector graphics, but bitmap images can
suffer badly from a loss of quality when magnified. To get around this problem, many devices now
have screens with higher pixel density ratios, which allow for the display of high-resolution content
without any loss of quality. The iPhone 4, for example, has a pixel density of 2, meaning every CSS
pixel is displayed on screen by 4 device pixels (as in the example in the previous paragraph),
allowing for 100 percent zoom without any loss of detail.

A Media Feature is available that lets you target devices based on their pixel density. The feature is
device-pixel-ratio, and it’s implemented in Mobile WebKit with the ~-webkit - prefix:

@media media and (-webkit-device-pixel-ratio: number) {rules}

The number is a decimal that represents the device’s pixel density. For example, the Samsung
Galaxy S has a pixel density of 1.5; to target screens similar to that, you would use:

@media screen and (-webkit-device-pixel-ratio: 1.5) {rules}

As with the other Media Features, you can also detect maximum and minimum pixel ratios:

@media media and (-webkit-max-device-pixel-ratio: number) {rules}
@media media and (-webkit-min-device-pixel-ratio: number) {rules}

This flexibility makes serving higher-resolution images to browsers with higher pixel density easier,
as you can see in this code:

L1 { background-image: url ('image-lores.png'); }

® @nedia screen and (-webkit-min-device-pixel-ratio: 1.5) {

background-image: url ('image-hires.png'):;

© background-size: 100% 100%;

}
The first rule (&) means browsers on devices with a “standard” (or low-resolution) pixel ratio will
use the standard image (image-/ores.png), whereas devices with a pixel ratio of at least 1.5 will use
the high-resolution image (image-hires.png) instead (8). Note the use of the background-size
property here (8); this property should be used with high-resolution images to ensure they aren’t
displayed larger than the element they are applied to (I introduce background-size fully in
Chapter 8).

Pixel ratio detection should also be available in the Firefox Mobile browser (which is still in beta at
the time of this writing), albeit with a different syntax for the maximum and minimum media features:
@media media and (-moz-device-pixel-ratio: number) {rules}

@media media and (max — moz-device-pixel-ratio: number) {rules}
@media media and (min — moz-device-pixel-ratio: number) {rules}



Multiple Media Features

You can chain multiple queries together on the same media type by adding expressions with the and
operator:

@media logic media and (expression) and (expression) {rules}

This syntax tests that both expressions are matched before applying the selected rules. For example,
to make sure all permutations of widescreen are covered, as mentioned in the previous section, you
would create this query:

@media only screen and (aspect-ratio: 15/10) and (aspect-ratio: 16/9) and
(aspect-ratio: 16/10) {rules}

You can also set different expressions on multiple media types:
@media logic media and (expression), media and (expression) {rules}

Here a different expression would be used for each media type, for example, setting some rules to all
landscape devices and portrait projection devices:

@media all and (orientation: landscape), projection and (orientation: portrait) {rules}

You can also, of course, create any combination of the above syntaxes.



Mozilla-Specific Media Features

As part of the work on Firefox Mobile, the Mozilla team has introduced a number of proprietary new
media features, many of which are very specific to Gecko (the Firefox rendering engine), but some of
which may be proposed to the W3C as official features. You can see all of these at
https://developer.mozilla.org/En/CSS/Media_queries#Mozilla-specific media features.

Perhaps the most interesting is -moz-touch-enabled, which allows you to apply rules to
elements specifically on touchscreen devices, for example, for making buttons bigger to suit fingers
rather than a stylus or mouse. Here’s the syntax:

@media media and (-moz-touch-enabled) {rules}

A device is either touch enabled, in which case it has a value of 1, or i1sn’t, in which case the value is
0. As such, you don’t need to state a value parameter and can use the feature key