

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

HTML5 and CSS3 All-in-One For Dummies®, 3rd Edition
Published by:
John Wiley & Sons, Inc.,
111 River Street,
Hoboken, NJ 07030-5774,
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey
Media and software compilation copyright © 2014 by John Wiley & Sons,
Inc. All rights reserved.
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and may not be used
without written permission. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE
PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE

******ebook converter DEMO Watermarks*******

http://www.wiley.com
http://www.wiley.com/go/permissions

SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact
our Customer Care Department within the U.S. at 877-762-2974, outside the
U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please
visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-
demand. Some material included with standard print versions of this book
may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you
purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2013952425
ISBN 978-1-118-28938-9 (pbk); ISBN 978-1-118-42139-0 (ePub); ISBN
978-1-118-41983-0 (ePDF)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

******ebook converter DEMO Watermarks*******

http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

******ebook converter DEMO Watermarks*******

HTML5 and CSS3 All-in-One For
Dummies®, 3rd Edition

Visit
www.dummies.com/cheatsheet/html5css3aio
to view this book's cheat sheet.

Table of Contents
Introduction

About This Book

Foolish Assumptions
Use Any Computer
Don't Buy Any Software

How This Book Is Organized
New for the Third Edition
Icons Used in This Book

Beyond the Book
Where to Go from Here

Book I: Creating the HTML Foundation
Chapter 1: Sound HTML Foundations

Creating a Basic Page

Understanding the HTML in the Basic Page

Meeting Your New Friends, the Tags

Setting Up Your System
Displaying file extensions

Setting up your software

Chapter 2: It's All About Validation
Somebody Stop the HTML Madness!

XHTML had some great ideas

Validating Your Page
Aesop visits W3C

Using Tidy to repair pages

Chapter 3: Choosing Your Tools

******ebook converter DEMO Watermarks*******

http://www.dummies.com/cheatsheet/html5css3aio

What's Wrong with the Big Boys: Expression Web and Adobe Dreamweaver

How About Online Site Builders?

Alternative Web Development Tools

Picking a Text Editor
Tools to avoid unless you have nothing else

Suggested programmer's editors

My personal choice: Komodo Edit

Other text editors

The bottom line on editors

Finding a Good Web Developer's Browser
A little ancient history

Overview of the prominent browsers

Other notable browsers

The bottom line in browsers

Chapter 4: Managing Information with Lists and Tables
Making a List and Checking It Twice

Creating an unordered list

Creating ordered lists

Making nested lists

Building the definition list

Building Tables
Defining the table

Spanning rows and columns

Avoiding the table-based layout trap

Chapter 5: Making Connections with Links
Making Your Text Hyper

Introducing the anchor tag

Comparing block-level and inline elements

Analyzing an anchor

Introducing URLs

Making Lists of Links

Working with Absolute and Relative References
Understanding absolute references

Introducing relative references

Chapter 6: Adding Images, Sound, and Video
Adding Images to Your Pages

Linking to an image

Adding inline images using the tag

src (source)

height and width

alt (alternate text)

Choosing an Image Manipulation Tool
An image is worth 3.4 million words

Introducing IrfanView

Choosing an Image Format
BMP

JPG/JPEG

GIF

PNG

SVG

******ebook converter DEMO Watermarks*******

Summary of web image formats

Manipulating Your Images
Changing formats in IrfanView

Resizing your images

Enhancing image colors

Using built-in effects

Other effects you can use

Batch processing

Working with Audio
Adding Video

Chapter 7: Creating Forms
You Have Great Form

Forms must have some form

Building Text-Style Inputs

Making a standard text field

Building a password field
Making multi-line text input

Creating Multiple Selection Elements
Making selections

Building check boxes

Creating radio buttons

Pressing Your Buttons
Making input-style buttons

Building a Submit button

It's a do-over: The Reset button

Introducing the <button> tag

New Form Input Types
date

time

datetime

datetime-local

week

month

color

number

range

search

email

tel

url

Book II: Styling with CSS
Chapter 1: Coloring Your World

Now You Have an Element of Style
Setting up a style sheet

Changing the colors

Specifying Colors in CSS
Using color names

Putting a hex on your colors

Coloring by number

Hex education

Using the web-safe color palette

******ebook converter DEMO Watermarks*******

Choosing Your Colors
Starting with web-safe colors

Modifying your colors

Doing it on your own pages

Changing CSS on the fly

Creating Your Own Color Scheme
Understanding hue, saturation, and lightness

Using HSL colors in your pages

Using the Color Scheme Designer

Selecting a base hue

Picking a color scheme

Chapter 2: Styling Text
Setting the Font Family

Applying the font-family style attribute

Using generic fonts

Making a list of fonts

The Curse of Web-Based Fonts
Understanding the problem

Using embedded fonts

Using images for headlines

Specifying the Font Size
Size is only a suggestion!

Using the font-size style attribute

Absolute measurement units

Relative measurement units

Determining Other Font Characteristics
Using font-style for italics

Using font-weight for bold

Using text-decoration

Using text-align for basic alignment

Other text attributes

Using the font shortcut

Working with subscripts and superscripts

Chapter 3: Selectors: Coding with Class and Style
Selecting Particular Segments

Defining more than one kind of paragraph

Styling identified paragraphs

Using Emphasis and Strong Emphasis

Modifying the Display of em and strong

Defining Classes
Adding classes to the page

Using classes

Combining classes

Introducing div and span
Organizing the page by meaning

Why not make a table?

Using Pseudo-Classes to Style Links
Styling a standard link

Styling the link states

Best link practices

******ebook converter DEMO Watermarks*******

Selecting in Context

Defining Styles for Multiple Elements

Using New CSS3 Selectors
Attribute selection

not

nth-child

Other new pseudo-classes

Chapter 4: Borders and Backgrounds
Joining the Border Patrol

Using the border attributes

Defining border styles

Using the border shortcut

Creating partial borders

Introducing the Box Model
Border, margin, and padding

Positioning elements with margins and padding

New CSS3 Border Techniques
Image borders

Adding Rounded Corners

Adding a box shadow

Changing the Background Image
Getting a background check

Solutions to the background conundrum

Manipulating Background Images
Turning off the repeat

Using CSS3 Gradients

Using Images in Lists

Chapter 5: Levels of CSS
Managing Levels of Style

Using local styles

Using an external style sheet

Understanding the Cascading Part of Cascading Style Sheets
Inheriting styles

Hierarchy of styles

Overriding styles

Precedence of style definitions

Managing Browser Incompatibility
Coping with incompatibility

Making Internet Explorer–specific code

Using a conditional comment with CSS

Checking the Internet Explorer version

Using a CSS reset

Chapter 6: CSS Special Effects
Image Effects

Transparency

Reflections

Text Effects
Text stroke

Text-shadow

******ebook converter DEMO Watermarks*******

Transformations and Transitions
Transformations

Three-dimensional transformations

Transition animation

Animations

Book III: Building Layouts with CSS
Chapter 1: Fun with the Fabulous Float

Avoiding Old-School Layout Pitfalls
Problems with frames

Problems with tables

Problems with huge images

Problems with Flash

Introducing the Floating Layout Mechanism
Using float with images

Adding the float property

Using Float with Block-Level Elements
Floating a paragraph

Adjusting the width

Setting the next margin

Using Float to Style Forms
Using float to beautify the form

Adjusting the fieldset width

Using the clear attribute to control page layout

Chapter 2: Building Floating Page Layouts
Creating a Basic Two-Column Design

Designing the page

Building the HTML

Using temporary background colors

Setting up the floating columns

Tuning up the borders

Advantages of a fluid layout

Using semantic tags

Building a Three-Column Design
Styling the three-column page

Problems with the floating layout

Specifying a min-height

Using height and overflow

Building a Fixed-Width Layout
Setting up the HTML

Fixing the width with CSS

Building a Centered Fixed-Width Layout
Making a surrogate body with an all div

How the jello layout works

Limitations of the jello layout

Chapter 3: Styling Lists and Menus
Revisiting List Styles

Defining navigation as a list of links

Turning links into buttons

Building horizontal lists

Creating Dynamic Lists

******ebook converter DEMO Watermarks*******

Building a nested list

Hiding the inner lists

Getting the inner lists to appear on cue

Building a Basic Menu System
Building a vertical menu with CSS

Building a horizontal menu

Chapter 4: Using Alternative Positioning
Working with Absolute Positioning

Setting up the HTML

Adding position guidelines

Making absolute positioning work

Managing z-index
Handling depth

Working with z-index

Building a Page Layout with Absolute Positioning
Overview of absolute layout

Writing the HTML

Adding the CSS

Creating a More Flexible Layout
Designing with percentages

Building the layout

Exploring Other Types of Positioning
Creating a fixed menu system

Setting up the HTML

Setting the CSS values

Flexible Box Layout Model
Creating a flexible box layout

Viewing a flexible box layout

… And now for a little reality

Determining Your Layout Scheme

Book IV: Client-Side Programming with JavaScript
Chapter 1: Getting Started with JavaScript

Working in JavaScript
Choosing a JavaScript editor

Picking your test browser

Writing Your First JavaScript Program
Embedding your JavaScript code

Creating comments

Using the alert() method for output

Adding the semicolon

Introducing Variables
Creating a variable for data storage

Asking the user for information

Responding to the user

Using Concatenation to Build Better Greetings
Comparing literals and variables

Including spaces in your concatenated phrases

Understanding the String Object
Introducing object-based programming (and cows)

Investigating the length of a string

******ebook converter DEMO Watermarks*******

Using string methods to manipulate text

Understanding Variable Types
Adding numbers

Adding the user's numbers

The trouble with dynamic data

The pesky plus sign

Changing Variables to the Desired Type
Using variable conversion tools

Fixing the addInput code

Chapter 2: Talking to the Page
Understanding the Document Object Model

Previewing the DOM

Getting the blues, JavaScript-style

Writing JavaScript code to change colors

Managing Button Events
Adding a function for more … functionality

Making a more flexible function

Embedding quotes within quotes

Writing the changeColor function

Managing Text Input and Output
Introducing event-driven programming

Creating the HTML form

Using getElementById to get access to the page

Manipulating the text fields

Writing to the Document
Preparing the HTML framework

Writing the JavaScript

Finding your innerHTML

Working with Other Text Elements
Building the form

Writing the function

Understanding generated source

What if you're not in Chrome?

Chapter 3: Decisions and Debugging
Making Choices with if

Changing the greeting with if

The different flavors of if

Conditional operators

Nesting your if statements

Making decisions with switch

Managing Repetition with for Loops
Setting up the web page

Initializing the output

Creating the basic for loop

Introducing shortcut operators

Counting backwards

Counting by fives

Understanding the Zen of for loops

Building while Loops
Making a basic while loop

Getting your loops to behave

Managing more complex loops

******ebook converter DEMO Watermarks*******

Managing Errors with a Debugger
Debugging with the interactive console

Debugging strategies

Resolving syntax errors

Squashing logic bugs

Chapter 4: Functions, Arrays, and Objects
Breaking Code into Functions

Thinking about structure

Building the antsFunction.html program

Passing Data to and from Functions
Examining the makeSong code

Looking at the chorus

Handling the verses

Managing Scope
Introducing local and global variables

Examining variable scope

Building a Basic Array
Accessing array data

Using arrays with for loops

Revisiting the ants song

Working with Two-Dimension Arrays
Setting up the arrays

Getting a city

Creating a main() function

Creating Your Own Objects
Building a basic object

Adding methods to an object

Building a reusable object

Using your shiny new objects

Introducing JSON
Storing data in JSON format

Building a more complex JSON structure

Chapter 5: Getting Valid Input
Getting Input from a Drop-Down List

Building the form

Reading the list box

Managing Multiple Selections
Coding a multiple selection select object

Writing the JavaScript code

Check, Please: Reading Check Boxes
Building the check box page

Responding to the check boxes

Working with Radio Buttons

Interpreting Radio Buttons

Working with Regular Expressions
Introducing regular expressions

Using characters in regular expressions

Marking the beginning and end of the line

Working with special characters

Conducting repetition operations

******ebook converter DEMO Watermarks*******

Working with pattern memory

New HTML5/CSS3 Tricks for Validation
Adding a pattern

Marking a field as required

Adding placeholder text

Chapter 6: Drawing on the Canvas
Canvas Basics

Setting up the canvas

How <canvas> works

Fill and Stroke Styles
Colors

Gradients

Patterns

Drawing Essential Shapes
Rectangle functions

Drawing text

Adding shadows

Working with Paths
Line-drawing options

Drawing arcs and circles

Drawing quadratic curves

Building a Bézier curve

Images
Drawing an image on the canvas

Drawing part of an image

Manipulating Pixels

Chapter 7: Animation with the Canvas
Transformations

Building a transformed image

A few thoughts about transformations

Animation
Overview of the animation loop

Setting up the constants

Initializing the animation

Animate the current frame

Moving an element

Bouncing off the walls

Reading the Keyboard
Managing basic keyboard input

Moving an image with the keyboard

Book V: Server-Side Programming with PHP
Chapter 1: Getting Started on the Server

Introducing Server-Side Programming
Programming on the server

Serving your programs

Picking a language

Installing Your Web Server

Inspecting phpinfo()

Building HTML with PHP

******ebook converter DEMO Watermarks*******

Coding with Quotation Marks

Working with Variables PHP-Style
Concatenation

Interpolating variables into text

Building HTML Output
Using double quote interpolation

Generating output with heredocs

Switching from PHP to HTML

Chapter 2: PHP and HTML Forms
Exploring the Relationship between PHP and HTML

Embedding PHP inside HTML

Viewing the results

Sending Data to a PHP Program
Creating a form for PHP processing

Receiving data in PHP

Choosing the Method of Your Madness
Using get to send data

Using the post method to transmit form data

Getting data from the form

Retrieving Data from Other Form Elements
Building a form with complex elements

Responding to a complex form

Chapter 3: Using Control Structures
Introducing Conditions (Again)

Building the Classic if Statement
Rolling dice the PHP way

Checking your six

Understanding comparison operators

Taking the middle road

Building a program that makes its own form

Making a switch

Looping with for

Looping with while

Chapter 4: Working with Arrays
Using One-Dimensional Arrays

Creating an array

Filling an array

Viewing the elements of an array

Preloading an array

Using Loops with Arrays
Simplifying loops with foreach

Arrays and HTML

Introducing Associative Arrays
Using foreach with associative arrays

Introducing Multidimensional Arrays
We're going on a trip

Looking up the distance

Breaking a String into an Array

******ebook converter DEMO Watermarks*******

Creating arrays with explode

Creating arrays with preg_split

Chapter 5: Using Functions and Session Variables
Creating Your Own Functions

Rolling dice the old-fashioned way

Improving code with functions

Managing variable scope

Returning data from functions

Managing Persistence with Session Variables
Understanding session variables

Adding session variables to your code

Chapter 6: Working with Files and Directories
Text File Manipulation

Writing text to files

Writing a basic text file

Reading from the file

Using Delimited Data
Storing data in a CSV file

Viewing CSV data directly

Reading the CSV data in PHP

Working with File and Directory Functions
opendir()

readdir()

chdir()

Generating the list of file links

Chapter 7: Exceptions and Objects
Object-Oriented Programming in PHP

Building a basic object

Using your brand-new class

Protecting your data with access modifiers

Using access modifiers

You've Got Your Momma's Eyes: Inheritance
Building a critter based on another critter

How to inherit the wind (and anything else)

Catching Exceptions
Introducing exception handling

Knowing when to trap for exceptions

Book VI: Managing Data with MySQL
Chapter 1: Getting Started with Data

Examining the Basic Structure of Data
Determining the fields in a record

Introducing SQL data types

Specifying the length of a record

Defining a primary key

Defining the table structure

Introducing MySQL
Why use MySQL?

Understanding the three-tier architecture

Practicing with MySQL

Setting Up phpMyAdmin

******ebook converter DEMO Watermarks*******

Changing the root password

Adding a user

Using phpMyAdmin on a remote server

Implementing a Database with phpMyAdmin

Chapter 2: Managing Data with MySQL
Writing SQL Code by Hand

Understanding SQL syntax rules

Examining the buildContact.sql script

Dropping a table

Creating a table

Adding records to the table

Viewing the sample data

Running a Script with phpMyAdmin

Using AUTO_INCREMENT for Primary Keys

Selecting Data from Your Tables
Selecting only a few fields

Selecting a subset of records

Searching with partial information

Searching for the ending value of a field

Searching for any text in a field

Searching with regular expressions

Sorting your responses

Editing Records
Updating a record

Deleting a record

Exporting Your Data and Structure
Exporting SQL code

Creating XML data

Chapter 3: Normalizing Your Data
Recognizing Problems with Single-Table Data

The identity crisis

The listed powers

Repetition and reliability

Fields with changeable data

Deletion problems

Introducing Entity-Relationship Diagrams
Using MySQL Workbench to draw ER diagrams

Creating a table definition in Workbench

Introducing Normalization
First normal form

Second normal form

Third normal form

Identifying Relationships in Your Data

Chapter 4: Putting Data Together with Joins
Calculating Virtual Fields

Introducing SQL functions

Knowing when to calculate virtual fields

Calculating Date Values
Using DATEDIFF to determine age

Adding a calculation to get years

******ebook converter DEMO Watermarks*******

Converting the days integer into a date

Using YEAR() and MONTH() to get readable values

Concatenating to make one field

Creating a View

Using an Inner Join to Combine Tables
Building a Cartesian join and an inner join

Enforcing one-to-many relationships

Counting the advantages of inner joins

Building a view to encapsulate the join

Managing Many-to-Many Joins
Understanding link tables

Using link tables to make many-to-many joins

Chapter 5: Connecting PHP to a MySQL Database
PHP and MySQL: A Perfect (but Geeky) Romance

Understanding data connections

Introducing PDO

Building a connection

Retrieving data from the database

Using HTML tables for output

Allowing User Interaction
Building an HTML search form

Responding to the search request

Book VII: Integrating the Client and Server with AJAX
Chapter 1: AJAX Essentials

AJAX Spelled Out
A is for asynchronous

J is for JavaScript

A is for . . . and?

And X is for . . . data

Making a Basic AJAX Connection
Building the HTML form

Creating an XMLHttpRequest object

Opening a connection to the server

Sending the request and parameters

Checking the status

All Together Now — Making the Connection Asynchronous
Setting up the program

Building the getAJAX() function

Reading the response

Chapter 2: Improving JavaScript and AJAX with jQuery
Introducing jQuery

Installing jQuery

Importing jQuery from Google

Your First jQuery App
Setting up the page

Meet the jQuery node object

Creating an Initialization Function
Using $(document).ready()

Alternatives to document.ready

Investigating the jQuery Object

******ebook converter DEMO Watermarks*******

Changing the style of an element

Selecting jQuery objects

Modifying the style

Adding Events to Objects
Adding a hover event

Changing classes on the fly

Making an AJAX Request with jQuery
Including a text file with AJAX

Building a poor man's CMS with AJAX

Chapter 3: Animating jQuery
Playing Hide and Seek

Getting transition support

Writing the HTML and CSS foundation

Initializing the page

Hiding and showing the content

Toggling visibility

Sliding an element

Fading an element in and out

Changing Position with jQuery
Creating the framework

Setting up the events

Building the move() function with chaining

Building time-based animation with animate()

Move a little bit: Relative motion

Modifying Elements on the Fly
Building the basic page

Initializing the code

Adding text

Attack of the clones

It's a wrap

Alternating styles

Resetting the page

More fun with selectors and filters

Chapter 4: Using the jQuery User Interface Toolkit
What the jQuery User Interface Brings to the Table

It's a theme park

Using the themeRoller to get an overview of jQuery

Wanna drag? Making components draggable

Downloading the library

Writing the program

Resizing on a Theme
Examining the HTML and standard CSS

Importing the files

Making a resizable element

Adding themes to your elements

Adding an icon

Dragging, Dropping, and Calling Back
Building the basic page

Initializing the page

Handling the drop

Beauty school dropout events

Cloning the elements

******ebook converter DEMO Watermarks*******

Chapter 5: Improving Usability with jQuery
Multi-Element Designs

Playing the accordion widget

Building a tabbed interface

Using tabs with AJAX

Improving Usability
Playing the dating game

Picking numbers with the slider

Selectable elements

Building a sortable list

Creating a custom dialog box

Chapter 6: Working with AJAX Data
Sending Requests AJAX Style

Sending the data

Building a Multipass Application
Setting up the HTML framework

Loading the select element

Writing the loadList.php program

Responding to selections

Writing the showHero.php script

Working with XML Data
Review of XML

Manipulating XML with jQuery

Creating the HTML

Retrieving the data

Processing the results

Printing the pet name

Working with JSON Data
Knowing JSON's pros

Reading JSON data with jQuery

Managing the framework

Retrieving the JSON data

Processing the results

Chapter 7: Going Mobile
Thinking in Mobile

Building a Responsive Site
Specifying a media type

Adding a qualifier

Making Your Page Responsive
Building the wide layout

Adding the narrow CSS

Using jQuery Mobile to Build Mobile Interfaces
Building a basic jQuery mobile page

Working with collapsible content

Building a multi-page document

Going from Site to App
Adding an icon to your program

Removing the Safari toolbar

Storing your program offline

Book VIII: Moving from Pages to Sites

******ebook converter DEMO Watermarks*******

Chapter 1: Managing Your Servers
Understanding Clients and Servers

Parts of a client-side development system

Parts of a server-side system

Creating Your Own Server with XAMPP
Running XAMPP

Testing your XAMPP configuration

Adding your own files

Setting the security level

Compromising between functionality and security

Choosing a Web Host
Finding a hosting service

Connecting to a hosting service

Managing a Remote Site
Using web-based file tools

Understanding file permissions

Using FTP to manage your site

Using an FTP client

Naming Your Site
Understanding domain names

Registering a domain name

Managing Data Remotely
Creating your database

Finding the MySQL server name

Chapter 2: Planning Your Sites
Creating a Multipage Website

Planning a Larger Site

Understanding the Client
Ensuring that the client's expectations are clear

Delineating the tasks

Understanding the Audience
Determining whom you want to reach

Finding out the user's technical expertise

Building a Site Plan
Creating a site overview

Building the site diagram

Creating Page Templates
Sketching the page design

Building the HTML template framework

Creating page styles

Building a data framework

Fleshing Out the Project
Making the site live

Contemplating efficiency

Chapter 3: Introducing Content Management Systems
Overview of Content Management Systems

Previewing Common CMSs
Moodle

WordPress

******ebook converter DEMO Watermarks*******

Drupal

Building a CMS site with WebsiteBaker

Installing your CMS

Getting an overview of WebsiteBaker

Adding your content

Using the WYSIWYG editor

Changing the template

Adding additional templates

Adding new functionality

Building Custom Themes
Starting with a prebuilt template

Changing the info.php file

Modifying index.php

Modifying the CSS files

Packaging your template

Chapter 4: Editing Graphics
Using a Graphics Editor

Choosing an Editor

Introducing Gimp
Creating an image

Painting tools

Selection tools

Modification tools

Managing tool options

Utilities

Understanding Layers

Introducing Filters

Solving Common Web Graphics Problems
Changing a color

Building a banner graphic

Building a tiled background

Chapter 5: Taking Control of Content
Building a “Poor Man's CMS” with Your Own Code

Using Server Side Includes (SSIs)

Using AJAX and jQuery for client-side inclusion

Building a page with PHP includes

Creating Your Own Data-Based CMS
Using a database to manage content

Writing a PHP page to read from the table

Allowing user-generated content

Adding a new block

Improving the dbCMS design

About the Author
Cheat Sheet
More Dummies Products

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Introduction
I love the Internet, and if you picked up this book, you probably do, too.
The Internet is dynamic, chaotic, exciting, interesting, and useful, all at the
same time. The web is pretty fun from a user's point of view, but that's only
part of the story. Perhaps the best part of the Internet is how participatory it
is. You can build your own content — free! It's really amazing. There's
never been a form of communication like this before. Anyone with access
to a minimal PC and a little bit of knowledge can create his or her own
homestead in one of the most exciting platforms in the history of
communication.
The real question is how to get there. A lot of web development books are
really about how to use some sort of software you have to buy. That's okay,
but it isn't necessary. Many software packages have evolved that purport to
make web development easier — and some work pretty well — but
regardless what software package you use, there's still a need to know
what's really going on under the surface. That's where this book comes in.

About This Book
You'll find out exactly how the web works in this book. You'll figure out
how to use various tools, but, more importantly, you'll create your piece of
the web. You'll discover:

How web pages are created: You'll figure out the basic structure of
web pages. You'll understand the structure well because you build
pages yourself. No mysteries here.
How to separate content and style: You'll understand the foundation
of modern thinking about the Internet — that style should be separate
from content.
How to use web standards: The web is pretty messy, but, finally,
some standards have arisen from the confusion. You'll discover how
these standards work and how you can use them.
How to create great-looking web pages: Of course, you want a
terrific-looking website. With this book, you'll find out how to use

******ebook converter DEMO Watermarks*******

layout, style, color, and images.
How to build modern layouts: Many web pages feature columns,
menus, and other fancy features. You'll figure out how to build all
these things.
How to add interactivity: Adding forms to your pages, validating
form data, and creating animations are all possible with the JavaScript
language.
How to write programs on the server: Today's web is powered by
programs on web servers. You'll discover the powerful PHP language
and figure out how to use it to create powerful and effective sites.
How to harness the power of data: Every web developer eventually
needs to interact with data. You'll read about how to create databases
that work. You'll also discover how to connect databases to your web
pages and how to create effective and useful interfaces.
How AJAX is changing everything: The hottest web technology on
the horizon is AJAX (Asynchronous JavaScript and XML). You'll
figure out how to harness this way of working and use it to create even
more powerful and interesting applications.

Foolish Assumptions
I don't have any foolish assumptions: I'm not assuming anything in this
book. If you've never built a web page before, you're in the right hands.
You don't need any experience, and you don't have to know anything about
HTML, programming, or databases. I discuss everything you need.
If you're reasonably comfortable with a computer (you can navigate the
web and use a word processor), you have all the skills you need.
If you've been around web development for a while, you'll still find this
book handy.
If you've used HTML but not HTML5, see how things have changed and
discover the powerful combination of HTML5 and CSS3.
You'll see how new HTML and CSS features can literally make your web
pages sing and dance, with support for advanced tools like audio and video

******ebook converter DEMO Watermarks*******

embedding, animation, and much more.
If you're already comfortable with HTML and CSS, you're ready to add
JavaScript functionality for form validation and animation. If you've never
used a programming language before, JavaScript is a really great place to
start.
If you're starting to get serious about web development, you've probably
already realized that you'll need to work with a server at some point. PHP
is a really powerful, free, and easy language that's extremely prominent on
the web landscape. You'll use this to have programs send e-mails, store and
load information from files, and work with databases.
If you're messing with commercial development, you'll definitely need to
know more about databases. I get e-mails every week from companies
looking for people who can create a solid relational database and connect it
to a website with PHP.
If you're curious about AJAX, you can read about what it is, how it works,
and how to use it to add functionality to your site. You'll also read about a
very powerful and easy AJAX library that can add tremendous
functionality to your bag of tricks.
I wrote this book as the reference I wish I had. If you have only one web
development book on your shelf, this should be the one. Wherever you are
in your web development journey, you can find something interesting and
new in this book.

Use Any Computer
One of the great things about web development is how accessible it can be.
You don't need a high-end machine to build websites. Whatever you're
using now will probably do fine. I tested most of the examples in this book
with Windows 7, Ubuntu Linux, and a Macbook pro. I've tested on
computers ranging from cutting-edge platforms to mobile devices to a $35
Raspberry Pi. Most of the software I use in the book is available free for all
major platforms. Similar alternatives for all platforms are available in the
few cases when this isn't true.

******ebook converter DEMO Watermarks*******

Don't Buy Any Software
Everything you need for web development is on the companion website.
I've used only open-source software for this book. Following are the
highlights:

Komodo Edit: Komodo Edit is my current favorite editor. It's a solid
free text editor well suited to the many text-editing tasks you'll run
across in your programming travels. It also works exactly the same on
every platform, so it doesn't really matter what computer or operating
system you're running.
XAMPP: When you're ready to move to the server, XAMPP is a
complete server package that's easy to install and incredibly powerful.
This includes the incredible Apache web server, the PHP programming
language, the MySQL database manager, and tons of useful utilities.
Useful tools: Every time I use a tool (such as a data mapper, a diagram
tool, or an image editor) in this book, I make it available on the
companion website.

There's no need to buy any expensive web development tools. Everything
you need is here and no harder than the more expensive web editors.

How This Book Is Organized
Web development is about solving a series of connected but different
problems. This book is organized into eight minibooks based on specific
technologies. You can read them in any order you wish, but you'll find that
the later books tend to rely on topics described in the earlier books. (For
example, JavaScript doesn't make much sense without HTML because
JavaScript is usually embedded in a web page written with HTML.) The
following describes these eight minibooks:

Book I: Creating the HTML Foundation — Web development
incorporates a lot of languages and technologies, but HTML is the
foundation. Here I show you HTML5, the latest incarnation of HTML,
and describe how it's used to form the basic skeleton of your pages.

******ebook converter DEMO Watermarks*******

Book II: Styling with CSS — In the old days, HTML had a few tags
to spruce up your pages, but they weren't nearly powerful enough.
Today, developers use Cascading Style Sheets (CSS) to add color and
formatting to your pages as well as zing and pizazz. (I'm pretty sure
those are formal computer programming words.)
Book III: Building Layouts with CSS — Discover the best ways to
set up layouts with floating elements, fixed positioning, and absolute
positioning. Figure out how to build various multicolumn page layouts
and how to create dynamic buttons and menus.
Book IV: Client-Side Programming with JavaScript — Figure out
essential programming skills with the easy and powerful JavaScript
language — even if you've never programmed before. Manipulate data
in web forms and use powerful regular expression technology to
validate form entries. Also discover how to create animations with
JavaScript with the powerful new <canvas> element.
Book V: Server-Side Programming with PHP — Move your code to
the server and take advantage of this powerful language. Figure out
how to respond to web requests; work with conditions, functions,
objects, and text files; and connect to databases.
Book VI: Managing Data with MySQL — Most serious Web
projects are eventually about data. Figure out how databases are
created, how to set up a secure data server, the basics of data
normalization, and how to create a reliable and trustworthy data back
end for your site.
Book VII: Integrating the Client and Server with AJAX — Look
forward to the technology that has the web abuzz. AJAX isn't really a
language but rather a new way of thinking about web development. Get
the skinny on what's going on here, build an AJAX connection or two
by hand, and read about some really cool libraries for adding advanced
features and functionality to your pages.
Book VIII: Moving from Pages to Sites — This minibook ties
together many of the threads throughout the rest of the book. Discover
how to create your own complete web server solution or pick a web
host. Walk through the process of designing a complex multipage web
site. Discover how to use content management systems to simplify

******ebook converter DEMO Watermarks*******

complex websites and, finally, to build your own content management
system with skills taught throughout the book.

New for the Third Edition
This is actually the third edition of this book. (The previous editions were
called HTML, XHTML, and CSS All in One For Dummies.) I have made a
few changes to keep up with advances in technology:

Focus on HTML5: The first edition of the book used HTML4, the
second edition used XHTML, and this edition uses HTML5. I'm very
excited about HTML5 because it's easier to use than either of the older
versions, and quite a bit more powerful.
Integration with CSS3: CSS3 is the latest incarnation of CSS, and it
has some wonderful new features too, including the ability to use
custom fonts, animation, and new layout mechanisms.
Improved PHP coverage: PHP has had some major updates reflected
in this book. I have modified all form input to use the safer
filter_input mechanism, and all database connectivity now uses
the PDO library.
Enhanced jQuery coverage: jQuery has become even more important
as a utility library than it was before. The coverage updates some of the
nice new features of this library.
A new mobile chapter: Mobile web development is increasingly
important. I provide a new chapter with tips on making your pages
mobile-friendly, including use of the jQuery mobile library and
building responsive designs that automatically adjust based on screen
size.
Support for the WebsiteBaker CMS: I use this CMS quite a bit in
my web business, and I find it especially easy to modify. I changed
Book VIII, Chapter 3 to explain how to use and modify this excellent
CMS.
Various tweaks and improvements: No book is perfect (though I
really try). There were a few passages in the previous edition that

******ebook converter DEMO Watermarks*******

readers found difficult. I tried hard to clean up each of these areas.
Many thanks to those who provided feedback!

Icons Used in This Book
This is a For Dummies book, so you have to expect some snazzy icons,
right? I don't disappoint. Here's what you'll see:

 This is where I pass along any small insights I may have gleaned
in my travels.

 I can't really help being geeky once in a while. Every so often, I
want to explain something a little deeper. Read this to impress people at
your next computer science cocktail party or skip it if you really don't
need the details.

 A lot of details are here. I point out something important that's
easy to forget with this icon.

 Watch out! Anything I mark with this icon is a place where
things have blown up for me or my students. I point out any potential
problems with this icon.

Beyond the Book
You can find additional features of this book online. Visit the web to find
these extras:

******ebook converter DEMO Watermarks*******

Companion website:www.aharrisbooks.net/haio

This is my primary site for this book. Every single example in the book
is up and running on this site so you can see it in action. When
necessary, I've also included source code so you can see the source
code of anything you can't look at with the ordinary View Source
command. I've also posted a link to every piece of software that I
mention in the book. If you find any example is not working on your
site, please come to my site. If there was a problem with an example in
the book, I'll update the site right away, so check my site to compare
your code to mine. I also have links to my other books, a forum where
you can ask questions, and a form for emailing me any specific
questions you might have.

Cheat Sheet: Go to
www.dummies.com/cheatsheet/html5css3aio to find this
book's Cheat Sheet. Here, you can find primers on selected HTML
syntax, CSS attributes, JavaScript syntax, and MySQL commands.
Dummies.com online articles: Go to
www.dummies.com/extras/html5css3aio to find the Extras
for this book. Here you can find articles on topics such as using HTML
entities, resetting and extending CSS, JavaScript libraries, using
templates with PHP, SQLite and alternative data strategies, fun with
jQuery plug-ins, and what's next for the web.
Updates: For Dummies technology books sometimes have updates. To
check for updates to this book, go to
www.dummies.com/extras/html5css3aio.

Where to Go from Here
Well, that's really up to you. I sincerely believe you can use this book to
turn into a top-notch web developer. That's my goal for you.
Although this is a massive book, there's still more to figure out. If you have
questions or just want to chat, feel free to e-mail me at
andy@aharrisbooks.net. You can also visit my website at
www.aharrisbooks.net/ for code examples, updates, and other good

******ebook converter DEMO Watermarks*******

http://www.aharrisbooks.net/haio
http://www.dummies.com/cheatsheet/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.dummies.com/extras/html5css3aio
http://www.andy@aharrisbooks.net/
http://www.aharrisbooks.net/

stuff.

I try hard to answer all reader e-mails, but sometimes I get behind. Please
be patient with me, and I'll do my best to help.
I can't wait to hear from you and see the incredible websites you develop.
Have a great time, discover a lot, and stay in touch!

******ebook converter DEMO Watermarks*******

Book I
Creating the HTML Foundation

 Visit www.dummies.com for more great content online.

******ebook converter DEMO Watermarks*******

http://www.dummies.com

******ebook converter DEMO Watermarks*******

Contents at a Glance
Chapter 1: Sound HTML Foundations
Chapter 2: It's All About Validation
Chapter 3: Choosing Your Tools
Chapter 4: Managing Information with Lists and
Tables
Chapter 5: Making Connections with Links
Chapter 6: Adding Images, Sound, and Video
Chapter 7: Creating Forms

******ebook converter DEMO Watermarks*******

Chapter 1
Sound HTML Foundations

In This Chapter
 Creating a basic web page
 Understanding the most critical HTML tags
 Setting up your system to work with HTML
 Viewing your pages

This chapter is your introduction to building web pages. Before this slim
chapter is finished, you'll have your first page up and running. It's a humble
beginning, but the basic web technology you learn here is the foundation of
everything happening on the web today.
In this minibook, you discover the modern form of web design using
HTML5. Your web pages will be designed from the ground up, which
makes them easy to modify and customize. Although you figure out more
advanced techniques throughout this book, you'll take the humble pages
you discover in this chapter and make them do all kinds of exciting things.

Creating a Basic Page
Here's the great news: The most important web technology you need is also
the easiest. You don't need any expensive or complicated software, and you
don't need a powerful computer. You probably have everything you need to
get started already.
No more talking! Fire up a computer and build a web page!

1. Open a text editor.

You can use any text editor you want, as long as it lets you save files as
plain text. If you're using Windows, Notepad is fine for now. If you're
using Mac, you'll really need to download a text editor. I like Komodo
Edit (www.activestate.com/komodo-edit) or TextWrangler

******ebook converter DEMO Watermarks*******

http://www.activestate.com/komodo-edit

(www.barebones.com/products/textwrangler/). It's
possible to make TextEdit work correctly, but it's probably easier to
just download something made for the job. I explain text editors more
completely in Chapter 3 of this mini-book.

 Don't use a word processor like Microsoft Word or Mac
TextEdit. These are powerful tools, but they don't save things in the
right format. The way these tools do things like centering text and
changing fonts won't work on the web. I promise that you'll figure out
how to do all that stuff soon, but a word processing program won't do it
correctly. Even the Save as HTML feature doesn't work right. You
really need a very simple text editor, and that's it. In Chapter 3 of this
minibook, I show you a few more editors that make your life easier.
You should not use Word or TextEdit.

2. Type the following code.

Really. Type it in your text editor so you get some experience writing
the actual code. I explain very soon what all this means, but type it now
to get a feel for it:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
<meta charset="UTF-8">
<!-- myFirst.html -->

<title>My very first web page!</title>
</head>

<body>

<h1>This is my first web page!</h1>

<p>
This is the first web page I've ever made,
and I'm extremely proud of it.
It is so cool!
</p>

</body>

******ebook converter DEMO Watermarks*******

http://www.barebones.com/products/textwrangler/

</html>

3. Save the file as myFirst.html.

It's important that your filename has no spaces and ends with the
.html extension. Spaces cause problems on the Internet (which is, of
course, where all good pages go to live), and the .html extension is
how most computers know that this file is an HTML file (which is
another name for a web page). It doesn't matter where you save the file,
as long as you can find it in the next step.

4. Open your web browser.

The web browser is the program used to look at pages. After you post
your page on a web server somewhere, your Great Aunt Gertrude can
use her web browser to view your page. You also need one (a browser,
not a Great Aunt Gertrude) to test your page. For now, use whatever
browser you ordinarily use. Most Windows users already have Internet
Explorer installed. If you're a Mac user, you probably have Safari.
Linux folks generally have Chrome or Firefox. Any of these are fine.
In Chapter 3 of this minibook, I explain why you probably need more
than one browser and how to configure them for maximum usefulness.

Figure 1-1: Congratulations! You’re now a web developer!

5. Load your page into the browser.
******ebook converter DEMO Watermarks*******

You can do this a number of ways. You can use the browser's File
menu to open a local file, or you can simply drag the file from your
Desktop (or wherever) to the open browser window.

6. Bask in your newfound genius.

Your simple text file is transformed! If all went well, it looks like
Figure 1-1.

Understanding the HTML in the
Basic Page

The page you created in the previous section uses an extremely simple
notation — HTML (HyperText Markup Language), which has been around
since the beginning of the web. HTML is a terrific technology for several
reasons:

It uses plain text. Most document systems (like word processors) use
special binary encoding schemes that incorporate formatting directly
into the computer's internal language, which locks a document into a
particular computer or software. That is, a document stored in Word
format can't be read without a program that understands Word
formatting. HTML gets past this problem by storing everything in plain
text.
It works on all computers. The main point of HTML is to have a
universal format. Any computer should be able to read and write it.
The plain-text formatting aids in this.
It describes what documents mean. HTML isn't really designed to
indicate how a page or its elements look. HTML is about describing the
meaning of various elements (more on that very soon). This has some
distinct advantages when you figure out how to use HTML properly.
It doesn't describe how documents look. This one seems strange. Of
course, when you look at Figure 1-1, you can see that the appearance of
the text on the web page has changed from the way the text looked in

******ebook converter DEMO Watermarks*******

your text editor. Formatting a document in HTML does cause the
document's appearance to change. That's not the point of HTML,
though. You discover in Book II and Book III how to use another
powerful technology — CSS — to change the appearance of a page
after you define its meaning. This separation of meaning from layout is
one of the best features of HTML.
It's easy to write. Sure, HTML gets a little more complicated than this
first example, but you can easily figure out how to write HTML
without any specialized editors. You only have to know a handful of
elements, and they're pretty straightforward.
It's free. HTML doesn't cost anything to use, primarily because it isn't
owned by anyone. No corporation has control of it (although a couple
have tried), and nobody has a patent on it. The fact that this technology
is freely available to anyone is a huge advantage.

Meeting Your New Friends, the Tags
The key to writing HTML code is the special text inside angle braces (<>).
These special elements are tags. They aren't meant to be displayed on the
web page, but offer instructions to the web browser about the meaning of
the text. The tags are meant to be embedded into each other to indicate the
organization of the page. This basic page introduces you to all the major
tags you'll encounter. (There are more, but they can wait for a chapter or
two.) Each tag has a beginning and an end tag. The end tag is just like the
beginning tag, except the end tag has a slash (/):

<!DOCTYPE HTML>: This special tag is used to inform the browser
that the document type is HTML. This is how the browser knows you'll
be writing an HTML5 document. You will sometimes see other values
for the doctype, but HTML5 is the way to go these days.
<html lang = “en”></html>: The <html> tag is the
foundation of the entire web page. The tag begins the page. Likewise,
</html> ends the page. For example, the page begins with <html>
and ends with </html>. The <html></html> combination
indicates that everything in the page is defined as HTML code. In

******ebook converter DEMO Watermarks*******

HTML5, you're expected to tell the browser which language the page
will be written in. Because I write in English, I'm specifying with the
code “en.”

 Some books teach you to write your HTML tags in uppercase
letters. This was once a standard, but it is no longer recommended.

<head></head>: These tags define a special part of the web page
called the head (or sometimes header). This part of the web page
reminds me of the engine compartment of a car. This is where you put
some great stuff later, but it's not where the main document lives. For
now, the only thing you'll put in the header is the document's title.
Later, you'll add styling information and programming code to make
your pages sing and dance.
<meta charset=“UTF-8”>: The meta tag is used to provide a
little more information to the browser. This command gives a little
more information to the browser, telling it which character set to use.
English normally uses a character set called (for obscure reasons) UTF-
8. You don't need to worry much about this, but every HTML5 page
written in English uses this code.
<!--/-->: This tag indicates a comment, which is ignored by the
browser. However, a comment is used to describe what's going on in a
particular part of the code.
<title></title>: This tag is used to determine the page's title.
The title usually contains ordinary text. Whatever you define as the
title will appear in some special ways. Many browsers put the title text
in the browser's title bar. Search engines often use the title to describe
the page.

Throughout this book, I use the filename of the HTML code as the title.
That way, you can match any figure or code listing to the
corresponding file on the web site that accompanies this book.
Typically, you'll use something more descriptive, but this is a useful
technique for a book like this.

******ebook converter DEMO Watermarks*******

 It's not quite accurate to say that the title text always shows
up in the title bar because a web page is designed to work on lots of
different browsers. Sure, the title does show up on most major
browsers that way, but what about cellphones and tablets? HTML
never legislates what will happen; it only suggests. This may be hard to
get used to, but it's a reality. You trade absolute control for widespread
capability, which is a good deal.

<body></body>: The page's main content is contained within these
tags. Most of the HTML code and the stuff the user sees are in the
body area. If the header area is the engine compartment, the body is
where the passengers go.
<h1></h1>: H1 stands for heading level one. Any text contained
within this markup is treated as a prominent headline. By default, most
browsers add special formatting to anything defined as H1, but there's
no guarantee. An H1 heading doesn't really specify any particular font
or formatting, just the meaning of the text as a level one heading. When
you find out how to use CSS in Book II, you'll discover that you can
make your headline look however you want. In this first minibook,
keep all the default layouts for now and make sure you understand that
HTML is about semantic meaning, not about layout or design. There
are other levels of headings, of course, through <h6> where <h2>
indicates a heading slightly less important than <h1>, <h3> is less
important than <h2>, and so on.

 Beginners are sometimes tempted to make their first headline
an <h1> tag and then use an <h2> for the second headline and an
<h3> for the third. That's not how it works. Web pages, like
newspapers and books, use different headlines to point out the relative
importance of various elements on the page, often varying the point
size of the text. You can read more about that in Book II.

******ebook converter DEMO Watermarks*******

<p></p>: In HTML, p stands for the paragraph tag. In your web
pages, you should enclose each standard paragraph in a <p></p> pair.
You might notice that HTML doesn't preserve the carriage returns or
white space in your HTML document. That is, if you press Enter in
your code to move text to a new line, that new line isn't necessarily
preserved in the final web page.

The <p></p> structure is one easy way to manage spacing before and
after each paragraph in your document.

 Some older books recommend using <p> without a </p> to
add space to your documents, similar to pressing the Enter key. This
way of thinking could cause you problems later because it doesn't
accurately reflect the way web browsers work. Don't think of <p> as
the carriage return. Instead, think of <p> and </p> as defining a
paragraph. The paragraph model is more powerful because soon
enough, you'll figure out how to take any properly defined paragraph
and give it yellow letters on a green background with daisies (or
whatever else you want). If things are marked properly, they'll be much
easier to manipulate later.

A few notes about the basic page
Be proud of this first page. It may be simple, but it’s the foundation of greater things to
come. Before moving on, take a moment to ponder some important HTML principles shown
in this humble page you’ve created:

All tags are lowercase. Although HTML does allow uppercase tags, modern
developers have agreed on lowercase tags in most cases. (<!DOCTYPE> is one
notable exception to this rule.)
Tag pairs are containers, with a beginning and an end. Tags contain other tags
or text.
Some elements can be repeated. There’s only one <html>, <title>, and
<body> tag per page, but a lot of the other elements (<h1> and <p>) can be
repeated as many times as you like.

******ebook converter DEMO Watermarks*******

Carriage returns are ignored. In the Notepad document, there are a number of
carriage returns. The formatting of the original document has no effect on the
HTML output. The markup tags indicate how the output looks.

Setting Up Your System
You don't need much to make web pages. Your plain text editor and a web
browser are about all you need. Still, some things can make your life easier
as a web developer.

Displaying file extensions
The method discussed in this section is mainly for Windows users, but it's a
big one. Windows uses the extension (the part of the filename after the
period) to determine what type of file you're dealing with. This is very
important in web development. The files you create are simple text files,
but if you store them with the ordinary .txt extension, your browser can't
read them properly. What's worse, the default Windows setting hides these
extensions from you, so you have only the icons to tell you what type of
file you're dealing with, which causes all kinds of problems. I recommend
you have Windows explicitly describe your file extensions. Here's how to
set that up in Windows 7:

1. Click the Start button.

This opens the standard Start menu.

2. Open the Control Panel.

The Control Panel application allows you to modify many parts of your
operating system.

3. Find Appearance and Personalization.

This section allows you to modify the visual look and feel of your
operating system.

******ebook converter DEMO Watermarks*******

4. Choose Folder Options.

This dialog box lets you modify the way folders look throughout the
visual interface.

5. Find Advanced Settings.

Click the View tab and then look under Advanced Settings.

6. Display file extensions.

By default, the Hide Extensions for Known File Types check box is
selected. Deselect this check box to display file extensions.

The process for displaying file types is similar in Windows 8:

1. Go to Windows Explorer.

Use the Windows Explorer tile to view Windows Explorer — the
standard file manager for Windows.

2. Click the View tab.

This tab allows you to modify how directories look.

******ebook converter DEMO Watermarks*******

Figure 1-2: Don’t hide file extensions (deselect that Hide Extensions check box).

3. De-select filename extensions.

If this button is checked, file extensions are shown (which is what you
want.) (See Figure 1-2.) Note this is the opposite of Windows 7's
behavior.

 Although my demonstration uses Windows 7 and 8, the
technique is similar in older versions of Windows. Just do a quick
search for “displaying file extensions.”

Setting up your software
You'll write a lot of web pages, so it makes sense to set up your system to
make that process as easy as possible. I talk a lot more about some

******ebook converter DEMO Watermarks*******

software you should use in Chapter 3 of this minibook, but for now, here
are a couple of easy suggestions:

Put a Notepad icon on your Desktop. You'll edit a lot of text files, so
it's helpful to have an icon for Notepad (or whatever other text editor
you use) available directly on the Desktop. That way, you can quickly
edit any web page by dragging it to the Desktop. When you use more
sophisticated editors than Notepad, you'll want links to them, too.
Get another web browser. You may just love your web browser, and
that's fine, but you can't assume that everybody likes the same browser
you do. You need to know how other browsers interpret your code.
Chrome is an incredibly powerful browser, and it's completely free, as
well has having a lot of great programmer's features. If you don't
already, I suggest having links to at least two browsers directly on your
Desktop.

Understanding the magic
Most of the problems people have with the web are from misunderstandings about how this
medium really works. Most people are comfortable with word processors, and we know
how to make a document look how we want. Modern applications use WYSIWYG
technology, promising that what you see is what you get. That’s a reasonable promise
when it comes to print documents, but it doesn’t work that way on the web.

How a web page looks depends on a lot of things that you don’t control. The user may read
your pages on a smaller or larger screen than you. She may use a different operating
system than you. She may have a slower connection or may turn off the graphics for
speed. She may be blind and use screen-reader technology to navigate web pages. She
may be reading your page on a tablet, smart phone, or even an older (not so smart)
cellphone. You can’t make a document that looks the same in all these situations.

A good compromise is to make a document that clearly indicates how the information fits
together and makes suggestions about the visual design. The user and her browser can
determine how much of those suggestions to use.

You get some control of the visual design but never complete control, which is okay
because you’re trading total control for accessibility. People with devices you’ve never
heard of can visit your page.

Practice a few times until you can easily build a page without looking anything up. Soon
enough, you’re ready for the next step — building pages like the pros.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 2
It's All About Validation

In This Chapter
 Introducing the concept of valid pages
 Using a doctype
 Setting the character set
 Meeting the W3C validator
 Fixing things when they go wrong
 Using HTML Tidy to clean your pages

Web development is undergoing a revolution. As the web matures and
becomes a greater part of everyday life, it's important to ensure that web
pages perform properly — thus, a call for web developers to follow
voluntary standards of web development.

Somebody Stop the HTML Madness!
In the bad old days, the web was an informal affair. People wrote HTML
pages any way they wanted. Although this was easy, it led to a lot of
problems:

Browser manufacturers added features that didn't work on all
browsers. People wanted prettier web pages with colors, fonts, and
doodads, but there wasn't a standard way to do these things. Every
browser had a different set of tags that supported enhanced features. As
a developer, you had no real idea if your web page would work on all
the browsers out there. If you wanted to use some neat feature, you had
to ensure your users had the right browser.
The distinction between meaning and layout was blurred. People
expected to have some kind of design control of their web pages, so all
kinds of new tags popped up that blurred the distinction between

******ebook converter DEMO Watermarks*******

describing and decorating a page.
Table-based layout was used as a hack. HTML didn't have a good
way to handle layout, so clever web developers started using tables as a
layout mechanism. This worked, after a fashion, but it wasn't easy or
elegant.
People started using tools to write pages. Web development soon
became so cumbersome that people began to believe that they couldn't
do HTML by hand anymore and that some kind of editor was
necessary to handle all that complexity for them. Although these
editing programs introduced new features that made things easier
upfront, these tools also made code almost impossible to change
without the original editor. Web developers began thinking they
couldn't design web pages without a tool from a major corporation.
The nature of the web was changing. At the same time, these factors
were making ordinary web development more challenging. Innovators
were recognizing that the web wasn't really about documents but was
about applications that could dynamically create documents. Many of
the most interesting web pages you visit aren't web pages at all, but
programs that produce web pages dynamically every time you visit.
This innovation meant that developers had to make web pages readable
by programs, as well as humans.
XHTML tried to fix things. The standards body of the web (there
really is such a thing) is called the World Wide Web Consortium
(W3C), and it tried to resolve things with a new standard called
XHTML. This was a form of HTML that also followed the much
stricter rules of XML. If everyone simply agreed to follow the XHTML
standard, much of the ugliness would go away.
XHTML didn't work either. Although XHTML was a great idea, it
turned out to be complicated. Parts of it were difficult to write by hand,
and very few developers followed the standards completely. Even the
browser manufacturers didn't agree exactly on how to read and display
XHTML. It doesn't matter how good an idea is if nobody follows it.

In short, the world of HTML was a real mess.

XHTML had some great ideas
******ebook converter DEMO Watermarks*******

In 2000, the World Wide Web Consortium (usually abbreviated as W3C)
got together and proposed some fixes for HTML. The basic plan was to
create a new form of HTML that complied with a stricter form of markup,
or eXtensible Markup Language (XML). The details are long and boring,
but essentially, they came up with some agreements about how web pages
are standardized. Here are some of those standards:

All tags have endings. Every tag comes with a beginning and an end
tag. (Well, a few exceptions come with their own ending built in. I'll
explain when you encounter the first such tag in Chapter 6 of this
minibook.) This was a new development because end tags were
considered optional in old-school HTML, and many tags didn't even
have end tags.
Tags can't be overlapped. In HTML, sometimes people had the
tendency to be sloppy and overlap tags, like this: <a>my
stuff. That's not allowed in XHTML, which is a good
thing because it confuses the browser. If a tag is opened inside some
container tag, the tag must be closed before that container is closed.
Everything's lowercase. Some people wrote HTML in uppercase,
some in lowercase, and some just did what they felt like. It was
inconsistent and made it harder to write browsers that could read all the
variations.
Attributes must be in quotes. If you've already done some HTML,
you know that quotes used to be optional — not anymore. (Turn to
Chapter 3 for more about attributes.)
Layout must be separate from markup. Old-school HTML had a
bunch of tags (like and <center>) that were more about
formatting than markup. These were useful, but they didn't go far
enough. XHTML (at least the strict version) eliminates all these tags.
Don't worry, though; CSS gives you all the features of these tags and a
lot more.

This sounds like strict librarian rules, but really they aren't restricting at all.
Most of the good HTML coders were already following these guidelines or
something similar.
Even though you're moving past XHTML into HTML5, these aspects of

******ebook converter DEMO Watermarks*******

XHTML remain, and they are guidelines all good HTML5 developers still
use.

 HTML5 actually allows a looser interpretation of the rules than
XHTML strict did, but throughout this book I write HTML5 code in a
way that also passes most of the XHTML strict tests. This practice
ensures nice clean code with no surprises.

You validate me
In old-style HTML, you never really knew how your pages would look on
various browsers. In fact, you never really knew if your page was even
written properly. Some mistakes would look fine on one browser but cause
another browser to blow up.
The idea of validation is to take away some of the uncertainty of HTML.
It's like a spell checker for your code. My regular spell checker makes me
feel a little stupid sometimes because I make mistakes. I like it, though,
because I'm the only one who sees the errors. I can fix the spelling errors
before I pass the document on to you, so I look smart. (Well, maybe.)
It'd be cool if you could have a special kind of checker that does the same
things for your web pages. Instead of checking your spelling, it'd test your
page for errors and let you know if you made any mistakes. It'd be even
cooler if you could have some sort of certification that your page follows a
standard of excellence.
That's how page validation works. You can designate that your page will
follow a particular standard and use a software tool to ensure that your
page meets that standard's specifications. The software tool is a validator. I
show you two different validators in the upcoming “Validating Your Page”
section.
The browsers also promise to follow a particular standard. If your page
validates to a given standard, any browser that validates to that same
standard can reproduce your document correctly, which is a big deal.
The most important validator is the W3C validator at
http://validator.w3.org, as shown in Figure 2-1.

******ebook converter DEMO Watermarks*******

http://validator.w3.org

A validator is actually the front end of a piece of software that checks
pages for validity. It looks at your web page's doctype and sees whether the
page conforms to the rules of that doctype. If not, it tells you what might
have gone wrong.
You can submit code to a validator in three ways:

Validate by URI. This option is used when a page is hosted on a web
server. Files stored on local computers can't be checked with this
technique. Book VIII describes all you need to know about working
with web servers, including how to create your own and move your
files to it. (A URI, or uniform resource identifier, is a more formal term
for a web address, which is more frequently seen as URL.)
Validate by file upload. This technique works fine with files you
haven't posted to a web server. It works great for pages you write on
your computer but that you haven't made visible to the world. This is
the most common type of validation for beginners.
Validate by direct input. The validator page has a text box you can
simply paste your code into. It works, but I usually prefer to use the
other methods because they're easier.

Figure 2-1: The W3C validator page isn't exciting, but it sure is useful.

Validation might sound like a big hassle, but it's really a wonderful tool

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text
I used it and it worked great with eliminating errors in A_Start.html

Owner
Typewritten Text

Owner
Typewritten Text
I separated the list of books, A_Start.html from my practice programs into B_Start.html.The validation of these two programs worked great!,

because sloppy HTML code can cause lots of problems. Worse, you might
think everything's okay until somebody else looks at your page, and
suddenly, the page doesn't display correctly.

 As of this writing, the W3C validator can read and test HTML5
code, but the HTML5 validation is still considered experimental. Until
HTML5 becomes a bit more mainstream, your HTML5 pages may get
a warning about the experimental nature of HTML5. You can safely
ignore this warning.

Validating Your Page
To explain all this, I created a web page the way Aesop might have done in
ancient Greece. Okay, maybe Aesop didn't write his famous fables as web
pages, but if he had, they might have looked like the following code listing:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 <meta charset="UTF-8">

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop's Fables</h2>

<p>
 A pair of Oxen were drawing a heavily loaded wagon along a
 miry country road. They had to use all their strength to
pull
 the wagon, but they did not complain.
<p>

******ebook converter DEMO Watermarks*******

Owner
Highlight

<p>
 The Wheels of the wagon were of a different sort. Though the
 task they had to do was very light compared with that of the
 Oxen, they creaked and groaned at every turn. The poor Oxen,
 pulling with all their might to draw the wagon through the
 deep mud, had their ears filled with the loud complaining of
 the Wheels. And this, you may well know, made their work so
 much the harder to endure.
</p>

<p>
 "Silence!" the Oxen cried at last, out of patience. "What
have
 you Wheels to complain about so loudly? We are drawing all
the
 weight, not you, and we are keeping still about it besides."
</p>

<h2>
They complain most who suffer least.
</h2>

</body>
</html>

The code looks okay, but actually has a number of problems. Aesop may
have been a great storyteller, but from this example, it appears he was a
sloppy coder. The mistakes can be hard to see, but trust me, they're there.
The question is, how do you find the problems before your users do?
You might think that the problems would be evident if you viewed the
page in a web browser. The various web browsers seem to handle the page
decently, even if they don't display it in an identical way. Figure 2-2 shows
oxWheels1.html in a browser.
Chrome appears to handle the page pretty well, but From Aesop's
Fables is supposed to be a headline level two, or H2, and it appears as
plain text. Other than that, there's very little indication that something is
wrong.
If it looks fine, who cares if it's exactly right? You might wonder why we
care if there are mistakes in the underlying code, as long as everything
works okay. After all, who's going to look at the code if the page displays
properly?

******ebook converter DEMO Watermarks*******

The problem is, you don't know if it'll display properly, and mistakes in
your code will eventually come back to haunt you. If possible, you want to
know immediately what parts of your code are problematic so you can fix
them and not worry.

Figure 2-2: The page looks okay, but the headings are strange.

Aesop visits W3C
To find out what's going on with this page, pay a visit to the W3C validator
at http://validator.w3.org. Figure 2-3 shows me visiting this site
and uploading a copy of oxWheels1.html to it.
Hold your breath and click the Check button. You might be surprised at the
results shown in Figure 2-4.
The validator is a picky beast, and it doesn't seem to like this page at all.
The validator does return some useful information and gives enough hints
that you can decode things soon enough.

******ebook converter DEMO Watermarks*******

http://validator.w3.org

Figure 2-3: I'm checking the oxWheels page to look for any problems.

Figure 2-4: Five errors? That can't be right!

Examining the overview
Before you look at the specific complaints, take a quick look at the web
page the validator sends you. The web page is chock-full of handy
information. The top of the page tells you a lot of useful things:

Result: This is really the important thing. You'll know the number of
errors remaining by looking at this line. Don't panic, though. The errors

******ebook converter DEMO Watermarks*******

in the document are probably fewer than the number you see here.
File: The name of the file you're working on.
Encoding: The text encoding you've set. If you didn't explicitly set text
encoding, you may see a warning here.
Doctype: This is the doctype extracted from your document. It
indicates the rules that the validator is using to check your page. This
should usually say HTML5.
The dreaded red banner: Experienced web developers don't even
have to read the results page to know if there is a problem. If
everything goes well, there's a green congratulatory banner. If there are
problems, the banner is red. It doesn't look good, Aesop.

 Don't panic because you have errors. The mistakes often overlap,
so one problem in your code often causes more than one error to pop
up. Most of the time, you have far fewer errors than the page says, and
a lot of the errors are repeated, so after you find the error once, you'll
know how to fix it throughout the page.

Validating the page
The validator doesn't always tell you everything you need to know, but it
does give you some pretty good clues. Page validation is tedious but not as
difficult as it might seem at first. Here are some strategies for working
through page validation:

Focus only on the first error. Sure, 100 errors might be on the page,
but solve them one at a time. The only error that matters is the first one
on the list. Don't worry at all about other errors until you've solved the
first one.
Note where the first error is. The most helpful information you get is
the line and column information about where the validator recognized
the error. This isn't always where the error is, but it does give you some
clues.
Look at the error message. It's usually good for a laugh. The error

******ebook converter DEMO Watermarks*******

messages are sometimes helpful and sometimes downright mysterious.
Look at the verbose text. Unlike most programming error messages,
the W3C validator tries to explain what went wrong in something like
English. It still doesn't always make sense, but sometimes the text
gives you a hint.
Scan the next couple of errors. Sometimes, one mistake shows up as
more than one error. Look over the next couple of errors, as well, to see
if they provide any more insight; sometimes, they do.
Try a change and revalidate. If you've got an idea, test it out (but
only solve one problem at a time.) Check the page again after you save
it. If the first error is now at a later line number than the previous one,
you've succeeded.
Don't worry if the number of errors goes up. The number of
perceived errors will sometimes go up rather than down after you
successfully fix a problem. This is okay. Sometimes, fixing one error
uncovers errors that were previously hidden. More often, fixing one
error clears up many more. Just concentrate on clearing errors from the
beginning to the end of the document.
Lather, rinse, and repeat. Look at the new top error and get it
straightened out. Keep going until you get the coveted Green Banner of
Validation. (If I ever write an HTML adventure game, the Green
Banner of Validation will be one of the most powerful talismans.)

Examining the first error
Look again at the results for the oxWheels1.html page. The first error
message looks like Figure 2-5.

******ebook converter DEMO Watermarks*******

Figure 2-5: Well, that clears every-thing up.

Figure 2-5 shows the first two error messages. The first complains that the
head is missing a title. The second error message is whining about the title
being in the body. The relevant code is repeated here:

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 <meta charset="UTF-8">

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
 and oxWheelsCorrect.html for a corrected version.
-->

</head>
<body>
<title>The Oxen and the Wheels</title>

Look carefully at the head and title tag pairs and review the notes in
the error messages, and you'll probably see the problem. The <title>
element is supposed to be in the heading, but I accidentally put it in the
body! (Okay, it wasn't accidental; I made this mistake deliberately here to
show you what happens. However, I have made this mistake for real in the
past.)

******ebook converter DEMO Watermarks*******

Fixing the title
If the title tag is the problem, a quick change in the HTML should fix it.
oxWheels2.html shows another form of the page with my proposed fix:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />

<!-- oxWheels2.html -->

<!-- Moved the title tag inside the header -->
<title>The Oxen and the Wheels</title>

</head>
<body>

Note: I'm only showing the parts of the page that I changed. The entire
page is available on this book's website. See this book's Introduction for
more on the website.
The fix for this problem is pretty easy:

1. Move the title inside the head. I think the problem here is having the
<title> element inside the body, rather than in the head where it
belongs. If I move the title to the body, the error should be eliminated.

2. Change the comments to reflect the page's status. It's important that
the comments reflect what changes I make.

3. Save the changes. Normally, you simply make a change to the same
document, but I've elected to change the filename so you can see an
archive of my changes as the page improves. This can actually be a
good idea because you then have a complete history of your
document's changes, and you can always revert to an older version if
you accidentally make something worse.

4. Note the current first error position. Before you submit the modified
page to the validator, make a mental note of the position of the current
first error. Right now, the validator's first complaint is on line 12,
column 7. I want the first mistake to be somewhere later in the
document.

5. Revalidate by running the validator again on the modified page.
******ebook converter DEMO Watermarks*******

6. Review the results and do a happy dance. It's likely you still have
errors, but that's not a failure! Figure 2-6 shows the result of my
revalidation. The new first error is on line 17, and it appears to be very
different from the last error. I solved it!

Solving the next error
One down, but more to go. The next error (refer to Figure 2-6) looks
strange, but it makes sense when you look over the code.
This type of error is very common. What it usually means is you forgot to
close something or you put something in the wrong place. The error
message indicates a problem in line 17. The next error is line 17, too. See if
you can find the problem here in the relevant code:

<body>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop's Fables</h2>

After you know where to look, the problem becomes a bit easier to spot. I
got sloppy and started the <h2> tag before I finished the <h1>. In many
cases, one tag can be completely embedded inside another, but you can't
have tag definitions overlap as I've done here. The <h1> has to close
before I can start the <h2> tag.

Figure 2-6: Heading cannot be a child of another heading. Huh?

This explains why browsers might be confused about how to display the
******ebook converter DEMO Watermarks*******

headings. It isn't clear whether this code should be displayed in H1 or H2
format, or perhaps with no special formatting at all. It's much better to
know the problem and fix it than to remain ignorant until something goes
wrong.
The third version — oxWheels3.html — fixes this part of the program:

<!-- oxWheels3.html -->
<!-- sort out the h1 and h2 tags at the top -->
<title>The Oxen and the Wheels</title>
</head>
<body>
<h1>The Oxen and the Wheels</h1>
<h2>From Aesop's Fables</h2>

The validator has fixed a number of errors, but there's one really sneaky
problem still in the page. See if you can find it, and then read ahead.

Is validation really that big a deal?
I can hear the angry e-mails coming in. “Andy, I've been writing web pages since 1998, and
I never used a validator.” Okay, it's true. A lot of people, even some professional web
developers, work without validating their code. Some of my older web pages don't validate
at all. (You can run the W3C validator on any page you want, not just one you wrote. This
can be a source of great joy if you like feeling superior to sloppy coders.) When I became
more proficient and more prolific in my web development, I found that those little errors
often caused a whole lot of grief down the road. I really believe you should validate every
single page you write. Get into the habit now, and it'll pay huge dividends. When you're
figuring out this stuff for the first time, do it right.

If you already know some HTML, you're gonna hate the validator for a while because it
rejects coding habits that you might think are perfectly fine. Unlearning a habit is a lot
harder than learning a new practice, so I feel your pain. It's still worth it.

After you discipline yourself to validate your pages, you'll find you've picked up good habits,
and validation becomes a lot less painful. Experienced programmers actually like the
validation process because it becomes much easier and prevents problems that could
cause lots of grief later. You may even want to re-validate a page you've been using for a
while. Sometimes a content update can cause mistakes.

Using Tidy to repair pages
The W3C validator isn't the only game in town. Another great resource —
HTML Tidy — can be used to fix your pages. You can download Tidy or

******ebook converter DEMO Watermarks*******

just use the online version at http://infohound.net/tidy.
Figure 2-7 illustrates the online version.

Figure 2-7: HTML Tidy is an alternative to the W3C validator.

Figure 2-8: Tidy fixes the page, but the fix is a little awkward.

Unlike W3C's validator, Tidy actually attempts to fix your page. Figure 2-8
displays how Tidy suggests the oxWheels1.html page be fixed.
Tidy examines the page for a number of common errors and does its best to
fix the errors. However, the result is not quite perfect:

******ebook converter DEMO Watermarks*******

http://infohound.net/tidy

It outputs XHTML by default. XHTML is fine, but because we're
doing HTML here, deselect the Output XHTML box. The only
checkbox you need selected is Drop Empty Paras.
Tidy got confused by the headings. Tidy correctly fixed the level one
heading, but it had trouble with the level two heading. It removed all
the tags, so it's valid, but the text intended to be a level two heading is
just sort of hanging there.
Sometimes, the indentation is off. I set Tidy to indent every element,
so it is easy to see how tag pairs are matched up. If I don't set up the
indentation explicitly, I find Tidy code very difficult to read.
The changes aren't permanent. Anything Tidy does is just a
suggestion. If you want to keep the changes, you need to save the
results in your editor. Click the Download Tidied File button to do this
easily.

I sometimes use Tidy when I'm stumped because I find the error messages
are easier to understand than the W3C validator. However, I never trust it
completely. Until it's updated to truly understand HTML5, it sometimes
deletes perfectly valid HTML5 tags. There's really no substitute for good
old detective skills and the official W3C validator.
Did you figure out that last error? I tried to close a paragraph with <p>
rather than </p>. That sort of thing freaks out an XHTML validator, but
HTML takes it in stride, so you might not even know there is a problem.
Tidy does notice the problem and repairs it. Remember this when you're
working with a complex page and something doesn't seem right. It's
possible there's a mistake you can't even see, and it's messing you up. In
that case, consider using a validator and Tidy to figure out what's going
wrong and fix it.

******ebook converter DEMO Watermarks*******

Chapter 3
Choosing Your Tools

In This Chapter
 Choosing a text editor
 Using a dedicated HTML editor
 Comparing common browsers

Web development is a big job. You don't go to a construction site without a
belt full of tools (and a cool hat), and the same thing is true with web
development (except you don't normally need a hard hat for web
development). An entire industry has evolved trying to sell tools that help
make web development easier. The funny thing is that the tools you need
might not be the ones that people are trying to sell you. Some of the very
best web development tools are free, and some of the most expensive tools
aren't that helpful.
This chapter tells you what you need and how to set up your workshop
with great programs that simplify web development.

What's Wrong with the Big Boys:
Expression Web and Adobe
Dreamweaver

Many web development books are really books about how to use a
particular type of software. Microsoft's Expression Web and Adobe
Dreamweaver are the two primary applications in this category. These tools
are powerful and offer some seemingly great features:

WYSIWYG editing: What you see is what you get is an idea borrowed
from word processors. You can create a web page much like a word-
processing document and use menus as well as tools to handle all the

******ebook converter DEMO Watermarks*******

formatting. The theory is that you don't have to know any icky codes.
Templates: You can create a template that stays the same and build
several pages from that template. If you need to change the template,
everything else changes automatically.
Site management: The interaction between the various pages on your
site can be maintained automatically.

These sound like pretty good features, and they are. The tools (and the
newer replacements, like Microsoft's Expression suite) are very powerful
and can be an important part of your web development toolkit. However,
the same powerful programs introduce problems, such as the following:

Code maintenance: The commercial editors that concentrate on visual
design tend to create pretty unmanageable code. If you find there's
something you need to change by hand, it's pretty hard to fix the code.
Vendor lock-in: These tools are written by corporations that want you
to buy other tools from them. If you're using Dreamweaver, you'll find
it easy to integrate with other Adobe applications (like ColdFusion),
but it's not as simple to connect to non-Adobe technology. Likewise,
Microsoft's offerings are designed to work best with other Microsoft
technologies.
Cost: The cost of these software packages keeps going up. Although
there are free versions of Microsoft's web development tools, the
commercial versions are very expensive. Likewise, Dreamweaver
weighs in at $400. Both companies encourage you to buy the software
as part of a package, which can easily cost more than hundreds more.
Complexity: They're complicated. You can take a full class or buy a
huge book on how to use only one of these technologies. If it's that
hard to figure out, is it really saving you any effort?
Code: You still need to understand it. No matter how great your
platform is, at some point, you have to dig into your code. After you
plunk down all that money and spend all that time figuring out an
application, you still have to understand how the underlying code
works because things still go wrong. For example, if your page fails to
work with Safari, you'll have to find out why and fix the problem
yourself.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Spotty standards compliance: The tools are getting better here, but if
you want your pages to comply with the latest standards, you have to
edit them heavily after the tool is finished.
Display variations: WYSIWYG is a lie. This is really the big problem.
WYSIWYG works for word processors because it's possible to make
the screen look like the printed page. After a page is printed, it stays
the same. You don't know what a web page will look like because that
depends on the browser. What if the user loads your page on a
cellphone or handheld device? The editors tend to perpetuate the myth
that you can treat a web page like a printed document when, in truth,
it's a very different kind of beast.
Incompatibility with other tools: Web development is now moving
toward content management systems (CMS) — programs that create
websites dynamically. Generally, CMS systems provide the same ease-
of-use as a visual editor but with other benefits. However, transitioning
code created in a commercial editor to a CMS is very difficult. I
describe CMS systems in detail in Book VIII.

How About Online Site Builders?
A lot of modern websites are built with a content management system
(CMS). Content management systems are software programs that allow
you to build and modify a page right in your web browser. Some CMS
systems are free, and some cost money to use. I go over how to install and
modify a CMS (and even build your own) in Book VIII. A CMS system
can be nice because it allows you to build a website visually without any
special tools or knowledge.
The CMS approach is a very good solution, but I still recommend you
discover how to build things by hand. Ultimately even a CMS uses HTML
and CSS, and you'll need these skills to make your site look and perform
well even if you have help.

Alternative Web Development Tools
For web development, all you really need is a text editor and a web

******ebook converter DEMO Watermarks*******

Owner
Highlight

browser. You probably already have a basic set of tools on your computer.
If you read Chapters 1 and 2 of this minibook, you've already written a
couple of web pages. However, the very basic tools that come with every
computer might not be enough for serious work. Web development
requires a specialized kind of text editor, and a number of tools have
evolved that make the job easier.
I've found uses for four types of programs in web development:

Enhanced text editors: These tools are text editors, but they're
souped-up with all kinds of fancy features, like syntax checkers, code-
coloring tools, macro tools, and multiple document interfaces.
Browsers and plug-ins: Some browsers are better than others for
development. You'll also need a full suite of browsers to ensure your
code works in all of them. Some browsers can be extended with plug-
ins for advanced performance.
Programming technologies: This book covers all pertinent info about
incorporating other technologies, like Apache, PHP, and MySQL. I
show you how to install everything you need for these technologies in
Book VIII, Chapter 1. You don't need to worry about these things yet,
but you should develop habits that are compatible with these enhanced
technologies from the beginning.
Multimedia tools: It's very common for a web page to feature various
types of images, as well as other multimedia like custom fonts, sound
effects, and video. You'll need some tools to manage these resources.

Picking a Text Editor
As a programmer, you come to see your text editor as a faithful
companion. You spend a lot of time with this tool, so use one that works
with you.
A text editor should save plain text without any formatting at all. You don't
want anything that saves colors, font choices, or other text formatting
because these things don't automatically translate to HTML.
Fortunately, you have several choices, as the following sections reveal.

******ebook converter DEMO Watermarks*******

Tools to avoid unless you have nothing else
A text editor may be a simple program, but that doesn't mean they're all the
same. Some programs have a history of causing problems for beginners
(and experienced developers, too). There's usually no need to use some of
these weaker choices.

Microsoft Word

 Just don't use it for web development. Word is a word processor.
Even though, theoretically, it can create web pages, the HTML code it
writes is absolutely horrific. As an example, I created a blank
document, wrote “Hello World” in it, changed the font, and saved it as
HTML. The resulting page was non-compliant code, was not quite
HTML or XHTML, and was 114 lines long. Word is getting better, but
it's just not a good web development tool. In fact, don't use any word
processor. They're just not designed for this kind of work.

Windows Notepad
Notepad is everywhere, and it's free. That's the good news. However,
Notepad doesn't have a lot of the features you might need, such as line
numbers, multiple documents, or macros. Use it if you're on an unfamiliar
machine, but try something else if you can. Many people begin with
Notepad, but it won't be long until you outgrow its limitations.

Mac TextEdit
Mac has a simple text editor built in — TextEdit — that's similar to
Notepad, but closer to a word processor than a programmer's text editor.
TextEdit saves files in a number of formats. If you want to use it to write
web pages, you must save your files in plain-text format, and you must not
use any of TextEdit's formatting features. It's probably best not to use
TextEdit unless you really have to.

Suggested programmer's editors
If Notepad, Word, and TextEdit aren't the best choices, what are some
better options?

******ebook converter DEMO Watermarks*******

Good question. Because a text editor is such an important tool, it might
depend a bit on your preferences, so I'll highlight a few of my favorites.
Note that every editor I mention here is entirely free, so don't go paying for
something until you've tried some of these first.

A noteworthy editor: Notepad++
A number of developers have come up with good text editors. Some of the
best are free, such as Notepad++ by Don Ho. Notepad++ is designed for
text editing, especially in programming languages. Figure 3-1 shows
Notepad++ with an HTML file loaded.

Figure 3-1: Notepad++ has many of the features you need in a text editor.

Notepad++ has a lot of interesting features. Here are a few highlights:

Syntax highlighting: Notepad++ can recognize key HTML terms and
put different types of terms in different colors. For example, all HTML
tags are rendered blue, and text is black, making it easy to tell if you've
made certain kinds of mistakes, such as forgetting to end a tag. Note
that the colors aren't saved in the document. The coloring features are
there to help you understand the code.
Multiple files: You'll often want to edit more than one document at a
time. You can have several different documents in memory at the same
time.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Multi-language support: Currently, your pages consist of nothing but
HTML. Soon enough, you'll use some other languages, like SQL, CSS,
and PHP. Notepad++ is smart enough to recognize these languages,
too.
Macros: Whenever you find yourself doing something over and over,
consider writing a keyboard macro. Notepad++ has a terrific macro
feature. Macros are easy to record and play back a series of keystrokes,
which can save you a lot of work.
Page preview: When you write a page, test it. Notepad++ has shortcut
keys built in to let you quickly view your page in Internet Explorer
(Ctrl+Alt+Shift+I) and Firefox (Ctrl+Alt+Shift+X).
TextFX: The open-source design of Notepad++ makes it easy to add
features. The TextFX extension (built into Notepad++) allows you to
do all sorts of interesting things. One especially handy set of tools runs
HTML Tidy on your page and fixes any problems.

 Sadly, Notepad++ is a Windows-only editor. If you're using Mac
or Linux, you need to find something else. The closest alternative in the
Mac and Linux world is gedit.

gedit
One simple but effective editor available free for all major operating
systems is gedit. It is the default editor for many versions of Linux, but you
can download it for Mac and Windows from
http://projects.gnome.org/gedit/.
It has all the standard features including syntax highlighting (which colors
different parts of code in different colors to help with debugging), line
numbers, and a tag list, which is a special menu which allows you to pick
common HTML tags from a list if you forget some syntax. (You may need
to play with the plugins from the edit-preferences menu to activate all these
features.)
Sadly, gedit does not have a macro editor. This may not be a deal-breaker
for you, but often I find a macro tool to be extremely useful, and I'm

******ebook converter DEMO Watermarks*******

http://projects.gnome.org/gedit/
Owner
Highlight

Owner
Highlight

happiest when my editor has this feature. (If you're especially geeky, it
does expose the entire Python language and allow you to modify anything
with this language, but that's a topic for another day.) If you need a very
nice general-purpose editor, consider gedit. It does much of what you
might want without getting terribly complicated.
Figure 3-2 shows gedit in action.

Figure 3-2: gedit is a very nice but simple tool.

The old standards: VI and Emacs
No discussion of text editors is complete without a mention of the
venerable UNIX editors that were the core of the early Internet experience.
Most of the pioneering work on the web was done in the UNIX and Linux
operating systems, and these environments had two extremely popular text-
editor families. Both might seem obscure and difficult to modern
sensibilities, but they still have passionate adherents, even in the Windows
community. (Besides, Linux is more popular than ever!)

VI and VIM
VI stands for VIsual Editor. That name seems strange now because most
developers can't imagine an editor that's not visual. Back in the day, it was
a very big deal that VI could use the entire screen for editing text. Before
that time, line-oriented editors were the main way to edit text files. Trust
me, you have it good now. Figure 3-3 shows a modern variant of VI (called

******ebook converter DEMO Watermarks*******

GVIM) in action.

Figure 3-3: VI isn't pretty, but after you know it, it's very powerful.

VI is a modal editor, which means that the same key sometimes has more
than one job, depending on the editor's current mode. For example, the I
key is used to indicate where you want to insert text. The D key is used to
delete text, and so on. Of course, when you're inserting text, the keys have
their normal meanings. This multimode behavior is baffling to modern
users, but it can be amazingly efficient after you get used to it. Skilled VI
users swear by it and often use nothing else.
VI is a little too obscure for some users, so a number of variants are
floating around, such as VIM, or VI Improved. (Yeah, it should be VII but
maybe they were afraid people would call it the Roman numeral seven.)
VIM is a little friendlier than VI, and GVIM is friendlier yet. It tells you
which mode it's in and includes such modern features as mouse support,
menus, and icons. Even with these features, VIM is not intuitive for most
people.
Versions of VI are available for nearly any operating system being used. If
you already know VI, you might enjoy using it for web page development
because it has all the features you might need. If you don't already know
VI, it's probably more efficient for you to start with a more standard text
editor, such as Notepad++.

******ebook converter DEMO Watermarks*******

Emacs
The other popular editor from the UNIX world is Emacs. Like VI, you
probably don't need this tool if you never use Linux or UNIX. Also like VI,
if you know it already, you probably don't need anything else. Emacs has
been a programmer's editor for a very long time (it has been in continuous
development since 1976) and has nearly every feature you can think of.

 Emacs also has a lot of features you haven't thought of, including
a built-in text adventure game and even a psychotherapist simulator. I
really couldn't make this stuff up if I tried.

Emacs has very powerful customization and macro features and allows you
to view and edit more than one file at a time. Emacs also has the ability to
view and manipulate the local file system, manage remote files, access the
local operating system (OS) shell, and even browse the web or check e-
mail without leaving the program. If you're willing to invest in a program
that takes some effort to understand, you'll have an incredibly powerful
tool in your kit. Versions of Emacs are available for most major operating
systems. Emacs is one of the first programs I install on any new computer
because it's so powerful. A version of Emacs is shown in Figure 3-4.

Figure 3-4: Emacs is powerful but somewhat eccentric.

******ebook converter DEMO Watermarks*******

An enhanced version — XEmacs — (shown in the figure) uses standard
menus and icons like modern programs, so it's reasonably easy to get
started with.

 Emacs has an astonishing number of options and a nonstandard
interface, so it can be challenging for beginners. However, those who
have made the investment (like me) swear by it.

My personal choice: Komodo Edit
Personally I really like Komodo Edit
(www.activestate.com/komodo-edit). This editor is extremely
powerful, but is not quite as intimidating as some of the older tools. It has a
modern streamlined interface, but more power than you might realize at
first. Komodo Edit is actually the open-source cousin to a commercial
Integrated Development Environment (IDE) called Komodo IDE. Komodo
IDE costs hundreds of dollars, but Komodo Edit has almost as many
features, and is entirely free. Figure 3-5 illustrates Komodo Edit.
Komodo Edit has a number of really intriguing features that make it stand
out in my mind:

All the standard features: Komodo Edit has all the features I've
mentioned as necessary for a programmer's editor, including syntax
highlighting, line numbers, and saving in plain text format.
Code completion: A number of higher-end programmer's editors have
this feature, but it's not as common in text editors. Here's how it works:
When you set up a page as HTML5 (by choosing from the menu on the
bottom right), Komodo “watches” as you type and provides hints. So,
if you begin typing <h, Komodo pops up a little dialog box showing all
the tags that begin with h. If you pick <html> and then move to the
next line and type an angle bracket (<) character, you'll get a pop-up
menu with <head> and <body> listed because these are the two tags
valid in this context. Komodo is pretty smart about knowing what tags
you can use when. This can be a helpful feature when you're starting
out.

******ebook converter DEMO Watermarks*******

http://www.activestate.com/komodo-edit

Figure 3-5: Komodo Edit is a really powerful editor.

Multiple file support: Your first few web pages will be single
documents, but most websites incorporate many pages. Komodo allows
you to have several pages at once and to compare any two pages at the
same time.
Page Preview: Just use ctrl-K-V to preview the current web page in
a second tab. This is a quick way to see how your page is going.
Multiple language support: This book (and web development in
general) requires a whole bunch of different languages. Komodo Edit is
just as good at the languages you'll be using as it is with HTML.
Komodo has native support for HTML, CSS, JavaScript, PHP, MySQL
and many more. (In fact, I also use it for working in other languages
like Python, C++, and Java, so you might end up using it beyond even
web development.)
Multi-platform: It might not be a big deal to you right now, but
Komodo works the same on all major operating systems – Windows,
Mac, and Linux. This really matters in web development because you
will encounter new operating systems in your web travels. I use all
three major OS types and use Komodo on all of them.
Remote file support: Eventually, you'll be posting your sites on a
remote web server. (See Book VIII for details on how to set up a
server.) Komodo makes it easy to edit a web page even when it's not on
your own machine!

******ebook converter DEMO Watermarks*******

Page templates: If you don't remember exactly how to start a page,
you can choose New ⇒ File from Template from the File menu to start
a file with some starter code in it. Note that the HTML5 code provided
with Komodo does not include everything the validator wants, but you
can add the features you want and save it as your own template (File ⇒
Save As ⇒ Template).
Code sample library: Komodo comes with a complete code sample
library. To see it, pick View ⇒ Tabs and Sidebars⇒Toolbox. The
toolbox appears and contains a number of interesting tools. Choose
samples-HTML from the tree structure and you'll see several useful
HTML snippets. You can double-click on any of these to add a code
snippet directly to your page. This can be helpful when you don't
remember exactly how to type something.
Powerful macro system: As you spend more time with your editor,
you'll probably want to add some custom features. The Macro and
command feature is especially powerful. This system allows you to
record a series of keystrokes and play them back. This is handy when
you find yourself doing something repetitive (for example, if you have
a list of filenames and you want to turn them into links). I love a good
macro system. If you create a particularly good macro, you can save it
for later reuse and even attach a keystroke to it so it becomes a
permanent part of your Komodo system.
Tools and commands: Explore the Tools panel to see some very
useful tools that are installed by default. These tools are often used to
send commands to the underlying operating system. You can use the
tool system to view the contents of a particular directory, preview the
current document in a specific browser, or pretty much anything you
can do from the command line.

Super-charging Komodo with Emmet
As you begin coding, the basic features of Komodo Edit are more than enough for
your needs. However, you'll soon become more adept at coding, you may want
some tools to improve your efficiency. My favorite add-on for Komodo is a tool
called Emmet (formerly known as Zen Coding). It's a neat tool for writing HTML and
CSS super-quickly.

Essentially, this tool allows you to enter a code snippet and Emmet expands it to

******ebook converter DEMO Watermarks*******

complete code. For example, take a look at the following code:

html:5>h1{my page}+ul>li*5>{item $}

With Emmet installed, you can simply invoke Emmet's expand abbreviation
command, and the following HTML snippet is created:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
</head>
<body>
 <h1>my page</h1>

 item 1
 item 2
 item 3
 item 4
 item 5

</body>
</html>

Of course, you might not understand the Emmet code or the HTML it generates yet,
so don't worry about installing Emmet until you're a little more fluent with HTML and
CSS. However, when you're ready, you'll find that Emmet is one of the most
powerful tools in your library. You can install Emmet (and many other interesting
add-ons) by searching for it in the Tools ⇒ Add-ons menu.

I actually use Emmet more often than the code snippets built into Komodo because
I find it faster and more flexible. With this tool and a little practice, I can build a web
page far more quickly and accurately in a text editor than I ever would with a
graphical tool like Dreamweaver.

Extensions and add-ons: Komodo uses the same general architecture
as the Firefox web browser. The developers of Komodo made it very
easy to extend, so there are hundreds of really great add-ons you can
install quite easily. After you have a feel for the stock version of
Komodo, you may want to investigate some add-ons to make it even
better. See the nearby sidebar “Super-charging Komodo with Emmet”
to find out about my favorite add-on.

Other text editors
Many other text editors are used in web development. The most important

******ebook converter DEMO Watermarks*******

thing is to find one that matches the way you work. If you don't like any of
the editors I've suggested so far, here are a few more you might want to try:

SynEdit: Much like Notepad++ and very popular with web developers
Scintilla: Primarily a programming editor, but has nice support for
HTML coding
jEdit: A popular text editor written in Java with nice features, but
some developers consider it slower than the other choices

The bottom line on editors
There is a dizzying array of editors for you to choose from. Which is the
best for you is something of a personal decision. As your coding style
develops, you'll know more about which is the best editor for you. If you're
not sure, I recommend starting with gedit (if you want simple and fast) or
Komodo Edit (if you're ready for a bit more power). Then as you spend
more time with an editor, try some of the others out to see what best fits
your needs.

Finding a Good Web Developer's
Browser

Web pages are meant to display in a browser; so, of course, you need
browsers for testing. Not all browsers are the same, though, so you need
more than one. There are a number of important browsers in use right now,
and you need to understand how they are related because they are how the
user will see your work.

A little ancient history
You've probably already noticed that browsers are inconsistent in the way
they display and handle web pages. It's useful to understand how we got
into this mess.

Mosaic/Netscape: The killer application
In the beginning, browsers were written by small teams. The most
important early browser was Mosaic, written by a team based at the

******ebook converter DEMO Watermarks*******

National Center for Supercomputing Applications (NCSA) in Champaign–
Urbana, Illinois.
Several members of that NCSA team decided to create a completely
commercial web browser. Netscape was born and it quickly became the
most prominent and important browser, with 97 percent market share at the
peak of its popularity.

Microsoft enters (and wins) the battle
Microsoft came onto the scene with Internet Explorer (IE). A bitter fight
(sometimes called the First Browser Wars) ensued between Microsoft and
Netscape. Each browser added new features regularly. Eventually, entire
sets of tags evolved, so a web page written for IE would not always work
in Netscape and vice versa. Developers had three bad choices: pick only
one browser to support, write two versions of the page, or stick with the
more limited set of features common to both browsers.
Netscape 6.0 was a technical disappointment, and Microsoft capitalized,
earning a nearly complete lock on the browser market. Microsoft's version
of standards became the only standards because there was virtually no
competition. After Microsoft won the fight, there was a period of stability
but very little innovation.

Firefox shakes up the world
A new browser rose from the ashes of Netscape (in fact, its original name
was Firebird, after the mythical birds that rise from their own ashes). The
name was later changed to Firefox, and it breathed new life into the web.
Firefox has several new features that are very appealing to web developers:

Solid compliance to standards: Firefox followed the W3C standards
almost perfectly.
Tabbed browsing: One browser window can have several panels, each
with its own page.
Easy customization: Firefox developers encouraged people to add
improvements and extensions to Firefox. This led to hundreds of
interesting add-ons.
Improved security: By this time, a number of security loopholes in IE
were publicized. Although Firefox has many of the same problems, it

******ebook converter DEMO Watermarks*******

has a much better reputation for openness and quick solutions.

WebKit messes things up again
The next shakeup happened with a rendering engine called WebKit. This
tool is the underlying engine shared by Apple's Safari and Google's
Chrome browser. These browsers changed things again by being even
more aggressive about standards-compliance and by emphasizing the
programming capabilities built into a browser. Chrome and Safari are each
extensions of the same essential technology. It gets messier. Recently
Google announced that they are developing a new rendering engine called
‘blink’ based on WebKit. It's still not clear what this will mean, but for the
time being, WebKit is a solid place to start.

HTML5 ushers in the second browser war
It is now becoming clear that the web is far more than a document
mechanism. It is really becoming more like an operating system in its own
right, and increasingly the web is about applications more than documents.
HTML5 is at the center of this innovation, and today there are again many
browser choices. It's a better situation, as developers are insisting on
compliance with HTML5 standards, and any browser that follows these
standards will be acceptable. The real question today isn't which browser
the user prefers, but does the user have a browser that's reasonably
complaint with today's standards?

Overview of the prominent browsers
The browser is the primary tool of the web. All your users view your page
with one browser or another, so you need to know a little about each of
them.

Microsoft Internet Explorer 10
Microsoft Internet Explorer (IE) remains a dominant player on the Internet.
Explorer is still extremely prevalent because it comes installed with
Microsoft Windows. Of course, it also works exclusively with Microsoft
Windows. Mac and Linux aren't supported (users don't seem too upset
about it, though).
Version 10 of IE finally has respectable (if not complete support) for the
major parts of the HTML5 standard. If you write pages according to the

******ebook converter DEMO Watermarks*******

version of HTML5 described in this book (using a reasonably universal
subset of the HTML5 standard), you can expect your page to work well in
IE10. Most features will also work in IE9, but not all.

Older versions of Internet Explorer
The earlier versions of IE are still extremely important because so many
computers out there don't have 10 installed yet. Version 6 was the
dominant player in the Internet for some time, and it refuses to die.
However, it will not play well with modern standards, so it's considered
obsolete by most developers. (There are some software packages built on
the proprietary features of IE6, so it refuses to die away completely, but
there is no need for consumers to use this version.)

Mozilla Firefox
Firefox is a major improvement on IE from a programmer's point of view,
for the following reasons:

Better code view: If you view the HTML code of a page, you see the
code in a special window. The code has syntax coloring, which makes
it easy to read. Some versions of IE display code in Notepad, which is
confusing because you think you can edit the code, but you're simply
editing a copy.
Better error-handling: You'll make mistakes. Generally, Firefox does
a better job of pointing out errors than IE, especially when you begin
using JavaScript and other advanced technologies.
Great extensions: Firefox has some wonderful extensions that make
web development a lot easier. These extensions allow you to modify
your code on the fly, automatically validate your code, and explore the
structure of your page dynamically.
Multi-platform support: IE works only on the Windows operating
system, so it isn't available to Mac or Linux users. Even if you're a
Windows-only developer, your users may use something else, so you
need to know how the other browsers see things.

WebKit/Safari
The default browser for Mac and the iPhone/iPad Operating System (iOS)
is called Safari. It's a very powerful browser built on the WebKit rendering

******ebook converter DEMO Watermarks*******

engine. Safari was designed with standards-compliance and speed in mind,
and it shows. Your Mac and iOS users will almost certainly be using
Safari, so you should know something about it. Fortunately, Chrome uses
WebKit (or a variant) as well, so if things look good on Chrome, you're
likely to be fine with your Apple users.

Google Chrome
Google sees the future of computing in browser-based applications using
AJAX technologies. (AJAX is described in Book VII.) The Chrome
browser is extremely fast, especially in the JavaScript technology that
serves as the foundation to this strategy. Chrome complies quite well with
common standards. In addition, Chrome has a number of developer toolkits
that makes it the hands-down favorite browser for many web developers
(including me). Many of the features of the developer tools make sense
only when you have a bit more experience, but here are the highlights:

Real-time page editing: You can go to any web page, right click
‘inspect this element’ and modify the text of that element in real time.
You can then see what the element looks like with new content. You
can select a part of the page to see which page corresponds to the code,
and you can select the code and see which part of the page that code
represents. Figure 3-6 illustrates this feature in action.

Figure 3-6: The ability to inspect an element is a powerful feature of Chrome.

Page Outline: A well-designed web page is created in outline form,
******ebook converter DEMO Watermarks*******

Owner
Highlight

with various elements nested inside each other. The elements view
allows you to see the web page in this format, with the ability to
collapse and expand elements to see your page's structure clearly.
Realtime CSS Edit: As you discover how to apply CSS styles in
Books II and III, you'll want to be able to see how various CSS rules
change your page. In the Inspect Element view, you can highlight a
part of your page and change the CSS while seeing how the change
affects your page in real time.
Network Tab: This feature allows you to examine how long each
piece of your page takes to load. It can be helpful for troubleshooting a
slow-loading page.
Sources View: This allows you to see the complete code of your page.
It's especially useful when you get to JavaScript programming (in Book
IV) because it includes a powerful debugging suite.
Console: The console view is a little command-line tool integrated
directly into your browser. This can be very helpful because it often
shows errors that are otherwise hidden from view. The console is most
useful when using JavaScript, so it is described in more detail in Book
IV.

Other notable browsers
Firefox and IE are the big players in the browser world, but they certainly
aren't the only browsers you will encounter.

Opera
The Opera web browser, one of the earliest standards-compliant browsers,
is a technically solid browser that has never been widely used. If you
design your pages with strict compliance in mind, users with Opera have
no problems accessing them. Opera has very good HTML5 compliance.
Many gaming consoles and mobile devices have browsers based on Opera,
so it's worth looking into.

WebKit/Safari
Apple includes a web browser in all recent versions of Mac OS. The
current incarnation — Safari — is an excellent standards-compliant
browser. Safari was originally designed only for the Mac, but a Windows

******ebook converter DEMO Watermarks*******

version is also available. The WebKit framework, the foundation for Safari,
is used in a number of other online applications, mainly on the Mac. A
modified version of Safari is the foundation of the browsers on the iPhone
and iPad.

Text-only browsers
Some browsers that don't display any graphics at all (such as Lynx) are
intended for the old command-line interfaces. This may seem completely
irrelevant today, but these browsers are incredibly fast because they don't
display graphics. Auditory browsers read the contents of web pages. They
were originally intended for people with visual disabilities, but people
without any disabilities often use them as well. Fire Vox is a variant of
Firefox that reads web pages aloud.

 Worrying about text-only readers may seem unnecessary because
people with visual disabilities are a relatively small part of the
population, and you may not think they're part of your target audience.
You probably should think about these users anyway because it isn't
difficult to help them (and if you're developing for certain
organizations, support for folks with disabilities is required). There's
another reason, too. The search engines (Google is the main game in
town) read your page just like a text-only browser. Therefore, if an
element is invisible to a text-based browser, it won't appear on the
search engine.

The bottom line in browsers
Really, you need to have access to a couple browsers, but you can't
possibly have them all. I tend to do my initial development testing with
Chrome. I look over my page in IE version 10 and I try to keep an older
computer around with IE7 or 8 just to see what will happen.
I also check the built-in browser on an Android phone and iOS tablet to see
how the pages look there. Generally, if you follow the subset of HTML5
outlined in this book, you can be satisfied that it works on most browsers.
However, there's still no guarantee. If you follow the standards, your page
displays on any browser, but you might not get the exact layout you expect.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 4
Managing Information with Lists

and Tables
In This Chapter

 Understanding basic lists
 Creating unordered, ordered, and nested lists
 Building definition lists
 Building basic tables
 Using rowspan and colspan attributes

You'll often need to present large amounts of organized information, and
HTML has some wonderful tools to manage this task. HTML has three
kinds of lists and a powerful table structure for organizing the content of
your page. Figure out how these tools work, and you can manage complex
information with ease.

Making a List and Checking It Twice
HTML supports three types of lists. Unordered lists generally contain
bullet points. They're used when the order of elements in the list isn't
important. Ordered lists usually have some kind of numeric counter
preceding each list item. Definition lists contain terms and their definitions.

Creating an unordered list
All the list types in HTML are closely related. The simplest and most
common kind of list is an unordered list.

Looking at an unordered list
Look at the simple page shown in Figure 4-1. In addition to a couple of
headers, it has a list of information.

******ebook converter DEMO Watermarks*******

Figure 4-1: An unordered list of web browsers.

This list of browsers has some interesting visual characteristics:

The items are indented. There's some extra space between the left
margin and the beginning of each list item.
The list elements have bullets. That little dot in front of each item is a
bullet. Bullets are commonly used in unordered lists like this one.
Each item begins a new line. When a list item is displayed, it's shown
on a new line.

These characteristics help you see that you have a list, but they're just
default behaviors. Defining something as a list doesn't force it to look a
particular way; the defaults just help you see that these items are indeed
part of a list.

 Remember the core idea of HTML here. You aren't really
describing how things look, but what they mean. You can change the
appearance later when you figure out CSS, so don't get too tied up in
the particular appearance of things. For now, just recognize that HTML
can build lists, and make sure you know how to use the various types.

******ebook converter DEMO Watermarks*******

Building an unordered list
Lists are made with two kinds of tags. One tag surrounds the entire list and
indicates the general type of list. This first example demonstrates an
unordered list, which is surrounded by the pair.

Note: Indenting all the code inside the set is common. The
unordered list can go in the main body.
Inside the set is a number of list items. Each element of the
list is stored between a (list item) and a tag. Normally, each
 pair goes on its own line of the source code, although you
can make a list item as long as you want.

 Look to Book II, Chapter 4 for information on how to change the
bullet to all kinds of other images, including circles, squares, and even
custom images.

The code for the unordered list is pretty straightforward:
<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
<title>basicUL.html</title>
</head>
<body>
 <h1>Basic Lists</h1>
 <h2>Common Web Browsers</h2>

 Firefox
 Chrome
 Internet Explorer
 Opera
 Safari

</body>
</html>

Creating ordered lists
Ordered lists are almost exactly like unordered lists. Ordered lists
traditionally have numbers rather than bullets (although you can change
this through CSS if you want; see Book II, Chapter 4).

******ebook converter DEMO Watermarks*******

Viewing an ordered list
Figure 4-2 demonstrates a page with a basic ordered list — basicOL.html.

Figure 4-2: A simple ordered list.

Figure 4-2 shows a list where the items are numbered. When your data is a
list of steps or information with some type of numerical values, an ordered
list is a good choice.

Building the ordered list
The code for basicOL.html is remarkably similar to the previous unordered
list:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>basicOL.html</title>
</head>
<body>
 <h1>Basic Ordered List</h1>
 <h2>Top ten dog names in the USA</h2>

 Max
 Jake
 Buddy
 Maggie
 Bear
 Molly
 Bailey

******ebook converter DEMO Watermarks*******

 Shadow
 Sam
 Lady

<p>
 data from http://www.bowwow.com.au
 </p>
</body>
</html>

The only change is the list tag itself. Rather than the tag, the ordered
list uses the indicator. The list items are the same pairs
used in the unordered list.
You don't indicate the item number anywhere; it generates automatically
based on the position of each item within the list. Therefore, you can
change the order of the items, and the numbers are still correct.

 This is where it's great that HTML is about meaning, not layout.
If you specified the actual numbers, it'd be a mess to move things
around. All that really matters is that the element is inside an ordered
list.

Making nested lists
Sometimes, you'll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want.
Figure 4-3 shows a more complex list describing popular cat names in the
U.S. and Australia.

******ebook converter DEMO Watermarks*******

Figure 4-3: An ordered list inside an unordered list!

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3
heading and another (ordered) list inside it. You can nest various elements
inside a list, but you have to do it carefully if you want the page to validate.
In this example, there's an unordered list with only two elements. Each of
these elements contains an <h3> heading and an ordered list. The page
handles all this data in a relatively clean way and validates correctly.

Examining the nested list example
The entire code for nestedList.html is reproduced here:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>nestedList.html</title>
</head>
<body>
 <h1>Nested Lists</h1>

<h2>Popular Cat Names</h2>

 <h3>USA</h3>

 Tigger

******ebook converter DEMO Watermarks*******

 Tiger
 Max
 Smokey
 Sam

 <h3>Australia</h3>

 Oscar
 Max
 Tiger
 Sam
 Misty

</body>
</html>

Here are a few things you might notice in this code listing:

There's a large set surrounding the entire main list.
The main list has only two list items.
Each of these items represents a country.
Each country has an <h3> element, describing the country name inside
the .
Each country also has an set with a list of names.
The indentation really helps you see how things are connected.

Indenting your code
You might have noticed that I indent all the HTML code in this book. The
browsers ignore all indentation, but it's still an important coding habit.
There are many opinions about how code should be formatted, but the
standard format I use in this book will serve you well until you develop
your own style.
Generally, I use the following rules to indent HTML code:

Indent each nested element. Because the <head> tag is inside the

******ebook converter DEMO Watermarks*******

<html> element, I indent to indicate this. Likewise, the
elements are always indented inside or pairs.
Line up your elements. If an element takes up more than one line, line
up the ending tag with the beginning tag. This way, you know what
ends what.
Use spaces, not tabs. The tab character often causes problems in
source code. Different editors format tabs differently, and a mixture of
tabs and spaces can make your carefully formatted page look awful
when you view it in another editor.

Most editors have the ability to interpret the tab key as spaces. It's a
great idea to find this feature on your editor and turn it on, so any time
you hit the tab key, it's interpreted as spaces. In Komodo Edit, you do
this in Edit ⇒ Preferences ⇒ Editor ⇒ Indentation.

Use two spaces. Most coders use two or four spaces per indentation
level. HTML elements can be nested pretty deeply. Going seven or
eight layers deep is common. If you use tabs or too many spaces, you'll
have so much white space that you can't see the code.

End at the left margin. If you finish the page and you're not back at
the left margin, you've forgotten to end something. Proper indentation
makes seeing your page organization easy. Each element should line up
with its closing tag.

Building a nested list
When you look over the code for the nested list, it can look intimidating,
but it isn't really that hard. The secret is to build the list outside in:

1. Create the outer list first. Build the primary list (whether it's ordered
or unordered). In my example, I began with just the unordered list with
the two countries in it.

2. Add list items to the outer list. If you want text or headlines in the
larger list (as I did), you can put them here. If you're putting nothing
but a list inside your primary list, you may want to put some
placeholder tags in there just so you can be sure everything's

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Typewritten Text

Owner
Typewritten Text
I am using three spaces for tab.

Owner
Highlight

working.
3. Validate before adding the next list level. Nested lists can confuse

the validator (and you). Validate your code with the outer list to make
sure there are no problems before you add inner lists.

4. Add the first inner list. After you know the basic structure is okay,
add the first interior list. For my example, this was the ordered list of
cat names in the U.S.

5. Repeat until finished. Keep adding lists until your page looks right.
6. Validate frequently. It's much better to validate as you go than to wait

until everything's finished. Catch your mistakes early so you don't
replicate them.

Building the definition list
One more type of list — the definition list — is very useful, even if it's
used infrequently. The definition list was originally designed to format
dictionary-style definitions, but it's really useful any time you have name
and value pairs. Figure 4-4 shows a sample definition list in action.

Figure 4-4: A basic definition list.

Definition lists don't use bullets or numbers. Instead, they have two
elements. Definition terms are usually words or short phrases. In Figure 4-

******ebook converter DEMO Watermarks*******

4, the browser names are defined as definition terms. Definition
descriptions are the extended text blocks that contain the actual definition.
The standard layout of definition lists indents each definition description.
Of course, you can change the layout to what you want after you
understand the CSS in Books II and III.
You can use definition lists any time you want a list marked by key terms,
rather than bullets or numbers. The definition list can also be useful in
other situations, such as forms, figures with captions, and so on.
Here's the code for basicDL.html:

<!DOCTYPE HTML>
<html lang="en-US">
 <head>
 <meta charset="UTF-8">
 <title>BasicDL.html</title>
 </head>
 <body>
 <h1>Basic Definition List</h1>
 <h2>Common Web Browsers</h2>
 <dl>
 <dt>Mosaic</dt>
 <dd>
 The mother of all modern browsers. The first widely used
 visual browser.
 </dd>

<dt>Netscape</dt>
 <dd>
 The commercial successor to Mosaic. Widely popular, but
 eventually eclipsed by Internet Explorer
 </dd>

<dt>IE</dt>
 <dd>
 Microsoft's entry into the browser market, and a
dominant
 player.
 </dd>

<dt>Firefox</dt>
 <dd>
 An open-source browser that has shaken up the world.
 </dd>
 </dl>

******ebook converter DEMO Watermarks*******

 </body>
</html>

As you can see, the definition list uses three tag pairs:

<dl></dl> defines the entire list.
<dt></dt> defines each definition term.
<dd></dd> defines the definition data.

Definition lists aren't used often, but they can be extremely useful. Any
time you have a list that will be a combination of terms and values, a
definition list is a good choice.

Building Tables
Sometimes, you'll encounter data that fits best in a tabular format. HTML
supports several table tags for this kind of work. Figure 4-5 illustrates a
very basic table.
Sometimes, the best way to show data in a meaningful way is to organize it
in a table. HTML defines a table with the (cleverly named) <table> tag.
The table contains a number of table rows (defined with the <tr> tag).
Each table row can consist of a number of table data (<td>) or table
header (<th>) tags.

******ebook converter DEMO Watermarks*******

Figure 4-5: Tables are useful for certain kinds of data representation.

Compare the output in Figure 4-5 with the code for basicTable.html that
creates it:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>basicTable.html</title>
</head>
<body>
 <h1>A Basic Table</h1>
 <h2>HTML Super Heroes</h2>
 <table border = "1">
 <tr>
 <th>Hero</th>
 <th>Power</th>
 <th>Nemesis</th>
 </tr>

<tr>
 <td>The HTMLator</td>
 <td>Standards compliance</td>
 <td>Sloppy Code Boy</td>
 </tr>

<tr>
 <td>Captain CSS</td>
 <td>Super-layout</td>
 <td>Lord Deprecated</td>
 </tr>

<tr>
 <td>Browser Woman</td>
 <td>Mega-Compatibility</td>
 <td>Ugly Code Monster</td>
 </tr>

</table>
</body>
</html>

Defining the table
The HTML table is defined with the <table></table> pair. It makes a

******ebook converter DEMO Watermarks*******

lot of sense to indent and space your code carefully so you can see the
structure of the table in the code. Just by glancing at the code, you can
guess that the table consists of three rows and each row consists of three
elements.
In a word processor, you typically create a blank table by defining the
number of rows and columns, and then fill it in. In HTML, you define the
table row by row, and the elements in each row determine the number of
columns. It's up to you to make sure each row has the same number of
elements.
By default (in most browsers, anyway), tables don't show their borders. If
you want to see basic table borders, you can turn on the table's border
attribute. (An attribute is a special modifier you can attach to some tags.)

<table border = "1">

This tag creates a table and specifies that it will have a border of size 1. If
you leave out the border = “1” business, some browsers display a
border and some don't. You can set the border value to 0 or to a larger
number. The larger number makes a bigger border, as shown in Figure 4-6.

Figure 4-6: I set the border attribute to 10.

******ebook converter DEMO Watermarks*******

 Although this method of making table borders is perfectly fine, I
show a much more flexible and powerful technique in Book II, Chapter
4.

 Setting a table border is a good idea because you can't count on
browsers to have the same default. Additionally, the border value is
always in quotes. When you read about CSS in Book II (are you getting
tired of hearing that yet?), you discover how to add more complex and
interesting borders than this simple attribute allows.

Adding your first row
After you define a table, you need to add some rows. Each row is indicated
by a <tr></tr> pair.
Inside the <tr></tr> set, you need some table data. The first row often
consists of table headers. These special cells are formatted differently to
indicate that they're labels, rather than data.

 Table headers have some default formatting to help you
remember they're headers, but you can change the way they look. You
can change the table header's appearance in all kinds of great ways in
Books II and III. Define the table header so when you discover
formatting and decide to make all your table headers chartreuse, you'll
know where in the HTML code all the table headers are.

Indent your headers inside the <tr> set. If your table contains three
columns, your first row might begin like this:

<tr>
 <th></th>
 <th></th>
 <th></th>
</tr>

Place the text you want shown in the table headers between the <th> and
******ebook converter DEMO Watermarks*******

</th> elements. The contents appear in the order they're defined.

 Headings don't have to be on the top row. If you want headings
on the left, just put a <th></th> pair as the first element of each row.
You can have headings at both the top and the left, if you want. In fact,
you can have headings anywhere, but it usually makes sense to put
headings only at the top or left.

Making your data rows
The next step is to create another row. The data rows are just like the
heading row, except they use <td></td> pairs, rather than <th></th>
pairs, to contain the data elements. Typically, a three-column table has
blank rows that look like this:

<tr>
 <td></td>
 <td></td>
 <td></td>
</tr>

Place the data elements inside the <td></td> segments and you're ready
to go.

Building tables in the text editor
Some people think that tables are a good reason to use WYSIWYG (what
you see is what you get) editors because they think it's hard to create tables
in text mode. You have to plan a little, but it's really quite quick and easy to
build an HTML table without graphical tools if you follow this plan:

1. Plan ahead. Know how many rows and columns will be in the table.
Sketching it on paper first might be helpful. Changing the number of
rows later is easy, but changing the number of columns can be a real
pain after some of the code has been written.

2. Create the headings. If you're going to start with a standard headings-
on-top table, begin by creating the heading row. Save, check, and
validate. You don't want mistakes to multiply when you add more
complexity. This heading row tells how many columns you'll need.

3. Build a sample empty row. Make a sample row with the correct
******ebook converter DEMO Watermarks*******

number of td elements with one <td></td> pair per line. Build one
td set and use copy and paste to copy this data cell as many times as
you need. Make sure the number of <td> pairs equals the number of
<th> sets in the heading row.

4. Copy and paste the empty row to make as many rows as you need.
5. Save, view, and validate. Be sure everything looks right and validates

properly before you put a lot of effort into adding data.
6. Populate the table with the data you need. Go row by row, adding

the data between the <td></td> pairs.
7. Test and validate again to make sure you didn't accidentally break

something.

Spanning rows and columns
Sometimes, you need a little more flexibility in your table design. Figure 4-
7 shows a page from an evil overlord's daily planner.

Figure 4-7: Some of these activities take up more than one cell.

Being an evil overlord is clearly a complex business. From a code
standpoint, the items that take up more than one cell are the most
interesting. Designing traps takes two mornings, and improving the hideout
takes three. All Friday afternoon and evening are spent on world

******ebook converter DEMO Watermarks*******

domination. Take a look at the code, and you'll see how it works:
<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>tableSpan.html</title>
</head>
<body>
 <h1>Using colspan and rowspan</h1>
 <table border = "1">
 <caption><p>My Schedule</p></caption>
 <tr>
 <th></th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday</th>
 </tr>

<tr>
 <th>Breakfast</th>
 <td>In lair</td>
 <td>with cronies</td>
 <td>In lair</td>
 <td>in lair</td>
 <td>in lair</td>
 </tr>

<tr>
 <th>Morning</th>
 <td colspan = "2">Design traps</td>
 <td colspan = "3">Improve Hideout</td>
 </tr>

<tr>
 <th>Afternoon</th>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td>train minions</td>
 <td rowspan = "2">world domination</td>
 </tr>

<tr>
 <th>Evening</th>

******ebook converter DEMO Watermarks*******

 <td>manaical laughter</td>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 <td>manaical laughter</td>
 </tr>

</table>
</body>
</html>

The secret to making cells larger than the default is two special attributes:
rowspan and colspan.

Spanning multiple columns
The morning activities tend to happen over several days. Designing traps
will take both Monday and Tuesday morning, and improving the hideout
will occupy the remaining three mornings. Take another look at the
Morning row; here's how this is done:

<tr>
 <th>Morning</th>
 <td colspan = "2">Design traps</td>
 <td colspan = "3">Improve Hideout</td>
 </tr>

The Design Traps cell spans over two normal columns. The colspan
attribute tells how many columns this cell will take. The Improve Hideout
cell has a colspan of 3.
The Morning row still takes up six columns. The <th> is one column
wide, like normal, but the Design Traps cell spans two columns and the
Improve Hideout cell takes three, which totals six columns wide. If you
increase the width of a cell, you need to eliminate some other cells in the
row to compensate.

Spanning multiple rows
A related property — rowspan — allows a cell to take up more than one
row of a table. Look back at the Friday column in Figure 4-7, and you'll see
the World Domination cell takes up two time slots. (If world domination
was easy, everybody would do it.) Here's the relevant code:

<tr>
 <th>Afternoon</th>
 <td>train minions</td>
 <td>train minions</td>

******ebook converter DEMO Watermarks*******

 <td>train minions</td>
 <td>train minions</td>
 <td rowspan = "2">world domination</td>
 </tr>

<tr>
 <th>Evening</th>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 <td>maniacal laughter</td>
 </tr>

The Evening row has only five entries because the World Domination cell
extends into the space that would normally be occupied by a <td> pair.

 If you want to use rowspan and colspan, don't just hammer
away at the page in your editor. Sketch out what you want to
accomplish first. I'm pretty good at this stuff, and I still needed a sketch
before I was able to create the tableSpan.html code.

Avoiding the table-based layout trap
Tables are pretty great. They're a terrific way to present certain kinds of
data. When you add the colspan and rowspan concepts, you can use
tables to create some pretty interesting layouts. In fact, because old-school
HTML didn't really have any sort of layout technology, a lot of developers
came up with some pretty amazing layouts based on tables. You still see a
lot of web pages today designed with tables as the primary layout
mechanism.
Using tables for layout causes some problems though, such as

Tables aren't meant for layout. Tables are designed for data
presentation, not layout. To make tables work for layout, you have to
do a lot of sneaky hacks, such as tables nested inside other tables or
invisible images for spacing.
The code becomes complicated fast. Tables involve a lot of HTML
markup. If the code involves tables nested inside each other, it's very

******ebook converter DEMO Watermarks*******

Owner
Highlight

difficult to remember which <td> element is related to which row of
which table. Table-based layouts are very difficult to modify by hand.
Formatting is done cell by cell. A web page could be composed of
hundreds of table cells. Making a change in the font or color often
involves making changes in hundreds of cells throughout the page.
This makes your page less flexible and harder to update.
Presentation is tied tightly to data. A table-based layout tightly
intertwines the data and its presentation. This runs counter to a primary
goal of web design — separation of data from its presentation.
Table-based layouts are hard to change. After you create a layout
based on tables, it's very difficult to make modifications because all the
table cells have a potential effect on other cells.
Table-based layouts cause problems for screen-readers. People with
visual disabilities use special software to read web pages. These
screen-readers are well adapted to read tables as they were intended (to
manage tabular data), but the screen-readers have no way of knowing
when the table is being used as a layout technique rather than a data
presentation tool. This makes table-based layouts less compliant to
accessibility standards.
Table-based layouts do not adapt well. Modern users expect to run
pages on cell phones and tablets as well as desktop machines. Table-
based designs do not easily scale to these smaller form-factors.

Resist the temptation to use tables for layout. Use tables to do what they're
designed for: data presentation. Book III is entirely about how to use CSS
to generate any kind of visual layout you might want. The CSS-based
approaches are easier, more dependable, and much more flexible.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Chapter 5
Making Connections with Links
In This Chapter

 Understanding hyperlinks
 Building the anchor tag
 Recognizing absolute and relative links
 Building internal links
 Creating lists of links

The basic concept of the hyperlink is common today, but it was a major
breakthrough back in the day. The idea is still pretty phenomenal, if you
think about it: When you click a certain piece of text (or a designated
image, for that matter), your browser is instantly transported somewhere
else. The new destination might be on the same computer as the initial
page, or it could be literally anywhere in the world.
Any page is theoretically a threshold to any other page, and all information
has the ability to be linked. This is still a profound idea. In this chapter, you
discover how to add links to your pages.

Making Your Text Hyper
The hyperlink is truly a wonderful thing. Believe it or not, there was a time
when you had to manually type in the address of the web page you wanted
to go to. Not so anymore. Figure 5-1 illustrates a page that describes some
of my favorite websites.
In Figure 5-1, the underlined words are hyperlinks. Clicking a hyperlink
takes you to the indicated website. Although this is undoubtedly familiar to
you as a web user, a few details are necessary to make this mechanism
work:

Something must be linkable. Some text or other element must provide

******ebook converter DEMO Watermarks*******

a trigger for the linking behavior.
Things that are links should look like links. This is actually easy to
do when you write plain HTML because all links have a standard (if
ugly) appearance. Links are usually underlined blue text. When you
can create color schemes, you may no longer want links to look like the
default appearance, but they should still be recognizable as links.

Figure 5-1: You can click the links to visit the other sites.

The browser needs to know where to go. When the user clicks the
link, the browser is sent to some address somewhere on the Internet.
Sometimes that address is visible on the page, but it doesn't need to be.
It should be possible to integrate links into text. In this example,
each link is part of a sentence. It should be possible to make some
things act like links without necessarily standing on their own (like
heading tags do).
The link's appearance sometimes changes. Links sometimes begin as
blue underlined text, but after a link has been visited, the link is shown
in purple, instead. After you know CSS, you can change this behavior.

 Of course, if your web page mentions some other website, you
should provide a link to that other website.

******ebook converter DEMO Watermarks*******

Introducing the anchor tag
The key to hypertext is an oddly named tag called the anchor tag. This tag
is encased in an <a> set of tags and contains all the information
needed to manage links between pages.
The code for the basicLinks.html page is shown here:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>basicLinks.html</title>
 </head>

<body>
 <h1>Some of my favorite sites</h1>
 <h2>Wikipedia</h2>
 <p>
 One of my favorite websites is called
 wikipedia.
 This terrific site allows ordinary users to enter
 encyclopedia definitions. Over time, the entries
 can be as reliable as a commercial encyclopedia,
 and a lot more complete.
 </p>

<h2>Dummies</h2>
 <p>
 You can find out a lot about upcoming and current
 Dummies books at
 www.dummies.com. You might even find this
 book mentioned there.
 </p>

<h2>PopURLS</h2>
 <p>
 If you want
 to know what's happening on the Internet today,
 check out
 popurls.com. This site aggregates a bunch of
 social networking sites.
 </p>
 </body>
</html>

As you can see, the anchor tag is embedded into paragraphs. The text

******ebook converter DEMO Watermarks*******

generally flows around an anchor, and you can see the anchor code is
embedded inside the paragraphs.

Comparing block-level and inline elements
All the tags described so far in this book have been block-level tags. Block-
level tags typically begin and end with carriage returns. For example, three
<h1> tags occupy three lines. Each <p></p> set has implied space above
and below it. Most HTML tags are block-level.
Some tags are meant to be embedded inside block-level tags and don't
interrupt the flow of the text. The anchor tag is one such tag. Anchors
never stand on their own in the HTML body. This type of tag is an inline
tag. They're meant to be embedded inside block-level tags, such as list
items, paragraphs, and headings.

Analyzing an anchor
The first link shows all the main parts of an anchor in a pretty
straightforward way:

wikipedia.

The anchor tag itself: The anchor tag is simply the <a> pair.
You don't type the entire word anchor, just the a.
The hypertext reference (href) attribute: Almost all anchors
contain this attribute. It's very rare to write <a without href. The
href attribute indicates a web address will follow.
A web address in quotes: The address that the browser will follow is
encased in quotes. See the next section in this chapter for more
information on web addresses. In this example,
http://www.wikipedia.org is the address.
The text that appears as a link: The user will typically expect to click
specially formatted text. Any text that appears between the <a href>
part and the part is visible on the page and formatted as a link. In
this example, the word wikipedia is the linked text.
The marker: This marker indicates that the text link is finished.

******ebook converter DEMO Watermarks*******

http://www.wikipedia.org
Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text
C:\Program Files (x86)\Ampps\www\!HTML_Prac\038AInline_Block_Elem.html is my extract from W3C.

Introducing URLs
The special link addresses are a very important part of the web. You
probably already type web addresses into the address bar of your browser
(http://www.google.com), but you may not be completely aware of
how they work. Web addresses are technically URLs (Uniform Resource
Locators), and they have a very specific format.

 Sometimes, you'll see the term URI (Uniform Resource
Identifier) instead of URL. URI is technically a more correct name for
web addresses, but the term URL has caught on. The two terms are
close enough to be interchangeable.

A URL usually contains the following parts:

Protocol: A web protocol is a standardized agreement on how
communication occurs. The web primarily uses HTTP (hypertext
transfer protocol), but occasionally, you encounter others. Most
addresses begin with http:// because this is the standard on the
web. Protocols usually end with a colon and two slashes (://).
Host name: It's traditional to name your primary web server www.
There's no requirement for this, but it's common enough that users
expect to type www right after the http:// stuff. Regardless, the text
right after http:// (and up to the first period) is the name of the
actual computer you're linking to.
Domain name: The last two or three characters indicate a particular
type of web server. These letters can indicate useful information about
the type of organization that houses the page. Three-letter domains
usually indicate the type of organization, and two-letter domains
indicate a country. Sometimes, you'll even see a combination of the
two.
Subdomain: Everything between the host name (usually www) and the
domain name (often .com) is the subdomain. This is used so that large
organizations can have multiple servers on the same domain. For
example, my department web page is

******ebook converter DEMO Watermarks*******

http://www.google.com

http://www.cs.iupui.edu. www is the name of the primary
server, and this is the computer science department at IUPUI (Indiana
University–Purdue University Indianapolis), which is an educational
organization.
Page name: Sometimes, an address specifies a particular document on
the web. This page name follows the address and usually ends with
.html. Sometimes, the page name includes subdirectories and
username information, as well. For example, my web development
course is in the N241 directory of my (aharris) space at IUPUI, so the
page's full address is
http://www.cs.iupui.edu/~aharris/n241/index.html

Username: Some web servers are set up with multiple users.
Sometimes, an address will indicate a specific user's account with a
tilde (~) character. My address has ~aharris in it to indicate the
page is found in my (aharris) account on the machine.

 The page name is sometimes optional. Many servers have a
special name set up as the default page, which appears if no other name
is specified. This name is usually index.html but sometimes home.htm.
On my server, index.html is the default name, so I usually just point to
www.cs.iupui.edu/~aharris/n241, and the index page
appears.

DomainExplanation

.org Non-profit institution

.com Commercial enterprise

.edu Educational institution

.gov Governing body

.ca Canada

.uk United Kingdom

.tv Tuvali

Making Lists of Links
******ebook converter DEMO Watermarks*******

http://www.cs.iupui.edu
http://www.cs.iupui.edu/~aharris/n241/index.html
http://www.cs.iupui.edu/~aharris/n241

Many web pages turn out to be lists of links. Because lists and links go so
well together, it's good to look at an example. Figure 5-2 illustrates a list of
links to books written by a certain (cough) devilishly handsome author.
This example has no new code to figure out, but the page shows some
interesting components:

The list: An ordinary unordered list.
Links: Each list item contains a link. The link has a reference (which
you can't see immediately) and linkable text (which is marked like an
ordinary link).
Descriptive text: After each link is some ordinary text that describes
the link. Writing some text to accompany the actual link is very
common.

Figure 5-2: Putting links in a list is common.

This code shows the way the page is organized:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>listLinks.html</title>
 </head>

******ebook converter DEMO Watermarks*******

<body>
 <h1>Some nice programming books</h1>

 HTML / CSS / JavaScript ALL in One for Dummies
 A complete resource to web development

 JavaScript / AJAX for Dummies
 Using JavaScript, AJAX, and jQuery

 Game Programming - the L Line
 Game development in Python

 HTML5 Game Development for Dummies
 Building web and mobile games in HTML5

 </body>
</html>

The indentation is interesting here. Each list item contains an anchor and
some descriptive text. To keep the code organized, web developers tend to
place the anchor inside the list item. The address sometimes goes on a new
line if it's long, with the anchor text on a new line and the description on
succeeding lines. I normally put the tag at the end of the last line, so
the beginning tags look like the bullets of an unordered list. This
makes it easier to find your place when editing a list later.

Working with Absolute and Relative
References

There's more than one kind of address. So far, you've seen only absolute
references, used for links to outside pages. Another kind of reference — a
relative reference — links multiple pages inside your own website.

Understanding absolute references
The type of link used in basicLinks.html is an absolute reference. Absolute
references always begin with the protocol name (usually http://). An
absolute reference is the complete address to a web page, just as you'd use
in the browser's address bar. Absolute references are used to refer to a site
somewhere else on the Internet. Even if your website moves (say, from

******ebook converter DEMO Watermarks*******

your desktop machine to a web server somewhere on the Internet), all the
absolute references will work fine because they don't rely on the current
page's position for any information.

Introducing relative references
Relative references are used when your website includes more than one
page. You might choose to have several pages and a link mechanism for
moving among them. Figure 5-3 shows a page with several links on it.

Figure 5-3: These little piggies sure get around . . .

The page isn't so interesting on its own, but it isn't meant to stand alone.
When you click one of the links, you go to a brand-new page. Figure 5-4
shows what happens when you click the market link.

******ebook converter DEMO Watermarks*******

Figure 5-4: The market page lets you move back.

The market page is pretty simple, but it also contains a link back to the
initial page. Most websites aren't single pages at all, but an interconnected
web of pages. The relative reference is very useful when you have a set of
pages with interlacing links.
The code for pigs.html shows how relative references work:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>pigs.html</title>
 </head>

<body>
 <h1>Destinations of Porcine Mammals</h1>

 This little pig went to
 market
 This little pig stayed
 home.
 This little pig had
 roast beef
 This little pig had
 none.
 This little pig went
 'wee wee wee'

******ebook converter DEMO Watermarks*******

 all the way home.

 </body>
</html>

Most of the code is completely familiar. The only thing surprising is what's
not there. Take a closer look at one of the links:

home.

There's no protocol (the http:// part) and no address at all, just a
filename. This is a relative reference. Relative references work by
assuming the address of the current page. When the user clicks
market.html, the browser sees no protocol, so it assumes that
market.html is in the same directory on the same server as
pigs.html.

Relative references work like directions. For example, if you're in my lab
and ask where the water fountain is, I'd say, “Go out into the hallway, turn
left, and turn left again at the end of the next hallway.” Those directions get
you to the water fountain if you start in the right place. If you're
somewhere else and you follow the same directions, you don't really know
where you'll end up.
Relative references work well when you have a bunch of interconnected
web pages. If you create a lot of pages about the same topic and put them
in the same directory, you can use relative references between the pages. If
you decide to move your pages to another server, all the links still work
correctly.

 In Book VIII, you discover how to set up a permanent web
server. It's often most convenient to create and modify your pages on
the local machine and then ship them to the web server for the world to
see. If you use relative references, it's easy to move a group of pages
together and know the links will still work.

If you're referring to a page on somebody else's site, you have to use an
absolute reference. If you're linking to another page on your site, you
typically use a relative reference.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 6
Adding Images, Sound, and

Video
In This Chapter

 Understanding the main uses of images
 Choosing an image format
 Creating inline images
 Using IrfanView and other image software
 Changing image sizes
 Adding audio clips
 Working with video

You have the basics of text, but pages with nothing but text are… well, a
little boring. Pictures do a lot for a web page, and they're pretty easy to
work with. Today's web is really a multimedia environment, and HTML5
finally offers great support for audio and video. Find out how to add all
these great features to your web pages.

Adding Images to Your Pages
Every time you explore the web, you're bound to run into tons of pictures
on just about every page you visit. Typically, images are used in four ways
on web pages:

External link: The page has text with a link embedded in it. When the
user clicks the link, the image replaces the page in the web browser. To
make an externally linked image, just make an ordinary link (as I
describe in Chapter 5 of this minibook), but point toward an image file,
rather than an HTML (HyperText Markup Language) file.
Embedded images: The image is embedded into the page. The text of

******ebook converter DEMO Watermarks*******

the page usually flows around the image. This is the most common
type of image used on the web.
Background images: An image can be used as a background for the
entire page or for a specific part of the page. Images usually require
some special manipulation to make them suitable for background use.
Custom bullets: With CSS, you can assign a small image to be a bullet
for an ordered or unordered list. This allows you to make any kind of
customized list markers you can draw.

The techniques you read about in this chapter apply to all type of images,
but a couple of specific applications (such as backgrounds and bullets) use
CSS. For details on using images in CSS, see Book II, Chapter 4.

Linking to an image
The easiest way to incorporate images is to link to them. Figure 6-1 shows
the externalImage.html page.
The page's code isn't much more than a simple link:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>externalImage.html</title>
 </head>
 <body>
 <h1>Linking to an External Image</h1>
 <p>

 Susan B. Constant

 </p>
 </body>
</html>

The href points to an image file, not an HTML page. You can point to
any type of file you want in an anchor tag. If the browser knows the file
type (for example, HTML and standard image formats), the browser
displays the file. If the browser doesn't know the file format, the user's
computer tries to display the file using whatever program it normally uses
to open that type of file.

******ebook converter DEMO Watermarks*******

Figure 6-1: This page has a link to an image.

 See Chapter 5 of this minibook for a discussion of anchor tags if
you need a refresher.

This works fine for most images because the image is displayed directly in
the browser.

 You can use this anchor trick with any kind of file, but the results
can be very unpredictable. If you use the link trick to point to some odd
file format, there's no guarantee the user has the appropriate software to
view it. Generally, save this trick for very common formats, like GIF
and JPG. (If these formats are unfamiliar to you, they are described
later in this chapter.)

Most browsers automatically resize the image to fit the browser size. This
means a large image may appear to be smaller than it really is, but the user
still has to wait for the entire image to download.
Because this is a relative reference, the indicated image must be in the
same directory as the HTML file. When the user clicks the link, the page is

******ebook converter DEMO Watermarks*******

replaced by the image, as shown in Figure 6-2.

Figure 6-2: The image appears in place of the page.

External links are easy to create, but they have some problems:

They don't preview the image. The user has only the text description
to figure out what the picture might be.
They interrupt the flow. If the page contains a series of images, the
user has to keep leaving the page to view images.
The user must back up to return to the main page. The image looks
like a web page, but it isn’t. No link or other explanatory text in the
image indicates how to get back to the web page. Most users know to
click the browser’s Back button, but don’t assume all users know what
to do.

Adding inline images using the tag
The alternative to providing links to images is to embed your images into
the page. Figure 6-3 displays an example of this technique.

******ebook converter DEMO Watermarks*******

Figure 6-3: The ship image is embedded into the page.

The code shows how this image was included into the page:
<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>embeddedImage.html</title>
 </head>
 <body>
 <h1>The Susan B. Constant</h1>
 <p>
 <img src = "shipStandard.jpg"
 height = "480"
 width = "640"
 alt = "Susan B. Constant" />
 </p>
 <p>
 The Susan B. Constant was flagship of the
 fleet of three small ships that brought settlers to
Jamestown, the first
 successful English Colony in the new world. This is a
replica housed
 near Jamestown, Virginia.
 </p>
 <body>
</html>

The image (img) tag is the star of this page. This tag allows you to grab an
image file and incorporate it into the page directly. The image tag is a one-

******ebook converter DEMO Watermarks*******

Owner
Highlight

shot tag. It doesn't end with . Instead, use the /> characters at the
end of the img definition to indicate that this tag doesn't have content.

 You might have noticed that I italicized Susan B. Constant in the
page, and I used the tag to get this effect. stands for
emphasis, and means strong emphasis. By default, any text
within an pair is italicized, and
text is boldfaced. Of course, you can change this behavior with CSS.

The image tag has a number of important attributes, which I discuss in the
following sections.

src (source)
The src attribute allows you to indicate the URL (Uniform Resource
Locator) of the image. This can be an absolute or relative reference.
Linking to an image in your own directory structure is generally best
because you can't be sure an external image will still be there when the user
gets to the page. (For more on reference types, turn to Chapter 5 of this
minibook.)

height and width
The height and width attributes are used to indicate the size of the
image. The browser uses this information to indicate how much space to
reserve on the page.

 The height and width attributes should describe the size of
an image. You can use these attributes to actually change the size of an
image, but it's a bad idea. Change the image size with your image editor
(I show you how later in this chapter). If you use the height and
width attributes, the user has to wait for the full image, even if she'll
see a smaller version. Don't make the user wait for information she
won't see. If you use these attributes to make the image larger than its
default size, the resulting image has poor resolution. Find the image's

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

actual size by looking at it in your image tool and use these values. If
you leave out height and width, the browser determines the size
automatically, but you aren't guaranteed to see the text until all the
images have downloaded. Adding these attributes lets the browser
format the page without waiting for the images.

alt (alternate text)
The alt attribute gives you an opportunity to specify alternate text
describing the image. Alternate text information is used when the user has
images turned off and by screen-readers. Information in alt tags is also used
in image-searching software like Google Images.

 The alt attribute is required on all images.

Additionally, the tag is an inline tag, so it needs to be embedded
inside a block-level tag, like a <p> or .

Choosing an Image Manipulation
Tool

You can't just grab any old picture off your digital camera and expect it to
work on a web page. The picture might work, but it could cause problems
for your viewers. It's important to understand that digital images (any kind
of images you see on a computer or similar device) are different from the
kind of images you see on paper.

An image is worth 3.4 million words
Digital cameras and scanners are amazing these days. Even moderately
priced cameras can now approach the resolution of old-school analog
cameras. Scanners are also capable of taking traditional images and
converting them into digital formats that computers use. In both cases,
though, the default image can be in a format that causes problems. Digital
images are stored as a series of dots, or pixels. In print, the dots are very
close together, but computer screens have larger dots. Figure 6-4 shows

******ebook converter DEMO Watermarks*******

Owner
Highlight

how the ship image looks straight from the digital camera.

Figure 6-4: Wow. That doesn't look like much.

My picture (taken on an older digital camera) registers at 6 megapixels
(MP). That's a pretty good resolution, but modern digital cameras are much
higher. If I print that picture on paper, all those dots are very tiny, and I get
a nice picture. If I try to show the same picture on the computer screen, I
see only one corner. This actual picture came out at 2,816 pixels wide by
2,112 pixels tall. You only see a small corner of the image because the
screen shots for this book are taken at 1024×768 pixels. Less than a quarter
of the image is visible.
When you look at a large image in most browsers, it's automatically resized
to fit the page. The cursor usually turns into some kind of magnifying
glass, and if you click the image, you can see it in its full size or the smaller
size.

 Some image viewers take very large images and automatically
resize them so they fit the screen. (This is the default behavior of
Windows’ default image viewer and most browsers.) The image may
appear to be a reasonable size because of this feature, but it'll be huge
and difficult to download in an actual web page. Make sure you know

******ebook converter DEMO Watermarks*******

the actual size of an image before you use it.
Although shrinking an image so that it can be seen in its entirety is
obviously beneficial, there's an even more compelling reason to do so.
Each pixel on the screen requires 3 bytes of computer memory. (A byte is
the basic unit of memory in a computer.) For comparison purposes, one
character of text requires roughly 1 byte. The uncompressed image of the
ship weighs a whopping 17 megabytes (MB). If you think of a word as five
characters long, one picture straight from the digital camera takes up the
same amount of storage space and transmission time as roughly 3,400,000
words. This image requires nearly three minutes to download on a 56K
modem!
In a web page, small images are often shown at about 320×240 pixels, and
larger images are often 640×480 pixels. If I use software to resample the
image to the size I actually need and use an appropriate compression
algorithm, I can get the image to look like Figure 6-5.

Figure 6-5: The resized image is a lot more manageable.

The new version of the image is the size and file format I need, it looks just
as good, and it weighs a much more reasonable 88 kilobytes. That's 2
percent of the original image size.

******ebook converter DEMO Watermarks*******

Owner
Highlight

 Although this picture is a lot smaller than the original image, it
still takes up a lot more memory than text. Even this smaller image
takes up as much transmission time and storage space as 1,600 words!
It still takes 10 seconds to download without a broadband connection.
Use images wisely.

Images are great, but keep some things in mind when you use them:

Make sure the images are worth displaying. Don’t use a picture
without some good reason because each picture makes your page
dramatically slower to access.
Use software to resize your image. Later in this chapter, I show you
how to use free software to change the image to exactly the size you
need.
Use a compressed format. Images are almost never used in their
native format on the web because they’re just too large. Several
formats have emerged that are useful for working with various types of
images. I describe these formats in the section “Choosing an Image
Format,” later in this chapter.

Introducing IrfanView
IrfanView, by Irfan Skiljan, is a freeware program that can handle your
basic image manipulation needs and quite a bit more. I used it for all the
screenshots in this book, and I use it as my primary image viewer when I'm
using Windows. You can get a copy at www.irfanview.net. Of
course, you can use any software you want, but if something's really good
and free, it's a great place to start. In the rest of this chapter, I show you
how to do the main image-processing jobs with IrfanView, but you can use
any image editor you want.
A web developer needs to have an image manipulation program to help
with all these chores. Like other web development tools, you can pay quite
a bit for an image manipulation tool, but you don't have to. Your image
tool should have at least the following capabilities:

******ebook converter DEMO Watermarks*******

http://www.irfanview.net

Resizing: Web pages require smaller images than printing on paper.
You need a tool that allows you to resize your image to a specific size
for web display.
Saving to different formats: There’s a dizzying number of image
formats available, but only a few formats work reliably on the web
(which I discuss in the next section). You need a tool that can take
images in a wide variety of formats and reliably switch it to a web-
friendly format.
Cropping: You may want only a small part of the original picture. A
cropping tool allows you to extract a rectangular region from an image.
Filters: You may find it necessary to modify your image in some way.
You may want to reduce red-eye, lighten or darken your image, or
adjust the colors. Sometimes, images can be improved with sharpen or
blur filters, or more artistic filters, such as canvas or oil-painting tools.
Batch processing: You may have a number of images you want to
work with at one time. A batch processing utility can perform an
operation on a large number of images at once, as you see later in this
chapter.

You may want some other capabilities, too, such as the ability to make
composite images, images with transparency, and more powerful effects.
You can use commercial tools or the excellent open-source program Gimp.
I use IrfanView for basic processing, and I use Gimp when I need a little
more power. See Book VIII, Chapter 4 for a more complete discussion of
Gimp.
IrfanView is my favorite, but it's only available for Windows. Here are a
few free alternatives if you want to try some other great software:

XnView: Similar to IrfanView, XnView allows you to preview and
modify pictures in hundreds of formats, create thumbnails, and more.
It’s available for Mac and Linux.
Pixia: Pixia is a full-blown Windows-only graphic editor from Japan.
Very powerful.
GimpShop: This is a version of Gimp modified to have menus like
Photoshop.

******ebook converter DEMO Watermarks*******

Paint.NET: This is a powerful Windows-only Paint program.

Use Google or another search engine to locate any of these programs.

Choosing an Image Format
Almost nobody uses raw images on the web because they're just too big
and unwieldy. Usually, web images are compressed to take up less space.
All the types of image files you see in the computer world (BMP, JPG,
GIF, and so on) are essentially different ways to make an image file
smaller. Not all the formats work on the web, and they have different
characteristics, so it's good to know a little more about them.

BMP
The BMP format is Microsoft's standard image format. Although it's
compressed sometimes, usually it isn't. The BMP format creates very
detailed images with little to no compression, and the file is often too large
to use on the web. Many web browsers can handle BMP images, but you
shouldn't use them. Convert to one of the other formats, instead.

JPG/JPEG
The JPG format (also called JPEG) is a relatively old format designed by
the Joint Photographic Experts Group. (Get it? JPEG!) It works by
throwing away data that's less important to human perception. Every time
you save an image in the JPG format, you lose a little information. This
sounds terrible, but it really isn't. The same image that came up as 13MB in
its raw format is squeezed down to 1.5MB when stored as a JPG. Most
people can't tell the difference between the compressed and non-
compressed version of the image by looking at them.

 The JPG algorithm focuses on the parts of the image that are
important to perception (brightness and contrast, for example) and
throws away data that isn't as important. (Actually, much of the color
data is thrown away, but the colors are re-created in an elaborate optical
illusion.)

******ebook converter DEMO Watermarks*******

JPG works best on photographic-style images with a lot of color and detail.
Many digital cameras save images directly as JPGs.
One part of the JPG process allows you to determine the amount of
compression. When you save an image as a JPG, you can often determine
the quality on a scale between accuracy and compression.
The JPG compression scheme causes particular problems with text. JPG is
not good at preserving sharp areas of high contrast (such as letters on a
background). JPG is not the best format for banner images or other images
with text on them. Use GIF or PNG instead. A JPG with text will show
characteristic square artifacts.
Even if you choose 100 percent accuracy, the file is still greatly
compressed. The adjustable compression operates only on a small part of
the process. Compressing the file too much can cause visible square
shadows, or artifacts. Experiment with your images to see how much
compression they can take and still look like the original.

 Keep a high-quality original around when you're making JPG
versions of an image because each copy loses some detail. If you make
a JPG from a JPG that came from another JPG, the loss of detail starts
to add up, and the picture loses some visual quality.

GIF
The GIF format was developed originally for CompuServe, way before the
web was invented. This format was a breakthrough in its time and still has
some great characteristics.
GIF is a lossless algorithm so, potentially, no data is lost when converting
an image to GIF (compare that to the lossy JPG format). GIF does its magic
with a color palette trick and a run-length encoding trick.
The color palette works like a paint-by-number set where an image has a
series of numbers printed on it, and each of the paint colors has a
corresponding number. What happens in a GIF image is similar. GIF
images have a list of 256 colors, automatically chosen from the image.
Each of the colors is given a number. A raw (uncompressed) image

******ebook converter DEMO Watermarks*******

requires 3 bytes of information for each pixel (1 each to determine the
amount of red, green, and blue). In a GIF image, all that information is
stored one time in the color palette. The image itself contains a bunch of
references to the color palette.
For example, if blue is stored as color 1 in the palette, a strip of blue might
look like this:

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

GIF uses its other trick — run-length encoding — when it sees a list of
identical colors. Rather than store the above value as 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, the GIF format can specify a list of 10 ones. That's the general idea of
run-length encoding. The ship image in this example weighs 2.92MB as a
full-size GIF image.
The GIF format works best for images with a relatively small number of
colors and large areas of the same color. Most drawings you make in a
drawing program convert very well to the GIF format. Photos aren't ideal
because they usually have more than 256 colors in them, and the subtle
changes in color mean there are very few solid blotches of color to take
advantage of run-length encoding.
GIF does have a couple of great advantages that keep it popular. First, a
GIF image can have a transparent color defined. Typically, you'll choose
some awful color not found in nature (kind of like choosing bridesmaid
dresses) to be the transparent color. Then, when the GIF encounters a pixel
that color, it displays whatever is underneath instead. This is a crude but
effective form of transparency. Figure 6-6 shows an image with
transparency.
Whenever you see an image on a web page that doesn't appear to be
rectangular, there's a good chance the image is a GIF. The image is still a
rectangle, but it has transparency to make it look more organic. Typically,
whatever color you set as the background color when you save a GIF
becomes the transparent color.

 Creating a complex transparent background, like the statue,
requires a more complex tool than IrfanView. I used Gimp, but any

******ebook converter DEMO Watermarks*******

high-end graphics tool can do the job. IrfanView is more suited to
operations that work on the entire image.

Another interesting feature of GIF is the ability to create animations.
Animated GIFs are a series of images stored in the same file. You can
embed information, determining the interval between images. You can
create animated GIFs with Gimp.

Figure 6-6: This statue is a GIF with transparency.

Animated GIFs were overused in the early days of the web, and many now
consider them the mark of an amateur. Nobody really thinks that animated
mailbox is cute anymore. Look ahead to Book IV, Chapter 7 for the more
flexible modern way to add animation to your pages.

 For a while, there were some legal encumbrances regarding a part
of the GIF scheme. The owners of this algorithm tried to impose a
license fee. This was passed on to people using commercial software,
but became a big problem for free software creators.

Fortunately, it appears that the legal complications have been resolved for
now. Still, you'll see a lot of open-software advocates avoiding the GIF
algorithm altogether because of this problem.

******ebook converter DEMO Watermarks*******

Owner
Highlight

PNG
Open-source software advocates created a new image format that combines
some of the best features of both JPG and GIF, with no legal problems. The
resulting format is Portable Network Graphics, or PNG. This format has a
number of interesting features, such as

Lossless compression: Like GIF, PNG stores data without losing any
information.
Dynamic color palette: PNG supports as many colors as you want.
You aren’t limited to 256 colors as you are with GIF.
No software patents: The underlying technology of PNG is
completely open source, with no worries about whether somebody will
try to enforce a copyright down the road.
True alpha transparency: The PNG format has a more sophisticated
form of transparency than GIF. Each pixel can be stored with an alpha
value.Alpha refers to the amount of transparency. The alpha can be
adjusted from completely transparent to completely opaque.

With all these advantages, it's not surprising that PNG is one of the most
popular formats on the web. At one point, browser support for PNG was
inconsistent, but now browsers can manage PNG pretty well. The only
disadvantage of PNG is the inability to create animations. This is not a
major issue, as you'll see in Book IV, Chapter 7.

SVG
All of the previously-mentioned formats store information pixel-by-pixel.
This mechanism is called raster-based image formats. However, this is not
the only approach to images. A format called “Scalable Vector Graphics
(SVG)” is relatively new to web development. SVG graphics are stored as
a series of instructions in a format much like HTML. For example, a circle
in SVG is stored like this:

<circle cx="50" cy="50" r="30"
 style="stroke:#0000ff; stroke-width: 5px;
fill:#ff0000;"/>

Although it's possible to write SVG code by hand, it's more common to use

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

an editor like Inkscape. SVG graphics have some nice advantages:

The image can be resized without loss of quality. The biggest
advantage of SVG is the ability to change the image size. With raster-
based images, any change of image size will involve a loss of image
quality. SVG images can change size arbitrarily without a loss of
quality.
File sizes can be extremely small. The file size of a vector-based
image is based on the complexity of the image rather than its visual
size. So simple images that can be described as a series of shapes can
result in tiny files, even if they take up an entire page.
Vector images are easy to edit. You can edit a vector image by
moving and manipulating the various shapes that make up an image.
This makes vector-images like SVG quite easy to edit.

Vector images were not practical in previous versions of HTML. This is
one reason Flash (which is primarily a vector format) was so popular. SVG
is one of the most interesting new features of HTML5. An SVG image can
be embedded like any other sort of image, or it can be manipulated directly
though JavaScript code. You can find a great number of free-to-use SVG
images at http://openclipart.org/.

Summary of web image formats
All these formats may seem overwhelming, but choosing an image format
is easy because each format has its own advantages and disadvantages:

GIF is best when you need transparency or animation. Avoid using
GIF on photos, as you won’t get optimal compression, and you’ll lose
color data.
JPG is most useful for photographic images, which are best suited for
the JPG compression technique. However, keep in mind that JPG isn’t
suitable for images that require transparency. Text in JPG images tends
to become difficult to read because of the lossy compression technique.
PNG is useful in most situations. Older browsers may have trouble
with this format.
SVG is useful for images which need to be re-sized without a loss of

******ebook converter DEMO Watermarks*******

http://openclipart.org/
Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

image quality or when the image is relatively simple.
BMP and other formats should be avoided entirely. Although you can
make other formats work in certain circumstances, there’s no good
reason to use any other image formats most of the time.

Manipulating Your Images
All this talk of compression algorithms and resizing images may be dandy,
but how do you do it?
Fortunately, IrfanView can do nearly anything you need for free.
IrfanView has nice features for all the main types of image manipulation
you need.

Changing formats in IrfanView
Changing image formats with IrfanView is really easy. For example, find
an image file on your computer and follow these steps:

1. Load the image into IrfanView by dragging the image into
IrfanView or using the File ⇒ Open menu command.

2. Make any changes you may want to the image before saving.
3. Use the File ⇒ Save As command to save the file.
4. Pick the image format from the Save Picture As dialog box, as

shown in Figure 6-7.
5. Save the file with a new filename. Keep the original file and save any

changes in a new file. That way, you don’t overwrite the original file.
This is especially important if you’re converting to JPG because each
successive save of a JPG causes some image loss.

Keep the original file and save any changes in a new file. That way,
you don't overwrite the original file. This is especially important if
you're converting to JPG because each successive save of a JPG causes
some image loss.

******ebook converter DEMO Watermarks*******

Figure 6-7: IrfanView can save in all these formats.

 Don't use spaces in your filenames. Your files may move to other
computers on the Internet, and some computers have trouble with
spaces. It's best to avoid spaces and punctuation (except the underscore
character) on any files that will be used on the Internet. Also, be very
careful about capitalization. It's likely that your image will end up on a
Linux server someday, and the capitalization makes a big difference
there.

Resizing your images
All the other image-manipulation tricks may be optional, but you should
really resize your images. Although high-speed connections may have no
trouble with a huge image, nothing makes a web page inaccessible to users
with weaker connectivity faster than bloated image sizes.
To resize an image with IrfanView, perform the following steps:

1. Load the image into IrfanView. You can do this by dragging the
image onto the IrfanView icon, dragging into an open instance of
IrfanView, or using the menus within IrfanView.

2. From the Image menu, choose Resize/Resample. You can also use
******ebook converter DEMO Watermarks*******

Ctrl+R for this step. Figure6-8 shows the resulting dialog box.
3. Determine the new image size. A number of standard image sizes are

available. 800×600 pixels will create a large image in most browsers. If
you want the image smaller, you need to enter a size in the text boxes.
Images embedded in web pages are often 320 pixels wide by 240
pixels tall. That’s a very good starting point. Anything smaller will be
hard to see, and anything larger might take up too much screen space.

4. Preserve the aspect ratio using the provided check box. This makes
sure the ratio between height and width is maintained. Otherwise, the
image may be distorted.

Figure 6-8: IrfanView's Resize/Resample Image dialog box.

5. Save the resulting image as a new file. When you make an image
smaller, you lose data. That’s perfectly fine for the version you put on
the web, but you should hang on to the original large image in case you
want to resize again.

6. Resample, rather than resize. Resampling is a slower but more
accurate technique for changing the image size. This is IrfanView’s
default behavior, so leave it alone. It’s still quite fast on a modern
computer. The default (Lanczos) filter is fine, although you can
experiment with other filters to get a faster conversion, if you want.

Enhancing image colors
Sometimes, you can make improvements to an image by modifying the
colors. The Color corrections dialog box on the Images menu gives you a
wide range of options, as shown in Figure 6-9.
You can do a surprising number of helpful operations on an image with
this tool:

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Brightness: When adjusted to a higher value, the image becomes
closer to white. When adjusted to a negative value, the image becomes
closer to black. This is useful when you want to make an image lighter
or darker for use as a background image.

Figure 6-9: You can change several options in the Color Corrections dialog box.

 If your image is too dark or too bright, you may be tempted to use the Brightness
feature to fix it. The Gamma Correction feature described later in this section is more
useful for this task.

Contrast: You usually use the Contrast feature in conjunction with the
Brightness feature to adjust an image. Sometimes, an image can be
improved with small amounts of contrast adjustments.
Color Balance: Sometimes, an image has poor color balance (for
example, indoor lighting sometimes creates a bluish cast). You can
adjust the amount of red, green, and blue with a series of sliders. The
easiest way to manage color balance is to look at a part of the image
that’s supposed to be white and play with the slider until it looks truly
white.
Gamma Correction: This is used to correct an image that is too dark
or too light. Unlike the Brightness adjustment, Gamma Correction
automatically adjusts the contrast. Small adjustments to this slider can
sometimes fix images that are a little too dark or too light.
Saturation: When saturation is at its smallest value, the image
becomes black and white. At its largest value, the colors are enhanced.
Use this control to create a grayscale image or to enhance colors for
artistic effect.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Using built-in effects
IrfanView has a few other effects available that can sometimes be
extremely useful. These effects can be found individually on the Image
menu or with the Image Effects browser on the Image menu. The Image
Effects browser (as shown in Figure 6-10) is often a better choice because
it gives you a little more control of most effects and provides interactive
feedback on what the effect will do. Sometimes, effects are called filters
because they pass the original image through a math function, which acts
like a filter or processor to create the modified output.

Figure 6-10: The Image Effects browser lets you choose special effects.

Here's a rundown of some of the effects, including when you would use
them:

None: Just for comparison purposes, Figure 6-11 shows the ship image
without any filters turned on.

 I've exaggerated the effects for illustration purposes, but it
may still be difficult to see the full effect of these filters on the printed
page. The grayscale images in this book are a poor representation of
the actual color images. Use the images in this chapter as a starting
point, but to understand these filters, you really need to experiment
with your own images in IrfanView or a similar tool. I've also added all
these images to this book's companion website so you can see them
there. For more on the companion website, see this book's Introduction.

******ebook converter DEMO Watermarks*******

Blur: This filter reduces contrast between adjacent pixels. (Really, we
could go over the math, but let’s leave that for another day, huh?) You
might wonder why you’d make an image blurry on purpose.
Sometimes, the Blur filter can fix graininess in an image. You can also
use Blur in conjunction with Sharpen (which I cover in just a moment)
to fix small flaws in an image. I applied the Blur filter to the standard
ship image in Figure6-12
Sharpen: The opposite of Blur, the Sharpen filter enhances the
contrast between adjacent pixels. When used carefully, it can
sometimes improve an image. The Sharpen filter is most effective in
conjunction with the Blur filter to remove small artifacts. Figure6-13
shows the ship image with the Sharpen filter applied.

Figure 6-11: Here's the standard ship image, at full-screen resolution.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 6-12: The Blur filter reduces contrast.

Figure 6-13: The Sharpen filter increases contrast.

 If you believe crime shows on TV, you can take a blurry
image and keep applying a sharpen filter to read a license plate on a
blurry image from a security camera a mile away. However, it just
doesn't usually work that way. You can't make detail emerge from
junk, but sometimes, you can make small improvements.

******ebook converter DEMO Watermarks*******

Emboss: This filter creates a grayscale image that looks like embossed
metal, as shown in Figure6-14. Sometimes, embossing can convert an
image into a useful background image because embossed images have
low contrast. You can use the Enhance Colors dialog box to change the
gray embossed image to a more appealing color.
Oil Paint: This filter applies a texture reminiscent of an oil painting to
an image, as shown in Figure6-15. It can sometimes clean up a picture
and give it a more artistic appearance. The higher settings make the
painting more abstract.

Figure 6-14: Embossing creates a low-contrast 3D effect.

******ebook converter DEMO Watermarks*******

Figure 6-15: Oil Paint makes an image slightly more abstract.

Figure 6-16: The image appears to stick up from the page like a button.

3D Button: This feature can be used to create an image, similar to
Figure 6-16, that appears to be a button on the page. This will be useful
later when you figure out how to use CSS or JavaScript to swap images
for virtual buttons. You can set the apparent height of the image in the
filter. Normally, you apply this filter to smaller images that you intend
to make into buttons the user can click.
Red Eye Reduction: You use this filter to fix a common problem with
flash photography. Sometimes, a person’s eyes appear to have a
reddish tinge to them. Unlike the other filters, this one is easier to
access from the Image menu. Use the mouse to select the red portion of
the image and then apply the filter to turn the red areas black. It’s best
not to perform this filter on the entire image because you may
inadvertently turn other red things black.

Other effects you can use
Many more effects and filters are available. IrfanView has a few more built
in that you can experiment with. You can also download a huge number of
effects in the Adobe Photoshop 8BF format. These effects filters can often
be used in IrfanView and other image-manipulation programs.
Some effects allow you to explode the image, add sparkles, map images

******ebook converter DEMO Watermarks*******

onto 3D shapes, create old-time sepia effects, and much more.

If you want to do even more image manipulation, consider a full-blown
image editor. Adobe Photoshop is the industry standard, but Gimp is an
open-source alternative that does almost as much. See Book VIII, Chapter
4 for more about using Gimp for image processing.

Batch processing
Often, you'll have a lot of images to modify at one time. IrfanView has a
wonderful batch-processing tool that allows you to work on several images
at once. I frequently use this tool to take all the images I want to use on a
page and convert them to a particular size and format. The process seems a
little complicated, but after you get used to it, you can modify a large
number of images quickly and easily.
If you want to convert a large number of images at the same time, follow
these steps:

1. Identify the original images and place them in one directory. I find
it easiest to gather all the images into one directory, whether they come
from a digital camera, scanner, or other device.

2. Open the Batch Conversion dialog box by choosing File ⇒ Batch
Conversion — Rename. This Batch Conversion dialog box appears,
as shown in Figure6-17.

3. Find your original images by navigating the directory window in
the Batch Conversion dialog box. Find your original images by
navigating the directory window in the Batch Conversion dialog box.

4. Copy your images to the Input Files workspace by clicking the Add
button. Select the images you want to modify and press the Add
button. The selected image names are copied to the Input Files
workspace.

******ebook converter DEMO Watermarks*******

Figure 6-17: IrfanView has a powerful batch conversion tool.

5. Specify the output directory. If you want to put the new images in the
same directory as the input files, click the Use This Directory as Output
button. If not, choose the directory where you want the new images to
go.

6. In the Work As box, choose Batch Conversion — Rename Result
Files. You can use this setting to rename your files, to do other
conversions, or both. Generally, I recommend both.

7. Set the output format to the format you want. For photos, you
probably want JPG format.

8. Change renaming settings in the Batch Rename Settings area if
you want to specify some other naming convention for your
images. By default, each image is called image### where ### is a
three-digit number. They are numbered according to the listing in the
Input Files workspace. You can use the Move Up and Move Down
buttons to change the order images appear in this listing.

9. Click the Set Advanced Options button to change the image size.
This displays the Set for All Images dialog box, as shown in Figure 6-
18.

10. Specify the new size of the image in the Resize area. Several
common sizes are preset. If you want another size, use the given
options. I set my size to 320×240.

******ebook converter DEMO Watermarks*******

11. Close the Set for All Images dialog box and then, in the Batch
Conversion dialog box, click the Start button. In a few seconds, the
new images are created.

Working with Audio
HTML has supported images for a long time, but now it works just as well
with audio files. This is a major breakthrough, as audio previously required
external programs like Flash.

Figure 6-18: Use the Set for All Images dialog box to resize images in batch mode.

Figure 6-19 demonstrates a page with a simple audio file.

******ebook converter DEMO Watermarks*******

Figure 6-19: This page has a song embedded in it.

It's quite easy to add audio to a web page in HTML5 with the new
<audio> tag. Here's the code for creating this page:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>audio.html</title>
</head>
<body>
 <h1>Audio Demo</h1>
 <audio controls = "controls">
 <source src = "Allemande.mp3" type = "audio/mpeg">
 <source src = "Allemande.ogg" type = "audio/ogg">
 Your browser does not support HTML5 Audio
 Please use this link instead:
 Allemande.mp3
 </audio>
 <p>
 Music: J.S. Bach "Allemande" Partita for Violin #2
 </p>
</body>
</html>

Although nearly every current browser supports the <audio> tag, they
still can't agree on which format to support. Some browsers support MP3
files, some support a newer standard called Ogg, and some support WAV.
The best way to be sure the sound plays is to supply two different formats.

******ebook converter DEMO Watermarks*******

I've found that including both Ogg and MP3 formats ensures my audio will
play on all major browsers.
To add an audio file to your page, follow these steps:

1. Add the audio tag to your page. The <audio> tag indicates where
an audio file will be placed. Where you place the tag in the code
corresponds to where the controls will appear.

2. Turn on controls. You can specify a control panel with the
controls = “controls” attribute. This causes a small control
like the one in Figure 6-19 to appear. If you leave this directive out,
there will be no control panel, which means the user will not be able to
play the clip.

3. Create a <source> element or two. Inside the <audio>
</audio> pair, add one or more <source> elements. Each source
element indicates a file you will link to.

4. Set the src attribute to indicate the file. The src attribute of the
<source> tag (could we please have one more thing with almost the
same name here?) is used to indicate the file name of the audio file you
wish to play.

5. Add alternate code for older browsers. Any additional HTML code
between the <sound> and <sound> tags will be interpreted only by
browsers that do not understand the sound tag. You can add an
ordinary anchor to download the sound effect if you wish. This way,
even those with older browsers can hear what they’re missing.

Adding Video
The <video> tag is very similar to the <audio> tag, and it works in
exactly the same way. You can use this tag to add a video to your web
page, and the video plays directly in the browser without requiring a plugin
like Flash. The ability to play videos through HTML is a major
breakthrough, and it's not difficult to implement.
Of course, it isn't perfect. There are a number of competing video
standards, and the browsers (imagine this) cannot agree on which standard
to accept. The most important standards are called H.264 and Ogg. Some

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Underline

Owner
Highlight

browsers prefer one; some prefer the other. To make things more
complicated, the file extension for a video doesn't always indicate the
underlying coding mechanism. This means video encoding requires some
experimentation. If your video file is not in the format you want, you may
need to convert it. FFmpeg and VLC are outstanding free tools you can use
to convert video to whatever format you need.

 As with any intellectual property, be sure you have the
permission of the file's original owner. Just because you can embed a
video into your web page doesn't mean you should do so.

Figure 6-20 shows a page with a simple video embedded in it.

Figure 6-20: This page has a video.

The code for this page shows how much the <video> tag is like
<audio>:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>videoDemo</title>
 </head>
 <body>
 <h1>Video Demo</h1>
 <video src = "bigBuck.ogv"

******ebook converter DEMO Watermarks*******

Owner
Highlight

 controls = "controls">
 Your browser does not support embedded video
 through HTML 5.
 </video>
 <p>
 This video is a trailer for the incredible short movie
 "Big Buck Bunny." This experiment proves that talented
 volunteers can produce a high-quality professional video
 using only open-source tools.
 Go to
 http://www.bigbuckbunny.org to see the entire video.
 </p>
 </body>
</html>

 Video files are extremely large, and they can make your website
seem much slower to users. They also are cumbersome to move to a
web server. For this reason, many web developers prefer to upload
videos to a service like YouTube and simply link to the video on
another server. If you right-click a YouTube video, you can select Copy
Embed Code from the menu that appears. This gives you code you can
use on your own site.

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text
Working with

Owner
Typewritten Text

Owner
Typewritten Text
101_Pfeiffer_Vid_Examp2-1.html I found out that Google plays only

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text
audio, not video. I spent many hours reading the internet and trying out three recommendations. Nothing worked. I gave up Google Chrome and designated Microsoft Edge as my default browser.I can still access chrome with Ctrl-Space for Search.Microsoft Edge seems to work well for audio and video. But I got sidetracked.I uploaded the contents of Localhost/AllHTML2 folder and decided to test file viewing as carried out by Read_002.php.

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Sticky Note
After uploading the files into HTML2010 in the root of my domain from C:\Program Files (x86)\Ampps\www\AllHTML2 - Note the change of directory name. I tested 396 files for viewing and corrected errors caused mainly by missing files. That effort consumed probably 24 hours. Now I am back to the book.

Chapter 7
Creating Forms

In This Chapter
 Adding forms to your pages
 Creating input and password text boxes
 Building multi-line text inputs
 Making list boxes and check boxes
 Building groups of radio buttons
 Using HTML5 form elements
 Creating buttons

HTML gives you the ability to describe web pages, but today's web isn't a
one-way affair. Users want to communicate through web pages, by typing
in information, making selections from drop-down lists, and interacting,
rather than simply reading. In this chapter, you learn how to build these
interactive elements in your pages.

You Have Great Form
There's one more aspect to HTML that you need to understand — the
ability to make forms. Forms are the parts of the page that allow user
interaction. Figure 7-1 shows a page with all the primary form elements in
place.
The form demo (or formDemo.html on this book's web site, if you're
playing along at home) exemplifies the main form elements in HTML. In
this chapter, you discover how to build all these elements. For more on this
book's website, see the Introduction.

 You can create forms with ordinary HTML, but to make them do

******ebook converter DEMO Watermarks*******

Owner
Highlight

something, you need a programming language. Book IV explains how
to use JavaScript to interact with your forms, and Book V describes the
PHP language. Use this chapter to figure out how to build the forms
and then jump to another minibook to figure out how to make them do
stuff. If you aren't ready for full-blown programming yet, feel free to
skip this chapter for now and move on to CSS in Books II and III.
Come back here when you're ready to make forms to use with
JavaScript or PHP.

Figure 7-1: Form elements allow user interaction.

The formDemo.html page shows the following elements:

A form: A container for form elements. Although the form element
itself isn't usually a visible part of the page (like the body tag), it could
be with appropriate CSS.
Text boxes: These standard form elements allow the user to type text
into a one-line element.
Password boxes: These boxes are like text boxes, except they
automatically obscure the text to discourage snooping.
Text areas: These multi-line text boxes accommodate more text than
the other types of text boxes. You can specify the size of the text area
the user can type into.

******ebook converter DEMO Watermarks*******

Select lists: These list boxes give the user a number of options. The
user can select one element from the list. You can specify the number
of rows to show or make the list drop down when activated.
Check boxes: These non-text boxes can be checked or not. Check
boxes act independently — more than one can be selected at a time
(unlike radio buttons).
Radio buttons: Usually found in a group of options, only one radio
button in a group can be selected at a time. Selecting one radio button
deselects the others in its group.
Buttons: These elements let the user begin some kind of process. The
Input button is used in JavaScript coding (which I describe in Book
IV), whereas the Submit buttons are used for server-side programming
(see Book V). The Reset button is special because it automatically
resets all the form elements to their default configurations.
Labels: Many form elements have a small text label associated with
them. Although labels are not required, they can make a form easier to
style with CSS and easier for the user.
Fieldsets and legends: These set off parts of the form. They're
optional, but they can add a lot of visual appeal to a form.

Now that you have an overview of form elements, it's time to start building
some forms!

Forms must have some form
All the form elements must be embedded inside a <form></form> pair.
The code for basicForm.html illustrates the simplest possible form:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>basicForm.html</title>
 </head>

<body>
 <h1>A basic form</h1>
 <form action = "">

******ebook converter DEMO Watermarks*******

 <h2>Form elements go here</h2>
 <h3>Other HTML is fine, too.</h3>
 </form>
 <p>
 <input type = "text"
 value = "googoo" />
 </p>
 </body>
</html>

The <form></form> pair indicates a piece of the page that may contain
form elements. All the other form doohickeys and doodads (buttons,
select objects, and so on) must be inside a <form> pair.

The action attribute indicates what should happen when the form is
submitted. This requires a programming language, so a full description of
the action attribute is in Book IV. Still, you must indicate an action to
validate, so for now just leave the action attribute null with a pair of quotes
("").

Organizing a form with fieldsets and labels
Forms can contain many components, but the most important are the input
elements (text boxes, buttons, drop-down lists, and the like) and the text
labels that describe the elements. Traditionally, web developers used tables
to set up forms, but this isn't really the best way to go because forms aren't
tabular information. HTML includes some great features to help you
describe the various parts of a form. Figure 7-2 shows a page with
fieldsets, layouts, and basic input.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 7-2: This form has a legend and labels.

A fieldset is a special element used to supply a visual grouping to a set of
form elements.
The form still doesn't look very good, I admit, but that's not the point. Like
all HTML tags, the form elements aren't about describing how the form
looks; they're about what all the main elements mean. (Here I go
again. . . .) You use CSS to make the form look the way you want. The
HTML tags describe the parts of the form, so you have something to hook
your CSS to. It all makes sense very soon, I promise.
Here's the code for the fieldset demo (fieldsetDemo.html on this book's
website):

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>fieldsetDemo.html</title>
 </head>
 <body>
 <h1>Sample Form with a Fieldset</h1>
 <form action = "">
 <fieldset>
 <legend>Personal Data</legend>
 <p>
 <label>Name</label>

******ebook converter DEMO Watermarks*******

 <input type = "text" />
 </p>
 <p>
 <label>Address</label>
 <input type = "text" />
 </p>
 <p>
 <label>Phone</label>
 <input type = "text" />
 </p>
 </fieldset>
 </form>
 </body>
</html>

The form has these elements:

The <form> and </form> tags: These define the form as a part of
the page. Don't forget the null action attribute.
The <fieldset> pair: This pair describes the included elements as
a set of fields. This element isn't necessary, but it does give you some
nice organization and layout options later when you use CSS. You can
think of the fieldset as a blank canvas for adding visual design to your
forms. By default, the fieldset places a border around all the contained
elements.
The <legend> tag: A part of the fieldset, this tag allows you to
specify a legend for the entire fieldset. The legend is visible to the user.
The paragraphs: I sometimes place each label and its corresponding
input element in a paragraph. This provides some nice formatting
capabilities and keeps each pair together.
The <label> tag: This tag allows you to specify a particular chunk
of text as a label. No formatting is done by default, but you can add
formatting later with CSS. The label also has an optional for attribute
that allows you to connect the label with a specific input element. This
can help to organize your form just a little more.
The <input> elements: The user types data into these elements. For
now, I'm just using very basic text inputs so the form has some kind of
input. In the next section, I explain how to build more complete text
inputs.

******ebook converter DEMO Watermarks*******

Building Text-Style Inputs
Most of the form elements are variations of the same tag. The <input>
tag can create single-line text boxes, password boxes, buttons, and even
invisible content (such as hidden fields). Most of these objects share the
same basic attributes, although the outward appearance can be different.

Making a standard text field
Figure 7-3 shows the most common form of the input element — a plain
text field.
To make a basic text input, you need a form and an input element. Adding
a label so that the user knows what he's supposed to enter into the text box
is also common. Here's the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>textbox.html</title>
 </head>
 <body>
 <form action = "">
 <p>
 <label>Name</label>
 <input type = "text"
 id = "txtName"
 value = "Jonas"/>
 </p>
 </form>
 </body>
</html>

An input element has three common attributes:

type : The type attribute indicates the type of input element this is.
This first example sets type to text , creating a standard text box.
Other types throughout this chapter create passwords, hidden fields,
check boxes, and buttons.
id : The id attribute creates an identifier for the field. When you use
a programming language to extract data from this element, use id to

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

specify which field you're referring to. An id field often begins with a
hint phrase to indicate the type of object it is (for instance, txt
indicates a text box).

Figure 7-3: The input element is often used to make a text field.

value : This attribute determines the default value of the text box. If
you leave this attribute out, the text field begins empty.

Text fields can also have other attributes, which aren't used as often, such
as

size : This attribute determines the number of characters that are
displayed.
maxlength : Use this attribute to set the largest number of
characters that are allowed.

There is no </input> tag. Input tags are a holdover from the days when
many tags did not have ending tags. You just end the original tag with a
slash character (/), as shown in the preceding sample code.
You might wonder why I added the <label> tag if it doesn't have any
effect on the appearance or behavior of the form. In this particular
example, the <label> tag doesn't have an effect, but like everything else
in HTML, you can do amazing style things with it in CSS. Even though

******ebook converter DEMO Watermarks*******

labels don't typically have a default style, they are still useful.

Building a password field
Passwords are just like text boxes, except the text isn't displayed. Instead, a
series of asterisks appears. Figure 7-4 shows a basic password field.
The following code reveals that passwords are almost identical to ordinary
text fields:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>password.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>Enter a password</legend>
 <p>
 <label>Type password here</label>
 <input type = "password"
 id = "pwd"
 value = "secret" />
 </p>
 </fieldset>
 </form>
 </body>
</html>

In this example, I've created a password field with the ID pwd . The default
value of this field is secret . The term secret won't actually appear in the
field; it will be replaced with six asterisk characters.

******ebook converter DEMO Watermarks*******

Figure 7-4: Enter the secret pass-word. . . .

 The password field offers virtually no meaningful security. It
protects the user from spy satellites glancing over his shoulder to read a
password, but that's about it. The open standards of HTML and the
programming languages mean passwords are often passed in the open.
There are solutions — such as the SSL (Secure Socket Layer)
technology — but for now, just be aware that the password field isn't
suitable for protecting the recipe of your secret sauce.

This example doesn't really do anything with the password, but you'll use
other technologies for that.

Making multi-line text input
The single-line text field is a powerful feature, but sometimes, you want
something with a bit more space. The essay.html program, as shown in
Figure 7-5, demonstrates how you might create a page for an essay
question.
The star of this program is a new tag — <textarea> :

<!DOCTYPE html>
<html lang = "en-US">

******ebook converter DEMO Watermarks*******

<head>
 <meta charset = "UTF-8">
 <title>essay.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>Quiz</legend>
 <p>
 <label>Name</label>
 <input type = "text"
 id = "txtName" />
 </p>
 <p>
 <label>
 Please enter the sum total of
 Western thought. Be brief.
 </label>
 </p>
 <p>
 <textarea id = "txtAnswer"
 rows = "10"
 cols = "40"></textarea>
 </p>
 </fieldset>
 </form>
 </body>
</html>

Here are a few things to keep in mind when using the <textarea> tag:

It needs an id attribute, just like an input element.
You can specify the size with rows and cols attributes.
The content goes between the tags. The text area can contain a lot
more information than the ordinary <input> tags, so rather than
placing the data in the value attribute, the content of the text goes
between the <textarea> and </textarea> tags.

 Anything placed between <textarea> and </textarea> in
the code ends up in the output, too. This includes spaces and carriage
returns. If you don't want any blank spaces in the text area, place the
ending tag right next to the beginning tag, as I did in the essay example.

******ebook converter DEMO Watermarks*******

Figure 7-5: This quiz might require a multi-line response.

Creating Multiple Selection Elements
Sometimes, you want to present the user with a list of choices and then
have the user pick one of these elements. HTML has a number of
interesting ways to do this.

Making selections
The drop-down list is a favorite selection tool of web developers for the
following reasons:

It saves screen space. Only the current selection is showing. When the
user clicks the list, a series of choices drop down and then disappear
again after the selection is made.
It limits input. The only things the user can choose are things you've
put in the list. This makes it much easier to handle the potential inputs
because you don't have to worry about typing errors.
The value can be different from what the user sees. This seems like
an odd advantage, but it does turn out to be very useful sometimes. I
show an example when I describe color values later in this chapter.

Figure 7-6 shows a simple drop-down list in action.

******ebook converter DEMO Watermarks*******

Figure 7-6: The user can choose from a list of colors.

The code for this simple drop-down list follows:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>basicSelect.html</title>
 </head>
 <body>
 <form action = "">
 <p>
 <label>What is your favorite color?</label>
 <select id = "selColor">
 <option value = "#ff0000">Red</option>
 <option value = "#00ff00">Green</option>
 <option value = "#0000ff">Blue</option>
 <option value = "#00ffff">Cyan</option>
 <option value = "#ff00ff">Magenta</option>
 <option value = "#ffff00">Yellow</option>
 <option value = "#000000">Black</option>
 <option value = "#ffffff">White</option>
 </select>
 </p>
 </form>
 </body>
</html>

The select object is a bit different from some of the other input elements

******ebook converter DEMO Watermarks*******

you're used to, such as

It's surrounded by a <select></select> pair. These tags
indicate the entire list.
The select object has an id attribute. Although the select
object has many other tags inside, typically only the select object
itself has an id attribute.
It contains a series of <option></option> pairs. Each individual
selection is housed in an <option></option> set.
Each <option> tag has a value associated with it. The value is
used by code. The value isn't necessarily what the user sees. (See the
sidebar “What are those funky #ff00ff things?” for an example.)
The content between <option></option> is visible to the user.
The content is what the user actually sees.

What are those funky #ff00ff things?
If you look carefully at the code for basicSelect.html , you see that the values are all
strange text with pound signs and weird characters. These are hex codes, and they're a
good way to describe colors for computers. I explain all about how these work in Book II,
Chapter 1. This coding mechanism is not nearly as hard to understand as it seems. For
now though, this code with both color names and hex values is a good example of wanting
to show the user one thing (the name of a color in English) and send some other value (the
hex code) to a program. You see this code again in Book IV, Chapter 5, where I use a list
box just like this to change the background color of the page with JavaScript.

 Select boxes don't require the drop-down behavior. If you want,
you can specify the number of rows to display with the size attribute.
In this case, the number of rows you specify will always be visible on
the screen.

Building check boxes
Check boxes are used when you want the user to turn a particular choice on

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

or off. For example, look at Figure 7-7.

Figure 7-7: Any number of check boxes can be selected at once.

Each check box represents a true or false value that can be selected or not
selected, and the status of each check box is completely independent from
the others. The user can check none of the options, all of them, or any
combination.
This code shows that check boxes use your old friend the <input> tag:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>checkBoxes.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>Please check off your life goals </legend>
 <p>
 <input type = "checkbox"
 id = "chkPeace"
 value = "peace" />World peace
 </p>
 <p>
 <input type = "checkbox"
 id = "chkHarmony"

******ebook converter DEMO Watermarks*******

Owner
Highlight

 value = "harmony" />Harmony and brotherhood
 </p>
 <p>
 <input type = "checkbox"
 id = "chkCash"
 value = "cash" />Cash
 </p>
 </fieldset>
 </form>
 </body>
</html>

You're using the same attributes of the <input> tag, but they work a bit
differently than the way they do in a plain old text box:

The type is checkbox . That's how the browser knows to make a
check box, rather than a text field.
The checkbox still requires an ID. If you'll be writing programming
code to work with this thing (and you will, eventually), you'll need an
ID for reference.
The value is hidden from the user. The user doesn't see the actual
value. That's for the programmer (like the select object). Any text
following the check box only appears to be the text associated with it.

This all seems inconsistent
Sometimes, the value of a form element is visible to users, and sometimes it's hidden.
Sometimes, the text the user sees is inside the tag, and sometimes it isn't. It's a little
confusing. The standards evolved over time, and they honestly could have been a little
more consistent. Still, this is the set of elements you have, and they're not really that hard
to understand. Write forms a few times, and you'll remember. You can always start by
looking over my code and borrowing it as a starting place.

Creating radio buttons
Radio buttons are used when you want to let the user pick only one option
from a group. Figure 7-8 shows an example of a radio button group in
action.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Radio buttons might seem similar to check boxes, but they have some
important differences:

Only one can be checked at a time. The term radio button came from
the old-style car radios. When you pushed the button for one station, all
the other buttons popped out. Even my car isn't that old any more, but
the name has stuck.

Figure 7-8: You can choose only one of these radio buttons.

They have to be in a group. Radio buttons make sense only in a group
context. The point of a radio button is to interact with its group.
They all have the same name! Each radio button has its own ID (like
other input elements), but they also have a name attribute. The name
attribute indicates the group a radio button is in.
You can have more than one group on a page. Just use a different
name attribute for each group.
One of them has to be selected. The group should always have one
value and only one. Some browsers check the first element in a group
by default, but just in case, you should select the element you want
selected. Add the checked = "checked" attribute (developed by
the Department of Redundancy Department) to the element you want
selected when the page appears. In this example, I preselected the most
expensive option, all in the name of good capitalistic suggestive

******ebook converter DEMO Watermarks*******

selling.

Here's some code that explains it all:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>radioButtons.html</title>
 </head>
 <body>
 <form action = "">
 <fieldset>
 <legend>How much do you want to spend?</legend>
 <p>
 <input type = "radio"
 name = "radPrice"
 id = "rad100"
 value = "100" />Too much
 </p>
 <p>
 <input type = "radio"
 name = "radPrice"
 id = "rad200"
 value = "200" />Way too much
 </p>
 <p>
 <input type = "radio"
 name = "radPrice"
 id = "rad5000"
 value = "5000"
 checked = "checked" />You've got to be kidding.
 </p>
 </fieldset>
 </form>
 </body>
</html>

Pressing Your Buttons
HTML5 also comes with several types of buttons. You use these guys to
make something actually happen. Generally, the user sets up some kind of
input by typing in text boxes and then selecting from lists, options, or
check boxes. Then, the user clicks a button to trigger a response. Figure 7-9
demonstrates four types of buttons.

******ebook converter DEMO Watermarks*******

Figure 7-9: HTML5 supports several types of buttons.

The code for this button example is shown here:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>buttons.html</title>
 </head>
 <body>
 <h1>Button Demo</h1>
 <form action = "">
 <fieldset>
 <legend>
 input-style buttons
 </legend>
 <input type = "button"
 value = "input type = button" />
 <input type = "submit" />
 <input type = "reset" />
 </fieldset>
 <fieldset>
 <legend>button tag buttons</legend>
 <button type = "button">
 button tag
 </button>
 <button>
 <img src = "clickMe.gif"
 alt = "click me" />

******ebook converter DEMO Watermarks*******

 </button>
 </fieldset>
 </form>
 </body>
</html>

Each button type is described in this section.

Making input-style buttons
The most common form of button is just another form of your old friend,
the <input> tag. If you set the input's type attribute to "button", you
generate a basic button:

<input type = "button"
 value = "input type = button" />

The ordinary Input button has a few key features:

The input type is set to "button". This makes an ordinary
button.
The value attribute sets the button's caption. Change the value
attribute to make a new caption. This button's caption shows how the
button was made: input type = "button".
This type of button doesn't imply a link. Although the button appears
to depress when it's clicked, it doesn't do anything. You have to write
some JavaScript code to make it work.
Later, you'll add event-handling to the button. After you discover
JavaScript in Book IV, you use a special attribute to connect the button
to code.
This type of button is for client-side programming. This type of
code resides on the user's computer. I discuss client-side programming
with JavaScript in Book IV.

Building a Submit button
Submit buttons are usually used in server-side programming. In this form
of programming, the code is on the web server. In Book V, you use PHP to

******ebook converter DEMO Watermarks*******

create server-side code. The <input> tag is used to make a Submit
button, too!

<input type = "submit" />

Although they look the same, the Submit button is different than the
ordinary button in a couple subtle ways:

The value attribute is optional. If you leave it out, the button
displays Submit Query. Of course, you can change the value to
anything you want, and this becomes the caption of the Submit button.
Clicking it causes a link. This type of button is meant for server-side
programming. When you click the button, all the information in the
form is gathered and sent to some other page on the web.
Right now, it goes nowhere. When you set the form's action
attribute to null (""), you told the Submit button to just reload the
current page. When you figure out real server-side programming, you
change the form's action attribute to a program that works with the
data.
Submit buttons aren't for client-side. Although you can attach an
event to the Submit button (just like the regular Input button), the
linking behavior often causes problems. Use regular Input buttons for
client-side and Submit buttons for server-side.

It's a do-over: The Reset button
Yet another form of the versatile <input> tag creates the Reset button:

<input type = "reset" />

This button has a very specific purpose. When clicked, it resets all the
elements of its form to their default values. Like the Submit button, it has a
default value ("reset"), and it doesn't require any code.

Introducing the <button> tag
The button has been a useful part of the web for a long time, but it's a bit

******ebook converter DEMO Watermarks*******

boring. HTML 4.0 introduced the <button> tag, which works like this:
<button type = "button">

 button tag
 </button>

The <button> tag acts more like a standard HTML tag, but it can also
act like a Submit button. Here are the highlights:

The type attribute determines the style. You can set the button to
ordinary (by setting its type to button), submit , or reset . If
you don't specify the type, buttons use the Submit style. The button's
type indicates its behavior, just like the Input-style buttons.
The caption goes between the <button></button> pair. There's
no value attribute. Instead, just put the intended caption inside the
<button> pair.
You can incorporate other elements. Unlike the Input button, you
can place images or styled text inside a button. This gives you some
other capabilities. The second button in the buttons.html example uses
a small GIF image to create a more colorful button.

New Form Input Types
HTML forms are centered around the humble but flexible input element.
HTML5 adds a number of very useful forms of input, which help build
more modern and flexible interfaces.
Although support for these tags is not universal, it is safe to begin using
them now. Any browser (even IE6) which does not understand the
advanced input types will revert to input type = "text" , which
will still work exactly as expected (although not with the validation and
user interface improvements of the newer tags).
Note that the standard indicates that the various types will be supported,
but the exact way the elements are supported will vary from browser to
browser. For example, the e-mail field will likely look just like an ordinary
text field to a user with a standard desktop machine, but the virtual
keyboard on a mobile device might change to include the @ when it

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

encounters an e-mail field.
Figure 7-10 illustrates many of these form elements in action using Google
Chrome, which supports all of these features.

date
Setting the input type to date indicates that you wish the user to enter a
date value. Some browsers (Firefox 3.5) still display a text field, and others
(Opera 10) display a special calendar control, allowing for much more
accurate and easier date selection. Still other browsers (Chrome) include
both text and a pop-up calendar. If the date is entered by text, it must be
entered in a yyyy-mm-dd format.

<input type="date"
 id = "date" />

Figure 7-10: Newer browsers have special inputs — here I'm picking a color.

You can restrict the dates allowed to a specific range by applying the min
and max attributes to the element.

time
The purpose of the time input type is to allow the user to enter a time.
Time is stored in hh:mm format, where hh is the hour (in 24-hour format)
and mm is the minutes. Some browsers include a colon directly in the field,
and some modify the virtual keyboard with numbers and the colon

******ebook converter DEMO Watermarks*******

character. It is also possible that a browser will pop up some sort of custom
time selector, but this is not yet supported in any major browsers.

<input type = "time"
 id = "time" />

datetime
The datetime element combines date and time into a single element.
It also includes a mechanism for entering the time zone.

<input type="datetime"
 id = "datetime" />

Some browsers pop up a calendar control for the date and a formatted input
for the time. Others may modify virtual keyboards for date and time input.

datetime-local
The datetime-local element is just like the datetime element
except it does not include a time zone indicator.

<input type="datetime-local"
 id = "datetimeLocal" />

Managing date and time data
The official full date and time format returned from the various date and time elements is a
specialized code:

yyyy-mm-ddThh:mm+ff:gg

Each of the characters in the code describe a part of the date and time:

yyyy: Four digits for the year.
- (dash): Must be placed between year and month. Another dash is placed
between the month and the day.
mm: Two digits for the month.
dd: Two digits for the day.
T: Capital “T” indicates the beginning of the time part of the code.
hh: Two digits for the hour, in 24-hour format.
(colon): The colon character between the hour and minutes. Another colon will
appear between the hour and minutes of the time zone offset.
mm: Two digits for the minutes.

******ebook converter DEMO Watermarks*******

+/-/Z: The time zone offset is indicated by a capital Z (if the time is Zulu or GMT
time) or the + or - symbol if time is in another time zone.
ff: If the time zone is not Zulu time, indicate the number of hours offset from GMT.
gg: Number of minutes offset from Zulu time. Typically this is 00, but it is possible
that the time zone will be offset by 15, 30, or 45 minutes.

For example, 5:30 PM on October 11, 2010, in New York City will be indicated like this:

2010-10-11T17:30-05:00

If the user is using a browser that validates a datetime field, the date and time will need
to be in this format to be considered valid. The value of a datetime field will be in this
format, which is relatively easy for computer programs to parse and manage.

The datetime-local input type expects and returns a date and time in
the same format as the standard datetime element, except datetime-
local does not include a time zone offset.

week
The week field is used to pick a week from a calendar control. It returns a
value in the following format:
yyyy-Wnn

yyyy represents a four-digit year
- is the dash character
W is the capital W character
nn is the week as a two-digit number

Some browsers pop up the standard calendar control. When the user selects
a date (or a week), only the year and week will be returned. Other browsers
will simply validate for the proper format:

<input type = "week"
 id = "week" />

month
The month input type generates a four-digit year followed by a two-digit
month. It frequently pops up the same calendar control as other date

******ebook converter DEMO Watermarks*******

pickers, but only the year and month (yyyy-mm format) are returned.
<input type = "month"

 id = "month" />

color
The color tool allows the user to choose a color using standard web
formats: recognized color names (yellow) and hex values preceded by a #
symbol (#ff0033.) The browser may display a color-picking tool like the
ones found in word processors and paint programs. At the moment, some
browsers simply display a text box and indicate whether the current content
is a valid color name or value.

<input type = "color"
 id = "color" />

number
The number field allows the input of numerical data. This often consists
of a text field followed by some kind of selector (say up and down arrows),
or it might change the virtual keypad of a portable device to handle only
numeric input.

<input type = "number"
 id = "number"
 max = "10"
 min = "0" />

The number input type supports several special attributes:

min: This is the minimum value allowed. If there is an on-screen input
element, it will not allow a value less than the min value. The field
will also not validate if the value of the field is less than the min value.
max: This is the maximum allowed value. If there is an on-screen input
element, it will not allow a value larger than the max value. The field
will not validate if the value of the field is larger than the max value.
step: This value indicates how much the visual interface tools
(typically small up and down arrows) will change the value when
activated.
value: This is the numeric value of the element.

******ebook converter DEMO Watermarks*******

All values can be integer or floating point. However, current browsers
which support this tag (Opera and Chrome) do not seem to validate as well
with floating-point values as they do with integer values. For more control
of numeric input, consider the range input type, described in the
following section.

range
The range input type is a long-anticipated addition to the HTML toolbox.
User interface experts have known for years that user input of integer
values is very difficult to get right. Most user interface toolkits have some
sort of slider or scrollbar mechanism that makes it easy for users to enter a
numeric value visually. The <input type = “range”> construct
finally adds this functionality to HTML forms.

<input type = "range"
 id = "range"
 min = "0"
 max = "255"
 value = "128" />

The range input takes the attributes number, min, max, value,
and step. If the browser supports this tag, the user will see a scroller. If
not, a plain-text input type will appear. When this element becomes
widespread, its use will be encouraged because it is much easier to restrict
the users input to a valid range (especially when the mechanism for doing
so is visual and easy) than it is to check the user's input after the fact.
However, the range type does not display the exact value, and it can be
harder to get precise results than with the number input type. One solution
is to pair an output tag to the range, and use JavaScript to update the
output when the range is changed. See rangeOutput.html on the
book's website to see this in action. (You may need to review JavaScript
coding in Book IV to completely follow this example.)

search
The search input type is used to retrieve text that's intended to be used as
part of a search (either internally or through some searching service like
Google). On most browsers, it is displayed like an ordinary text field. It
does sometimes have some special behavior. On Safari, the search field has

******ebook converter DEMO Watermarks*******

a small X that clears the contents of the search. On Chrome, the auto-
completion features of the main search bar (which is also the URL input
element in Chrome) are automatically applied to the search box.

<input type="search"
 id = "search" />

Like the other new input types, there is no penalty for using the search
element in browsers that do not support it. The fall-back is a plain text
input.
Note that the search element doesn't actually do any searching. If you
want to actually search for the value, you'll still need to write some code.
The search element does give you an interface consistent with the
browser's integrated search tools, but the actual behavior is still up to the
programmer.

email
The email element generally looks like a plain text field, but it validates
on an e-mail address. Also, it is possible that the browser will modify the
user experience in other ways. For example, mobile browsers may modify
the virtual keyboard to include the @ symbol, which is always present in e-
mail addresses:

<input type="email"
 id = "txtEmail" />

tel
The tel field is used to input a telephone number. It expects three digits
followed by a dash and four digits. You may need to play with the
pattern attribute if you want to allow an area code or extensions to
validate.

<input type = "tel"
 id = "tel" />

url
Use this input type to indicate a web address. Browsers that support this
element will check for the http:// prefix. Mobile browsers may also
adapt the virtual keyboard to include characters commonly found in URLs:

******ebook converter DEMO Watermarks*******

the colon (:), forward slash (/), and tilde (~).
<input type = "url"

 id = "url" />

******ebook converter DEMO Watermarks*******

Book II
Styling with CSS

 Visit www.dummies.com/extras/html5css3aio for
more on using HTML entities.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: Coloring Your World
Chapter 2: Styling Text
Chapter 3: Selectors: Coding with Class and Style
Chapter 4: Borders and Backgrounds
Chapter 5: Levels of CSS
Chapter 6: CSS Special Effects

******ebook converter DEMO Watermarks*******

Chapter 1
Coloring Your World

In This Chapter
 Introducing the style element
 Adding styles to tags
 Modifying your page dynamically
 Specifying foreground and background colors
 Understanding hex colors
 Appreciating HSL colors
 Developing a color scheme

HTML does a good job of setting up the basic design of a page, but face it:
The pages it makes are pretty ugly. In the old days, developers added a lot
of other tags to HTML to make it prettier, but changing the design with
HTML code was a haphazard affair. Now, HTML disallows all the tags
that made pages more attractive. That sounds bad, but it isn't really a loss.
Today, HTML is almost always written in concert with CSS (Cascading
Style Sheets). It's amazing how much you can do with CSS to beautify
your HTML pages.
CSS allows you to change the color of any image on the page, add
backgrounds and borders, change the visual appearance of elements (like
lists and links), as well as customize the entire layout of your page.
Additionally, CSS allows you to keep your HTML simple because all the
formatting is stored in the CSS. CSS is efficient, too, because it allows you
to reuse a style across multiple elements and pages. If HTML gives your
pages structure, CSS gives them beauty.
This chapter gets you started by describing how to add color to your pages.

Now You Have an Element of Style
The secret to CSS is the style sheet, a set of rules for describing how

******ebook converter DEMO Watermarks*******

various objects will display. For example, look at basicColors.html in
Figure 1-1.

 As always, don't take my word for it. This chapter is about color,
and you need to look at these pages from the companion website to see
what I'm talking about. See this book's Introduction for more on the
companion website.

Figure 1-1: This page is in color!

Nothing in the HTML code provides color information. What makes this
page different from plain HTML pages is a new section that I've stashed in
the header. Take a gander at the code to see what's going on (interesting
part is in bold):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>basicColors.html</title>
 <style type = "text/css">
 body {
 color: yellow;
 background-color: red;

******ebook converter DEMO Watermarks*******

 }
 h1 {
 color: red;
 background-color: yellow;
 }
 </style>
 </head>
 <body>
 <h1>Red text on a yellow background</h1>
 <p>
 Yellow text on a red background
 </p>
 </body>
</html>

As you can see, nothing is dramatically different in the HTML code. The
body simply contains an h1 and a p. Although the text mentions the colors,
nothing in the HTML code makes the colors really happen.
The secret is the new <style></style> pair I put in the header area:

<style type = "text/css">
 body {
 color: yellow;
 background-color: red;
 }

h1 {
 color: red;
 background-color: yellow;
 }
 </style>

The <style> tag is an HTML tag, but what it does is special: It switches
languages! Inside the style elements, you're not writing HTML anymore.
You're in a whole new language — CSS. CSS has a different job than
HTML, but they're made to work well together.

 It may seem that the CSS code is still part of HTML because it's
inside the HTML page, but it's best to think of HTML and CSS as two
distinct (if related) languages. HTML describes the content, and CSS
describes the layout. CSS (as you soon see) has a different syntax and
style than HTML and isn't always embedded in the web page.

******ebook converter DEMO Watermarks*******

Setting up a style sheet
Style sheets describe presentation rules for HTML elements. If you look at
the preceding style sheet (the code inside the <style> tags), you can see
that I've described presentation rules for two elements: the <body> and
<h1> tags. Whenever the browser encounters one of these tags, it attempts
to use these style rules to change that tag's visual appearance.
Styles are simply a list of selectors (places in the page that you want to
modify). For now, I use tag names (body and h1) as selectors. However,
in Chapter 3 of this minibook, I show many more selectors that you can
use.
Each selector can have a number of style rules. Each rule describes some
attribute of the selector. To set up a style, keep the following in mind:

Begin with the style tags. The type of style you'll be working with for
now is embedded into the page. You should describe your style in the
header area.
Include the style type in the header area. The style type is always
“text/css”. The beginning <style> tag always looks like this:

<style type = "text/css">

Define an element. Use the element name (the tag name alone) to
begin the definition of a particular element's style. You can define
styles for all the HTML elements (and other things, too, but not today).
The selector for the body is designated like this:

body {

Use braces ({}) to enclose the style rules. Each style's rules are
enclosed in a set of braces. Similar to many programming languages,
braces mark off special sections of code. It's traditional to indent inside
the braces.
Give a rule name. In this chapter, I'm working with two very simple
rules: color and background-color. Throughout this minibook,
you can read about many more CSS rules (sometimes called attributes)
that you can modify. A colon (:) character always follows the rule
name.
Enter the rule's value. Different rules take different values. The

******ebook converter DEMO Watermarks*******

attribute value is followed by a semicolon. Traditionally, each name-
value pair is on one line, like this:

body {
 color: yellow;
 background-color: red;
 }

Changing the colors
In this very simple example, I just changed some colors around. Here are
the two primary color attributes in CSS:

color: This refers to the foreground color of any text in the element.
background-color: The background color of the element. (The
hyphen is a formal part of the name. If you leave it out, the browser
won't know what you're talking about.)

With these two elements, you can specify the color of any element. For
example, if you want all your paragraphs to have white text on a blue
background, add the following text to your style:

p {
 color: white;
 background-color: blue;
}

 CSS is case-sensitive. CSS styles should be written entirely in
lowercase.

You'll figure out many more style elements in your travels, but they all
follow the same principles illustrated by the color attributes.

Specifying Colors in CSS
Here are the two main ways to define colors in CSS. You can use color
names, such as pink and fuchsia, or you can use hex values. (Later in
this chapter, in the section “Creating Your Own Color Scheme,” you find
out how to use special numeric designators to choose colors.) Each

******ebook converter DEMO Watermarks*******

approach has its advantages.

Using color names
Color names seem like the easiest solution, and, for basic colors like red
and yellow, they work fine. However, here are some problems with color
names that make them troublesome for web developers:

Only 16 color names will validate. Although most browsers accept
hundreds of color names, only 16 are guaranteed to validate in CSS and
HTML validators. See Table 1-1 for a list of those 16 colors.
Color names are somewhat subjective. You'll find different opinions
on what exactly constitutes any particular color, especially when you
get to the more obscure colors. (I personally wasn't aware that
PeachPuff and PapayaWhip are colors. They sound more like
dessert recipes to me.)
It can be difficult to modify a color. For example, what color is a tad
bluer than Gainsboro? (Yeah, that's a color name, too. I had no idea
how extensive my color disability really was.)
They're hard to match. Say you're building an online shrine to your
cat and you want the text to match your cat's eye color. It'll be hard to
figure out exactly what color name corresponds to your cat's eyes. I
guess you could ask the cat.

Hex color values can be indicated in uppercase or lowercase. The
mysterious hex codes are included in this table for completeness. It's okay
if you don't understand what they're about. All is revealed in the next
section.

Table 1-1 Legal Color Names and Hex Equivalents
Color Hex Value

Black #000000

Silver #C0C0C0

Gray #808080

White #FFFFFF

Maroon #800000

******ebook converter DEMO Watermarks*******

Red #FF0000

Purple #800080

Fuchsia#FF00FF

Green #008800

Lime #00FF00

Olive #808000

Yellow #FFFF00

Navy #000080

Blue #0000FF

Teal #008080

Aqua #00FFFF

Obviously, I can't show you actual colors in this black-and-white book, so I
added a simple page to this book's companion website that displays all the
named colors. Check namedColors.html to see the actual colors, and see
this book's Introduction for information on how to access the website.

Putting a hex on your colors
Colors in HTML are a strange thing. The “easy” way (with color names)
turns out to have many problems. The method most web developers really
use sounds a lot harder, but it isn't as bad as it may seem at first. The hex
color scheme uses a seemingly bizarre combination of numbers and letters
to determine color values. #00FFFF is aqua. #FFFF00 is yellow. It's a
scheme only a computer scientist could love. Yet, after you get used to it,
you'll find the system has its own geeky charm. (And isn't geeky charm the
best kind?)
Hex colors work by describing exactly what the computer is doing, so you
have to know a little more about how computers work with color. Each dot
(or pixel) on the screen is actually composed of three tiny beams of light
(or LCD diodes or something similar). Each pixel has tiny red, green, and
blue beams.
The light beams work kind of like stage lights. Imagine a black stage with
three spotlights (red, green, and blue) trained on the same spot. If all the
lights are off, the stage is completely dark. If you turn on only the red light,
you see red. You can turn on combinations to get new colors. For example,
turning on red and green creates a spot of yellow light. Turning on all three

******ebook converter DEMO Watermarks*******

lights makes white.

Coloring by number
In a computer system, each of the little lights can be adjusted to various
levels of brightness. These values measure from 0 (all the way off) to 255
(all the way on). Therefore, you could describe red as rgb(255, 0, 0)
and yellow as rgb(255, 255, 0).
The 0 to 255 range of values seems strange because you're probably used
to base 10 mathematics. The computer actually stores values in binary
notation. The way a computer sees it, yellow is actually
111111111111111100000000. Ack! There has to be an easier way to
handle all those binary values. That's why we use hexadecimal notation.
Read on. . . .
Figure 1-2 shows a page which allows you to pick colors with red, green,
and blue sliders. Each slider shows its value in base 10 as well as in
hexadecimal.

Figure 1-2: Play with this program to see the various colors you can use.

 The colorChooser program shown in Figure 1-2 uses technology
that will be described in Book IV. Any page that interacts with the user

******ebook converter DEMO Watermarks*******

will tend to use a programming language (in this case, JavaScript). Feel
free to look over the code, but don't worry if you're not yet ready to add
programming to your sites. You'll get there soon enough, I promise.

Hex education
All those 1s and 0s get tedious. Programmers like to convert to another
format that's easier to work with. Believe it or not, it's easier to convert
binary numbers to base 16 than base 10, so that's what programmers do.
You can survive just fine without understanding base 16 (also called
hexadecimal or hex) conversion, but you should understand a few key
features, such as:

Each hex digit is shorthand for four digits of binary. The whole
reason programmers use hex is to simplify working with binary.
Each digit represents a value between 0 and 15. Four digits of binary
represent a value between 0 and 15.
We have to invent some digits. The whole reason hex looks so weird
is the inclusion of characters. This is for a simple reason: There aren't
enough numeric digits to go around! Table 1-2 illustrates the basic
problem.

Table 1-2 Hex Representation of Base Ten Numbers
Decimal (Base 10)Hex (Base 16)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

******ebook converter DEMO Watermarks*******

12 C

13 D

14 E

15 F

The ordinary digits 0–9 are the same in hex as they are in base 10, but the
values from 10–15 (base ten) are represented by alphabetic characters in
hexadecimal.

 You're very used to seeing the value 10 as equal to the number of
fingers on both hands, but that's not always the case when you start
messing around with numbering systems like we're doing here. The
number 10 simply means one of the current base. Until now, you may
have never used any base but base ten, but all that changes today. The
numeral 10 is ten in base ten, but in base two, 10 means two. In base
eight, 10 means eight, and in base sixteen, 10 means sixteen. This is
important because when you want to talk about the number of digits on
your hands in hex, you can't use the familiar notation 10 because in hex
10 means sixteen. We need a single-digit value to represent ten, so
computer scientists legislated themselves out of this mess by borrowing
letters. 10 is A, 11 is B, and 15 is F.

If all this math theory is making you dizzy, don't worry. I show in the next
section some shortcuts for creating great colors using this scheme. For
now, though, here's what you need to understand to use hex colors:

A color requires six digits of hex. A pixel requires three colors, and
each color uses eight digits of binary. Two digits of hex cover each
color. Two digits represent red, two for green, and finally two for blue.
Hex color values usually begin with a pound sign. To warn the
browser that a value will be in hexadecimal, the value is usually
preceded with a pound sign (#). So, yellow is #FFFF00.

Working with colors in hex may seem really crazy and difficult, but it has
some important advantages:

******ebook converter DEMO Watermarks*******

Precision: Using this system gives you a huge number of colors to
work with (over 16 million, if you really want to know). There's no
way you could come up with that many color names on your own.
Well, you could, but you'd be very, very old by the time you were
done.
Objectivity: Hex values aren't a matter of opinion. There could be
some argument about which color is burnt sienna, but hex value
#666600 is unambiguous.
Portability: Most graphic editing software uses the hex system, so you
can pick any color of an image and get its hex value immediately. This
would make it easy to find your cat's eye color for that online shrine.
Predictability: After you understand how it works, you can take any
hex color and convert it to a value that's a little darker, a little brighter,
or that has a little more blue in it. This is difficult to do with named
colors.
Ease of use: This one may seem like a stretch, but after you understand
the web-safe palette, which I describe in the next section, it's very easy
to get a rough idea of a color and then tweak it to make exactly the
form you're looking for.

Using the web-safe color palette
A long time ago, browsers couldn't even agree on what colors they'd
display reliably. Web developers responded by working within a
predefined palette of colors that worked pretty much the same on every
browser. Today's browsers have no problems showing lots of colors, but
the so-called web-safe color palette is still sometimes used because it's an
easy starting point.
The basic idea of the web-safe palette (shown in Table 1-3) is this: Each
color can have only one of the following values: 00, 33, 66, 99,
CC, or FF. 00 is the darkest value for each color, and FF is the brightest.
The primary colors are all made of 0s and Fs: #FF0000 is red (all red, no
green, no blue). A web-safe color uses any combination of these values, so
#33CC00 is web-safe, but #112233 is not.

******ebook converter DEMO Watermarks*******

To pick a web-safe value from this chart, determine how much of each
color you want. A bright red will have red turned on all the way (FF) with
no green (00) and no blue (00), making #FF0000. If you want a darker
red, you might turn the red down a little. The next darker web-safe red is
#CC0000. If that isn't dark enough, you might try #990000. Say you like
that, but you want it a little purple. Simply add a notch or two of blue:
#990033 or #990066.

Figure 1-3 is a simple tool that allows you to experiment with the web-safe
color palette.

Figure 1-3: Use this tool to explore web-safe colors.

******ebook converter DEMO Watermarks*******

 The original problem web-safe colors were designed to alleviate
is long resolved, but they're still popular as a starting point. Web-safe
colors give you a dispersed and easily understood subset of colors you
can start with. You don't have to stay there, but it's a great place to start.

Choosing Your Colors
Colors can seem overwhelming, but with a little bit of practice, you'll be
managing colors with style.

Starting with web-safe colors
The webSafe.html program works by letting you quickly enter a web-safe
value. To make red, press the FF button in the red column. The blue and
green values have the default value of 00, so the background is red.
The web-safe colors give you a lot of room to play, and they're very easy to
work with. In fact, they're so common that you can use a shortcut. Because
the web-safe colors are all repeated, you can write a repeated digit (FF) as
a single digit (F). You can specify magenta as either #FF00FF or as #FOF
and the browser understands, giving you a headache-inducing magenta.
To make a darker red, change the FF to the next smallest value, making
#CC0000. If you want it darker yet, try #990000. Experiment with all
the red values and see how easy it is to get several different types of red. If
you want a variation of pink, raise the green and blue values together.
#FF6666 is a dusty pink color; #FF9999 is a bit brighter; and #FFCCCC
is a very white pink.

Modifying your colors
The web-safe palette is convenient, but it gives you a relatively small
number of colors (216, if you're counting). Two hundred and sixteen
crayons in the box are pretty nice, but you might need more. Generally, I
start with web-safe colors and then adjust as I go. If you want a lighter pink
than #FFCCCC, you can jump off the web-safe bandwagon and use
#FFEEEE or any other color you wish!

******ebook converter DEMO Watermarks*******

In the webSafe.html program, you can use the top and bottom button in
each row to fine-tune the adjustments to your color.

Doing it on your own pages
Of course, it doesn't really matter how the colors look on my page. The
point is to make things look good on your pages. To add color to your
pages, do the following:

1. Define the HTML as normal.

The HTML shouldn't have any relationship to the colors. Add the color
strictly in CSS.

2. Add a <style> tag to the page in the header area.

Don't forget to set the type = “text/css” attribute.

3. Add a selector for each tag you want to modify.

You can modify any HTML tag, so if you want to change all the
paragraphs, add a p { } selector. Use the tag name without the angle
braces, so <h1> becomes h1{ }.

4. Add color and background-color attributes.

You'll discover many more CSS elements you can modify throughout
Books II and III but for now, stick to color and background-
color.

5. Specify the color values with color names or hex color values.

Changing CSS on the fly
The Chrome web browser has an especially cool trick when it comes to
CSS coding. You can look at the CSS of any element on a web page and
change it, seeing the results in real time!
Here's how it works:

******ebook converter DEMO Watermarks*******

1. Build the page in the normal way.

Use your text editor to build the basic page.

2. Add CSS selectors.

Specify the CSS for the elements you intend to change. The
emptyCSS.html page on the website shows a very simple example.
You can put any values you want in the CSS, or you can simply leave
the CSS blank for now. If you want to experiment, take a look at
emptyCSS.html on the website. It has empty selectors for the three
elements described on the page (body, h1, and p).

3. Load your page in Chrome.

The other browsers are starting to develop tools like Chrome, but it's
clearly the leader, so start with Chrome.

4. Inspect an element.

Right-click any element and choose Inspect element from the resulting
pop-up menu.

5. Gasp in wonderment at the awesome developer tools.

Figure 1-4 shows the developer tools that pop up when you inspect an
element. Keep it in the Elements tab for now.

6. Change the HTML code!

You can double-click the code in the code viewer and modify the
contents. This is fun, but not permanent or especially helpful.

7. You can also modify the CSS.

If a style selector has been defined, it appears under the Styles tab in
the Matched CSS Rules section. You can add new style rules or change
the existing ones, and you'll be able to see the results on the fly.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

8. You can even use a fancy color selector.

When a color rule has been defined, you'll see a little color swatch.
Click on that color to get a nice color selector you can use.

9. Select different parts of the page to modify other rules.

You can modify the CSS of any element as long as some sort of rule
has been saved.

10. Copy and paste any style rules you want to keep.

Modifications made in the web developer toolbar are not permanent. If
you find colors or other style rules you like, you can copy them from
the developer window and paste them into your code.

Figure 1-4: The Chrome developer tools allow you to change CSS on the fly.

Creating Your Own Color Scheme
The technical side of setting colors isn't too difficult, but deciding what
colors to use can be a challenge. Entire books have been written about how
to determine a color scheme. A little bit of subjectivity is in the process,
but a few tools and rules can get you started.

******ebook converter DEMO Watermarks*******

Understanding hue, saturation, and
lightness
The RGB color model is useful because it relates directly to how
computers generate color, but it's not perfect. It's a bit difficult to visualize
variations of a color in RGB. For that reason, other color schemes are often
used. The most common variation is Hue, Saturation, and Lightness, or
HSL. The HSL system organizes colors in a way more closely related to the
color wheel.

 Sometimes you'll run across the HSB or HSV color schemes,
which are very similar to HSL. In all these color modes, you begin with
a Hue, and then use saturation to indicate how far the color is from a
grayscale. Brightness, value and lightness, do basically the same thing
(determine the general amount of energy in the color) but using
different models.

To describe a color using HSL, you specify three characteristics of a color
using numeric values:

Hue: The basic color. The color wheel is broken into a series of hues.
These are generally middle of the road colors that can be made brighter
(closer to white) and darker (closer to black).
Saturation: How pervasive the color is. A high saturation is very
bright. A low saturation has very little color. If you reduce all the
saturation in an image, the image is grayscale, with no color at all.
Lightness: The amount of light in the color. The easiest way to view
value is to think about how the image would look when reduced to
grayscale (by pulling down the saturation). All the brighter colors will
be closer to white, and the darker colors will be nearly black.

The HSL model is useful because it allows you to pick colors that go well
together. Use the hue property to pick the basic colors. Because there's a
mathematical relationship between the various color values, it becomes
easy to predict which colors work well together. After you have all the

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

hues worked out, you can change the saturation and value to modify the
overall tone of the page. Generally, all the colors in a particular scheme
have similar saturation and values.
You can use the HSL color model to pick colors if you prefer. Figure 1-5
shows a color picker that lets you design colors based on the HSL model.

Figure 1-5: The HSL model provides another way to view colors.

Using HSL colors in your pages
You can assign an HSL value wherever you use colors in your CSS. As an
example, look at HSLcolors.html on the companion website. (I do not
show it here because the color differences are too subtle to display in a
black and white book.) The code for HSLcolors.html shows how the HSL
scheme can be used:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>HSLcolors.html</title>
 <style type = "text/css">
 body {
 background-color: HSL(180, 75%, 75%);
 }
 h1 {

******ebook converter DEMO Watermarks*******

 color: HSL(180, 75%, 25%);
 background-color: HSL(180, 75%, 90%);
 }
 p {
 color: HSL(0, 75%, 25%);
 }
 </style>
 </head>
 <body>
 <h1>This is a headline</h1>
 <p>
 This is a paragraph
 </p>
 </body>
</html>

To specify a color using the HSL scheme, do this:

1. Set up your selectors as usual.

In the CSS, set up a selector for each element you wish to color.

2. Add the color rule.

In this chapter you learn two color rules: color and background-
color. Apply one or both to each selector.

3. Use the HSL function.

Using HSL followed by parentheses indicates you wish to calculate the
color using the HSL technique.

4. Indicate the hue.

Imagine a color wheel with red at the top. The hue is the angle (in
degrees) of the color you want to pick. Hue should have a value
between 0 and 360.

5. Determine the saturation.

Saturation is measured as a percentage. Saturation of 0% indicates a
grayscale (somewhere between black and white) whereas Saturation of
100% is a fully saturated color with no grayscale. You need to include

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

the percent sign as part of the saturation value.

6. Specify the lightness.

Lightness is also indicated as a percentage, with 0% being completely
black and 100% being completely white. A lightness value of 50% will
determine a balanced color between white and black. Lightness values
should also include the percent sign.

The HSL model is a relatively recent addition to CSS, so it may not work
with older browsers, but it can be extremely helpful. HSL makes it easier to
predict whether colors will look good together. If you keep any two of the
HSL values the same and change the third, the two colors are likely to fit
together well.

Using the Color Scheme Designer
Some people have great color sense. Others (like me) struggle a little bit
because it all seems a little subjective. If you're already confident with
colors, you may not need this section — although, you still might find it
interesting validation of what you already know. On the other hand, if you
get perplexed in a paint store, you might find it helpful to know that some
really useful tools are available.
One great way to get started is with a free tool: the Color Scheme Designer,
shown in Figure 1-6. This tool, created by Petr Stanicek, uses a variation of
the HSV model to help you pick color schemes. You can find this program
at http://colorschemedesigner.com.

******ebook converter DEMO Watermarks*******

http://colorschemedesigner.com

Figure 1-6: The Color Scheme Designer helps you pick colors.

The Color Scheme Designer has several features, such as

The color wheel: This tool may bring back fond memories of your
elementary school art class. The wheel arranges the colors in a way
familiar to artists. You can click the color wheel to pick a primary
color for your page.
The color scheme selector: You can pick from a number of color
schemes. I describe these schemes a little later in this section.
A preview area: This area displays the selected colors in action so you
can see how the various colors work together.
Hex values: The hex values for the selected colors display on the page
so you can copy them to your own application.
Variations: You can look at variations of the selected scheme. These
variations are often useful because they show differences in the
saturation and value without you doing the math.
Color-blindness simulation: This very handy tool lets you see your
color scheme as it appears to people with various types of color-
blindness.

******ebook converter DEMO Watermarks*******

 This won't make sense without experimentation. Be sure to play
with this tool and see how easy it is to create colors that work well
together.

Selecting a base hue
The Color Scheme Designer works by letting you pick one main hue and
then uses one of a number of schemes for picking other hues that work well
with the base one. To choose the base hue you want for your page, click a
color on the color wheel.

 The color wheel is arranged according to the traditional artist's
color scheme based on HSV rather than the RGB scheme used for
computer graphics. When you select a color, the closest RGB
representation is returned. This is nice because it allows you to apply
traditional (HSV-style) color theory to the slightly different RGB
model.

When you pick a color on the color wheel, you're actually picking a hue. If
you want any type of red, you can pick the red that appears on the wheel.
You can then adjust the variations to modify the saturation and value of all
the colors in the scheme together.
To pick a color using this scheme, follow these steps:

1. Pick a hue.

The colors on the color wheel represent hues in the HSV model. Find a
primary color you want to use as the foundation of your page.

2. Determine a scheme.

The scheme indicates which other colors you will use and how they
relate to the primary hue. More information on the various schemes is
available in the next section.

******ebook converter DEMO Watermarks*******

3. Adjust your scheme.

The main schemes are picked using default settings for saturation and
value. The Adjust Scheme tab allows you to modify the saturation and
value settings to get much more control of your color scheme. You can
also adjust the level of contrast to get very interesting effects.

4. Preview the scheme.

The Designer has several options for previewing your color scheme,
including the ability to create quick web pages using the scheme. You
might also look at the color blindness simulators to see how your page
appears to people with different kinds of color blindness.

5. Export the color settings.

If you want, you can export the color settings to a number of formats,
including a very nice HTML/CSS format. You can also save the colors
to a special file for importing into GIMP or Photoshop, so the exact
colors used in your page will be available to your image editor, too.

Picking a color scheme
The various color schemes use mathematical relationships around the color
wheel to predict colors that work well with the primary color. Here are the
basic schemes, including what they do:

Mono (monochromatic): Takes the base hue and offers a number of
variations in saturation and value. This scheme is nice when you really
want to emphasize one particular color (for example, if you're doing a
website about rain forests and want a lot of greens). Be sure to use high
contrast between the foreground and background colors so your text is
readable.
Complement: Uses the base hue and the complementary (opposite)
color. Generally, this scheme uses several variations of the base hue
and a splash of the complementary hue for contrast.
Triad: Selects the base hue and two opposite hues. When you select

******ebook converter DEMO Watermarks*******

the Triad scheme, you can also choose the angular distance between
the opposite colors. If this distance is zero, you have the
complementary color scheme. When the angle increases, you have a
split complementary system, which uses the base hue and two hues
equidistant from the contrast. Such schemes can be jarring at full
contrast, but when adjusted for saturation and value, you can create
some very nice color schemes.
Tetrad: Generates four hues. As with the Triad scheme, when you add
more hues, keeping your page unified becomes more difficult unless
you adjust the variations for lower contrast.
Analogic: Schemes use the base hue and its two neighbors.
Accented Analogic: Just like the Analogic scheme, but with the
addition of the complementary color.

******ebook converter DEMO Watermarks*******

Chapter 2
Styling Text

In This Chapter
 Introducing fonts and typefaces
 Specifying the font family
 Determining font size
 Understanding CSS measurement units
 Managing other font characteristics
 Using the font rule to simplify font styles

Web pages are still primarily a text-based media, so you'll want to add
some formatting capabilities. HTML doesn't do any meaningful text
formatting on its own, but CSS adds a wide range of tools for choosing the
typeface, font size, decorations, alignment, and much more. In this chapter,
you discover how to manage text the CSS way.

 A bit of semantics is in order. The thing most people dub a font is
more properly a typeface. Technically, a font is a particular typeface at
a particular size with a specific set of decorations (underlining, italic,
and so on). The distinction is honestly not that important in a digital
setting. You don't explicitly set the font in CSS. You determine the font
family (which is essentially a typeface), and then you modify its
characteristics (creating a font as purists would think of it). Still, when
I'm referring to the thing that most people call a font (a file in the
operating system that describes the appearance of an alphabet set), I use
the familiar term font.

Setting the Font Family
To assign a font family to part of your page, use some new CSS. Figure 2-1

******ebook converter DEMO Watermarks*******

illustrates a page with the heading set to Comic Sans MS.
If this page is viewed on a Windows machine, it generally displays the font
correctly because Comic Sans MS is installed with most versions of
Windows. If you're on another type of machine, you may get something
else. More on that in a moment, but for now, look at the simple case.
Here's the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>comicHead.html</title>
 <style type = "text/css">
 h1 {
 font-family: "Comic Sans MS";
 }
 </style>
 </head>
 <body>
 <h1>This is a heading</h1>
 <p>
 This is ordinary text.
 </p>
 </body>
</html>

Applying the font-family style attribute
The secret to this page is the CSS font-family attribute. Like most
CSS elements, this can be applied to any HTML tag on your page. In this
particular case, I applied it to my level one heading.

h1 {
 font-family: "Comic Sans MS";
 }

You can then attach any font name you wish, and the browser attempts to
use that font to display the element.

 Even though a font may work perfectly fine on your computer, it
may not work if that font isn't installed on the user's machine.

******ebook converter DEMO Watermarks*******

Figure 2-1: The headline is in the Comic Sans font (most of the time).

If you run exactly the same page on an iPad, you might see the result
shown in Figure 2-2.

Figure 2-2: On an iPad, the heading might not be the same font!

The specific font Comic Sans MS is installed on Windows machines, but
the MS stands for Microsoft. This font isn't always installed on Linux or
Mac. (Sometimes it's there, and sometimes it isn't.) You can't count on
users having any particular fonts installed.

******ebook converter DEMO Watermarks*******

 The Comic Sans font is fine for an example, but it has been
heavily over-used in web development. Serious web developers avoid
using it in real applications because it tends to make your page look
amateurish.

Using generic fonts
It's a little depressing. Even though it's easy to use fonts, you can't use them
freely because you don't know if the user has them. Fortunately, you can do
a few things that at least increase the odds in your favor. The first trick is to
use generic font names. These are virtual font names that every compliant
browser agrees to support. Figure 2-3 shows a page with all the generic
fonts.

 I used browser controls to make the fonts larger than normal so
you can see the details in this figure. Both the programmer and the user
should be able to change the font size. Later, I describe how to change
the font size through code. If you want to see how your browser
handles these fonts, take a look at fontFamilyDemo.html on the
companion website. For more on the companion website, see this
book's Introduction.

******ebook converter DEMO Watermarks*******

Figure 2-3: Here are all the generic fonts.

The generic fonts really are families of fonts:

Serif: These fonts have those little serifs (the tiny cross strokes that
enhance readability). Print text (like the paragraph you're reading now)
tends to use serif fonts, and they're the default font for most browsers.
The most common serif typeface is Times New Roman or Times.
Sans Serif: Sans serif fonts don't have the little feet. Generally, they're
used for headlines or other emphasis. Sometimes, they're seen as more
modern and cleaner than serif fonts, so sometimes they're used for
body text. Arial is the most common sans serif font. In this book, the
figure captions use a sans serif font.
Cursive: These fonts look a little like handwriting. In Windows, the
script font is usually Comic Sans MS. Script fonts are used when you
want a less formal look. For Dummies books use script fonts all over
the place for section and chapter headings.
Fantasy: Fantasy fonts are decorative. Just about any theme you can
think of is represented by a fantasy font, from Klingon to Tolkien. You
can also find fonts that evoke a certain culture, making English text
appear to be Persian or Chinese. Fantasy fonts are best used sparingly,
for emphasis, as they often trade readability for visual appeal.
Monospace: Monospace fonts produce a fixed-width font like

******ebook converter DEMO Watermarks*******

typewritten text. Monospace fonts are frequently used to display code.
Courier is a common monospace font. All code listings in this book use
a monospaced font.

Because the generic fonts are available on all standards-compliant
browsers, you'd think you could use them confidently. Well, you can be
sure they'll appear, but you still might be surprised at the result. Figure 2-4
shows the same page as Figure 2-3 (in Windows) but on an iPad.

Figure 2-4: Windows and the iPad disagree on fantasy.

Macs display yet another variation because the fonts listed here aren't
actual fonts. Instead, they're virtual fonts. A standards-compliant browser
promises to select an appropriate stand in. For example, if you choose sans
serif, one browser may choose to use Arial. Another may choose Chicago.
You can always use these generic font names and know the browser can
find something close, but there's no guarantee exactly what font the
browser will choose. Still, it's better than nothing. When you use these
fonts, you're assured something in the right neighborhood, if not exactly
what you intended.

Making a list of fonts
This uncertainty is frustrating, but you can take some control. You can
specify an entire list of font names if you want. The browser tries each font

******ebook converter DEMO Watermarks*******

in turn. If it can't find the specified font, it goes to the next font and on
down the line.
You might choose a font that you know is installed on all Windows
machines, a font found on Macs, and finally one found on all Linux
machines. The last font on your list should be one of the generic fonts, so
you'll have some control over the worst-case scenario.
Table 2-1 shows a list of fonts commonly installed on Windows, Mac, and
Linux machines.

Table 2-1 Font Equivalents
Windows Mac Linux

Arial Arial Nimbus Sans L

Arial Black Arial Black

Comic Sans MS Comic Sans MS TSCu_Comic

Courier New Courier New Nimbus Mono L

Georgia Georgia Nimbus Roman No9 L

Lucida Console Monaco

Palatino Palatino FreeSerif

Tahoma Geneva Kalimati

Times New Roman Times FreeSerif

Trebuchet MS Helvetica FreeSans

Verdana Verdana Kalimati

You can use this chart to derive a list of fonts to try. For example, look at
the following style:

p {
 font-family: "Trebuchet MS", Helvetica, FreeSans, sans-serif;
}

This style has a whole smorgasbord of options. First, the browser tries to
load Trebuchet MS. If it's a Windows machine, this font is available, so
that one displays. If that doesn't work, the browser tries Helvetica (a default
Mac font). If that doesn't work, it tries FreeSans, a font frequently installed
on Linux machines. If this doesn't work, it defaults to the old faithful sans
serif, which simply picks a sans serif font.
Note that font names of more than one word must be encased in quotes,

******ebook converter DEMO Watermarks*******

and commas separate the list of font names.

 Don't get too stressed about Linux fonts. It's true that the
equivalencies are harder to find, but Linux users tend to fall into two
camps: They either don't care if the fonts are exact, or they do care and
they've installed equivalent fonts that recognize the common names. In
either case, you can focus on Mac and Windows people for the most
part, and, as long as you've used a generic font name, things work okay
on a Linux box. Truth is, I mainly use Linux, and I've installed all the
fonts I need.

The death of the font tag
There used to be a tag in old-school HTML called the tag. You could use this tag
to change the size, color, and font family. There were also specific tags for italic (<i>),
boldface (), and centering (<center>). These tags were very easy to use, but they
caused some major problems. To use them well, you ended up littering your page with all
kinds of tags trying to describe the markup, rather than the meaning. There was no easy
way to reuse font information, so you often had to repeat things many times throughout the
page, making it difficult to change. Web developers are now discouraged from using
, <i>, , or <center> tags. The CSS elements I show in this chapter more
than compensate for this loss. You now have a more flexible, more powerful alternative.

The Curse of Web-Based Fonts
Fonts seem pretty easy at first, but some big problems arise with actually
using them.

Understanding the problem
The problem with fonts is this: Font resources are installed in each
operating system. They aren't downloaded with the rest of the page. Your
web page can call for a specific font, but that font isn't displayed unless it's
already installed on the user's computer.
Say I have a cool font called Happygeek. (I just made that up. If you're a

******ebook converter DEMO Watermarks*******

font designer, feel free to make a font called that. Just send me a copy. I
can't wait.) It's installed on my computer, and when I choose a font in my
word processor, it shows up in the list. I can create a word-processing
document with it, and everything will work great.
If I send a printout of a document using Happygeek to my grandma,
everything's great because the paper doesn't need the actual font. It's just
ink. If I send her the digital file and tell her to open it on her computer,
we'll have a problem. See, she's not that hip and doesn't have Happygeek
installed. Her computer will pick some other font.
This isn't a big problem in word processing because people don't generally
send around digital copies of documents with elaborate fonts in them.
However, web pages are passed around only in digital form. To know
which fonts you can use, you have to know what fonts are installed on the
user's machine, and that's impossible.

 Part of the concern is technical (figuring out how to transfer the
font information to the browser), but the real issue is digital rights
management. If you've purchased a font for your own use, does that
give you the right to transfer it to others, so now they can use it without
paying?

Using embedded fonts
Although a web developer can suggest any font for a web page, the font
files are traditionally a client-level asset. If the client doesn't have the font
installed, she won't see it. Fortunately, CSS3 supports a sensible solution
for providing downloadable fonts, called @font-face. Figure 2-5 shows
a page with a couple of embedded fonts.

******ebook converter DEMO Watermarks*******

Figure 2-5: This page includes a couple of embedded fonts.

The @font-face style does not work like most CSS elements. It doesn't
apply markup to some part of the page. Instead, it defines a new CSS value
that can be used in other markup. Specifically, it allows you to place a font
file on your server and define a font family using that font.

@font-face {
 font-family: "Miama";
 src: url("Miama.otf");
 }

The font-family attribute indicates the name you will be giving this
font in the rest of your CSS code. Typically it is similar to the font file
name, but this is not required. The src attribute is the URL of the actual
font file as it is found on the server. After a font-face has been defined, it
can be used in an ordinary font-family attribute in the rest of your
CSS code:

h1 {
 font-family: Miama;
 }

Here's the code for the custom font example:
<!DOCTYPE html>
 <head>
 <title>EmbeddedFont</title>
 <style type = "text/css">
 @font-face {

******ebook converter DEMO Watermarks*******

Owner
Highlight

 font-family: "Miama";
 src: url("Miama.otf");
 }
 @font-face {
 font-family: "spray";
 src: url("ideoma_SPRAY.otf");
 }

h1 {
 font-family: Miama;
 font-size: 300%;
 }

h2 {
 font-family: spray;
 }
 </style>
 </head>

<body>
 <h1>Embedded Font Demo</h1>
 <h2>Here's another custom font</h2>
 </body>
</html>

Although all modern browsers support the @font-face feature, the
actual file types supported vary from browser to browser. Here are the
primary font types:

TTF: The standard TrueType format is well-supported, but not by all
browsers. Many open-source fonts are available in this format.
OTF: This is similar to TTF, but is a truly open standard, so it is
preferred by those who are interested in open standards. It is supported
by most browsers except IE.
WOFF: WOFF is a proposed standard format currently supported by
Firefox. Microsoft has hinted at supporting this format in IE.
EOT: This is Microsoft's proprietary embedded font format. It only
works in IE, but to be fair, Microsoft has had embedded font support
for many years.

You can use a font conversion tool like
http://onlinefontconverter.com/ to convert to whatever font

******ebook converter DEMO Watermarks*******

http://onlinefontconverter.com/

format you prefer.

It's possible to supply multiple src attributes. This way, you can include
both an EOT and OTF version of a font so that it will work on a wide
variety of browsers.
When you use this technique, you need to have a copy of the font file
locally. For now, it should be in the same directory as your web page ( just
as you do with images.) When you begin hosting on a web server, you'll
want to move your font file to the server along with all the other resources
your web page needs. Just because you can include a font doesn't mean you
should. Think carefully about readability. Also, be respectful of intellectual
property. Fortunately there are many excellent free open-source fonts
available. Begin by looking at Open Font Library
(http://openfontlibrary.org/). Google Fonts
(www.google.com/fonts/) is another great resource for free fonts.
With the Google Font tool, you can select a font embedded on Google's
servers, and you can copy code that makes the font available without
downloading.

Using images for headlines
Generally, you should use standard fonts for the page's main content, so
having a limited array of fonts isn't such a big problem. Sometimes,
though, you want to use fonts in your headlines. You can use a graphical
editor, like GIMP, to create text-based images and then incorporate them
into your pages. Figure 2-6 shows an example of this technique.

******ebook converter DEMO Watermarks*******

http://openfontlibrary.org/
http://www.google.com/fonts/

Figure 2-6: The font shows up because it's an image.

In this case, I want to use my special cow font. (I love my cow font.)
Here's the process:

1. Plan your page.

When you use graphics, you lose a little flexibility. You need to know
exactly what the headlines should be. You also need to know what
headline will display at what level. Rather than relying on the browser
to display your headlines, you're creating graphics in your graphic tool
(I'm using GIMP) and placing them directly in the page.

2. Create your images.

I used the wonderful Logos feature in GIMP (choose Xtns ➩ Script-fu
➩ logos) to create my cow text. I built an image for each headline with
the Bovination tool. I'm just happy to have a Bovination tool. It's
something I've always wanted. If only it could be converted to a
weapon.

3. Specify font sizes directly.

In the image, it makes sense to specify font sizes in pixels because here

******ebook converter DEMO Watermarks*******

you're really talking about a specific number of pixels. You're creating
“virtual text” in your graphic editor, so make the text whatever size you
want it to be in the finished page.

4. Use any font you want.

You don't have to worry about whether the user has the font because
you're not sending the font, just an image composed with the font.

5. Create a separate image for each headline.

This particular exercise has two images — a level 1 heading and a
level 2. Because I'm creating images directly, it's up to me to keep
track of how the image will communicate its headline level.

6. Consider the headline level.

Be sure to make headline level 2 values look a little smaller or less
emphasized than level 1. That is, if you have images that will be used
in a heading 1 setting, they should use a larger font than images that
will be used in a less emphasized heading level. Usually, this is done
by adjusting the font size in your images.

7. Build the page the way you normally would.

After you create these specialty images, build a regular web page. Put
<h1> and <h2> tags in exactly the same places you usually do.

8. Put tags inside the headings.

Rather than ordinary text, place image tags inside the <h1> and <h2>
tags. See the upcoming code imageTitles.html if you're a little
confused.

9. Put headline text in the alt attribute.

The alt attribute is especially important here because if the user has
graphics turned off, the text still appears as an appropriately styled

******ebook converter DEMO Watermarks*******

heading. People with slow connections see the text before the images
load, and people using text readers can still read the image's alt text.

Here's the code used to generate the image-based headers:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>imageTitles.html</title>
 </head>
 <body>
 <h1>
 <img src = "cowsHistory.png"
 alt = "Cows in History" />
 </h1>
 <p>
 This page describes famous cows in history
 </p>
 <h2>
 <img src = "cowpens.png"
 alt = "Battle of Cowpens" />
 </h2>
 <p>
 Most people are unaware that cattle actually took
 part in the battle. They didn't of course. I just
 made that up.
 </p>
 </body>
</html>

This technique is a nice compromise between custom graphics and
ordinary HTML as follows:

You have great control of your images. If you're skilled with your
graphics tool, you can make any type of image you want act as a
headline. There's literally no limit except your skill and creativity.
The page retains its structure. You still have heading tags in place,
so it's easy to see that you mean for a particular image to act as a
headline. You can still see the page organization in the HTML code.
You have fallback text. The alt attributes will activate if the images
can't be displayed.
The semantic meaning of image headlines is preserved. The alt

******ebook converter DEMO Watermarks*******

tags provide another great feature. If they replicate the image text, this
text is still available to screen readers and search engines, so the text
isn't buried in the image.

 This technique is great for headlines or other areas, but notice
that I was careful to repeat the headline text in the <alt> tag. This is
important because I don't want to lose the text. Search engine tools and
screen readers need the text.

Don't be tempted to use this technique for larger amounts of body text.
Doing so causes some problems:

The text is no longer searchable. Search engines can't find text if it's
buried in images.
The text is harder to change. You can't update your page with a text
editor. Instead, you have to download the image, modify it, and upload
it again.
Images require a lot more bandwidth than text. Don't use images if
they don't substantially add to your page. You can make the case for a
few heading images, but it's harder to justify having your entire page
stored as an image just to use a particular font.

Specifying the Font Size
Like font names, font sizes are easy to change in CSS, but there are some
hidden traps.

Size is only a suggestion!
In print media, after you determine the size of the text, it pretty much stays
there. The user can't change the font size in print easily. By comparison,
web browsers frequently change the size of text. A cellphone-based
browser displays text differently than one on a high-resolution LCD panel.
Further, most browsers allow the user to change the size of all the text on

******ebook converter DEMO Watermarks*******

the screen. Use Ctrl++ ( plus sign) and Ctrl+– (minus sign) to make the text
larger or smaller. In older versions of IE (prior to IE7), choose the Text
Size option from the Page menu to change the text size.
The user should really have the ability to adjust the font size in the
browser. When I display a web page on a projector, I often adjust the font
size so students in the back can read. Some pages have the font size set
way too small for me to read. (It's probably my high-tech monitor. It
couldn't possibly have anything to do with my age.)
Determining font sizes precisely is counter to the spirit of the web. If you
declare that your text will be exactly 12 points, for example, one of two
things could happen:

The browser might enforce the 12-point rule literally. This takes
control from the user, so users who need larger fonts are out of luck.
Older versions of IE do this.
The user might still change the size. If this is how the browser
behaves (and it usually is), 12 points doesn't always mean 12 points. If
the user can change font sizes, the literal size selection is meaningless.

The web developer should set up font sizes, but only in relative terms.
Don't bother using absolute measurements (in most cases) because they
don't really mean what you think. Let the user determine the base font size
and specify relative changes to that size.

Using the font-size style attribute
The basic idea of font size is pretty easy to grasp in CSS. Take a look at
fontSize.html in Figure 2-7.
This page obviously shows a number of different font sizes. The line “Font
Sizes” is an ordinary h1 element. All the other lines are paragraph tags.
They appear in different sizes because they have different styles applied to
them.
Font sizes are changed with the (cleverly named) font-size attribute:

p {
 font-size: small;
}

******ebook converter DEMO Watermarks*******

Simply indicate the font-size rule, and, well, the size of the font. In
this example, I used the special value small, but there are many other
ways to specify sizes in CSS.

Figure 2-7: You can easily modify font sizes in your pages.

Absolute measurement units
Many times, you need to specify the size of something in CSS. Of course,
font size is one of these cases. The different types of measurement have
different implications. It's important to know there are two distinct kinds of
units in CSS. Absolute measurements attempt to describe a particular size,
as in the real world. Relative measurements are about changes to some
default value. Generally, web developers are moving toward relative
measurement for font sizes.

Points (pt)
In word processing, you're probably familiar with points as a measurement
of font size. You can use the abbreviation pt to indicate you're measuring
in points, for example:

p {
 font-size: 12pt;
}

******ebook converter DEMO Watermarks*******

 There is no space between 12 and pt.

Unfortunately, points aren't an effective unit of measure for web pages.
Points are an absolute scale, useful for print, but they aren't reliable on the
web because you don't know what resolution the user's screen has. A 12-
point font might look larger or smaller on different monitors.
In some versions of IE, after you specify a font size in points, the user can
no longer change the size of the characters. This is unacceptable from a
usability standpoint. Relative size schemes (which I describe later in this
chapter) prevent this problem.

Pixels (px)
Pixels refer to the small dots on the screen. You can specify a font size in
pixels, although that's not the way it's usually done. For one thing, different
monitors make pixels in different sizes. You can't really be sure how big a
pixel will be in relationship to the overall screen size. Different letters are
different sizes, so the pixel size is a rough measurement of the width and
height of the average character. Use the px abbreviation to measure fonts
in pixels:

p {
 font-size: 20px;
}

Traditional measurements (in, cm)
You can also use inches (in) and centimeters (cm) to measure fonts, but
this is completely impractical. Imagine you have a web page displayed on
both your screen and a projection system. One inch on your own monitor
may look like ten inches on the projector. Real-life measurement units
aren't meaningful for the web. The only time you might use them is if
you'll be printing something and you have complete knowledge of how the
printer is configured. If that's the case, you're better off using a print-
oriented layout tool (like a word processor) rather than HTML.

Relative measurement units
Relative measurement is a wiser choice in web development. Use these

******ebook converter DEMO Watermarks*******

Owner
Highlight

schemes to change sizes in relationship to the standard size.

Named sizes
CSS has a number of font size names built in:

xx-small

x-small

small

medium

large

x-large

xx-large

 It may bother you that there's nothing more specific about these
sizes: How big is large? Well, it's bigger than medium. That sounds like
a flip answer, but it's the truth. The user sets the default font size in the
browser (or leaves it alone), and all other font sizes should be in
relation to this preset size. The medium size is the default size of
paragraph text on your page. For comparison purposes, <h1> tags are
usually xx-large.

Percentage (%)
The percentage unit is a relative measurement used to specify the font in
relationship to its normal size. Use 50% to make a font half the size it
would normally appear and 200% to make it twice the normal size. Use the
% symbol to indicate percentage, as shown here:

p {
 font-size: 150%;
}

Percentages are based on the default size of ordinary text, so an <h1> tag
at 100% is the same size as text in an ordinary paragraph.

Em (em)
In traditional typesetting, the em is a unit of measurement equivalent to the

******ebook converter DEMO Watermarks*******

width of the “m” character in that font. In actual web use, it's really another
way of specifying the relative size of a font. For instance, 0.5 ems is half
the normal size, and 3 ems is three times the normal size. The term em is
used to specify this measurement.

p {
 font-size: 1.5em;
}

Here are the best strategies for font size:

Don't change sizes without a good reason. Most of the time, the
browser default sizes are perfectly fine, but there may be some times
when you want to adjust fonts a little more.
Define an overall size for the page. If you want to define a font size
for the entire page, do so in the <body> tag. Use a named size,
percentage, or ems to avoid the side effects of absolute sizing. The size
defined in the body is applied to every element in the body
automatically.
Modify any other elements. You might want your links a little larger
than ordinary text, for example. You can do this by applying a font-
size attribute to an element. Use relative measurement if possible.

Determining Other Font
Characteristics

In addition to size and color (see Chapter 1 of this minibook), you can
change fonts in a number of other ways.
Figure 2-8 shows a number of common text modifications you can make.
The various paragraphs in this page are modified in different ways. You
can change the alignment of the text as well as add italic, bold, underline,
or strikethrough to the text.

******ebook converter DEMO Watermarks*******

Figure 2-8: Here are a few of the things you can do to modify text.

CSS uses a potentially confusing set of rules for the various font
manipulation tools. One rule determines the font style, and another
determines boldness.
I describe these techniques in the following sections for clarity.

 I used a trick I haven't shown yet to produce this comparison
page. I have multiple paragraphs, each with their own style. Look to
Chapter 3 of this minibook to see how to have more than one paragraph
style in a particular page.

Using font-style for italics
The font-style attribute allows you to make italic text, as shown in
Figure 2-9.
Here's some code illustrating how to add italic formatting:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>italics.html</title>

******ebook converter DEMO Watermarks*******

 <style type = "text/css">
 p {
 font-style: italic;
 }
 </style>
 </head>
 <body>
 <h1>Italics</h1>
 <p>This paragraph is in italic form.</p>
 </body>
</html>

Figure 2-9: You can make italic text with the font-style attribute.

The font-style values can be italic, normal, or oblique
(tilted toward the left).
If you want to set a particular segment to be set to italic, normal, or oblique
style, use the font-style attribute.

Using font-weight for bold
You can make your font bold by using the font-weight CSS attribute,
as shown in Figure 2-10.

******ebook converter DEMO Watermarks*******

Figure 2-10: The font-weight attribute affects the boldness of your text.

If you want to make some of your text bold, use the font-weight CSS
attribute, like this:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>bold.html</title>
 <style type = "text/css">
 p {
 font-weight: bold;
 }
 </style>
 </head>
 <body>
 <h1>Boldface</h1>
 <p>
 This paragraph is bold.
 </p>
 </body>
</html>

Font weight can be defined a couple ways. Normally, you simply indicate
bold in the font-weight rule, as I did in this code. You can also use a
numeric value from 100 (exceptionally light) to 900 (dark bold).

******ebook converter DEMO Watermarks*******

Using text-decoration
Text-decoration can be used to add a couple other interesting
formats to your text, including underline, strikethrough, overline, and
blink.
For example, the following code produces an underlined paragraph:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>underline.html</title>
 <style type = "text/css">
 p {
 text-decoration: underline;
 }
 </style>
 </head>
 <body>
 <h1>Underline</h1>
 <p>
 This paragraph is underlined.
 </p>
 </body>
</html>

 Be careful using underline in web pages. Users have been trained
that underlined text is a link, so they may click your underlined text
expecting it to take them somewhere.

The underline.html code produces a page similar to Figure 2-11.

******ebook converter DEMO Watermarks*******

Figure 2-11: You can underline text with text-decoration.

You can also use text-decoration for other effects, such as
strikethrough (called “line-through” in CSS), as shown in the following
code:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>strikethrough.html</title>
 <style type = "text/css">
 p {
 text-decoration: line-through;
 }
 </style>
 </head>
 <body>
 <h1>Strikethrough</h1>
 <p>
 This paragraph has strikethrough text.
 </p>
 </body>
</html>

The strikethrough.html code produces a page similar to Figure 2-12.
Text-decoration has a few other rarely used options, such as

******ebook converter DEMO Watermarks*******

Overline: The overline attribute places a line over the text. Except
for a few math and chemistry applications (which would be better done
in an equation editor and imported as images), I can't see when this
might be used.

Figure 2-12: Text-decoration can be used for a strikethrough effect.

Blink: The blink attribute is a distant cousin of the legendary
<blink> tag in Netscape and causes the text to blink on the page. The
<blink> tag (along with gratuitous animated GIFs) has long been
derided as the mark of the amateur. Avoid blinking text at all costs.

 There's an old joke among Internet developers: The only
legitimate place to use the <blink> tag is in this sentence:
Schrodinger's cat is <blink>not </blink> dead. Nothing is funnier
than quantum mechanics illustrated in HTML.

Using text-align for basic alignment
You can use the text-align attribute to center, left-align, or right-align
text, as shown in the following code:

<!DOCTYPE html>

******ebook converter DEMO Watermarks*******

<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>center.html</title>
 <style type = "text/css">
 p {
 text-align: center;
 }
 </style>
 </head>
 <body>
 <h1>Centered</h1>
 <p>This paragraph is centered.</p>
 </body>
</html>

You can also use the text-align attribute to right- or left-justify your
text. The page shown in Figure 2-13 illustrates the text-align attribute.

Figure 2-13: This text is centered with text-align.

 You can apply the text-align attribute only to text. The old
<center> tag could be used to center nearly anything (a table, some
text, or images), which was pretty easy but caused problems. Book III
explains how to position elements in all kinds of powerful ways,

******ebook converter DEMO Watermarks*******

including centering anything. Use text-align to center text inside
its own element (whether that's a heading, a paragraph, a table cell, or
whatever).

Other text attributes
CSS offers a few other text manipulation tools, but they're rarely used:

Font-variant: Can be set to small-caps to make your text use only
capital letters. Lowercase letters are shown in a smaller font size.
Letter-spacing: Adjusts the spacing between letters. It's usually
measured in ems. (See the section “Relative measurement units” earlier
in the chapter for more on ems.) Fonts are so unpredictable on the web
that if you're trying to micromanage this much, you're bound to be
disappointed by the results.
Word-spacing: Allows you to adjust the spacing between words.
Text-indent: Lets you adjust the indentation of the first line of an
element. This value uses the normal units of measurement. Indentation
can be set to a negative value, causing an outdent if you prefer.
Vertical-align: Used when you have an element with a lot of vertical
space (often a table cell). You can specify how the text behaves in this
situation.
Text-transform: Helps you convert text into uppercase, lowercase, or
capitalized (first letter uppercase) forms.
Line-height: Indicates the vertical spacing between lines in the
element. As with letter and word spacing, you'll probably be
disappointed if you're this concerned about exactly how things are
displayed.

Using the font shortcut
It can be tedious to recall all the various font attributes and their possible
values. Aptana and other dedicated CSS editors make it a lot easier, but
there's another technique often used by the pros. The font rule provides an
easy shortcut to a number of useful font attributes. The following code
shows you how to use the font rule:

******ebook converter DEMO Watermarks*******

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fontTag.html</title>
 <style type = "text/css">
 p {
 font: bold italic 150% "Dadhand", cursive;
 }
 </style>
 </head>
 <body>
 <h1>Using Font shortcut</h1>
 <p>
 This paragraph has many settings.
 </p>
 </body>
</html>

Figure 2-14 illustrates the powerful font rule in action.

Figure 2-14: The font rule can change many things at once.

The great thing about the font rule is how it combines many of the other
font-related rules for a simpler way to handle most text-formatting needs.
The font attribute is extremely handy. Essentially, it allows you to roll all
the other font attributes into one. Here's how it works:

******ebook converter DEMO Watermarks*******

Specify the font rule in the CSS.
List any font-style attributes. You can mention any attributes
normally used in the font- style rule (italic or oblique). If
you don't want either, just move on.
List any font-variant attributes. If you want small caps, you can
indicate it here. If you don't, just leave this part blank.
List any font-weight values. This can be “bold” or a font-weight
number (100–900).
Specify the font-size value in whatever measurement system you
want (but ems or percentages are preferred). Don't forget the
measurement unit symbol (em or %) because that's how the font rule
recognizes that this is a size value.
Indicate a font-family list last. The last element is a list of font
families you want the browser to try. This list must be last, or the
browser may not interpret the font attribute correctly. (Dadhand is a
custom font I own; cursive will be used if Dadhand is not available.)

The font rule is great, but it doesn't do everything. You still may need
separate CSS rules to define your text colors and alignment. These
attributes aren't included in the font shortcut.
Don't use commas to separate values in the font attribute list. Use
commas only to separate values in the list of font-family declarations.
You can skip any values you want as long as the order is correct. For
example,

font: italic "Comic Sans MS", cursive;

is completely acceptable, as is
font: 70% sans-serif;

Working with subscripts and superscripts
Occasionally, you'll need superscripts (characters that appear a little bit
higher than normal text, like exponents and footnotes) or subscripts
(characters that appear lower, often used in mathematical notation).
Figure 2-15 demonstrates a page with these techniques.

******ebook converter DEMO Watermarks*******

Figure 2-15: This page has superscripts and subscripts (and, ooooh, math!).

Surprisingly, you don't need CSS to produce superscripts and subscripts.
These properties are managed through HTML tags. You can still style them
the way you can any other HTML tag.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>SuperSub.html</title>
 </head>
 <body>
 <p>
 A² + B² = C²
 </p>
 <p>
 i₀ = 0
 </p>
 </body>
</html>

******ebook converter DEMO Watermarks*******

Chapter 3
Selectors: Coding with Class

and Style
In This Chapter

 Modifying specific named elements
 Adding and modifying emphasis and strong emphasis
 Creating classes
 Introducing span and div
 Using pseudo-classes and the link tag
 Selecting specific contexts
 Defining multiple styles

You know how to use CSS to change all the instances of a particular tag,
but what if you want to be more selective? For example, you might want to
change the background color of only one paragraph, or you might want to
define some special new type of paragraph. Maybe you want to specify a
different paragraph color for part of your page, or you want visited links to
appear differently from unselected links. The part of the CSS style that
indicates what element you want to style is a selector. In this chapter, you
discover powerful new ways to select elements on the page.

Selecting Particular Segments
Figure 3-1 illustrates how you should refer to someone who doesn't
appreciate your web development prowess.

Defining more than one kind of paragraph
Apart from its cultural merit, this page is interesting because it has three
different paragraph styles. The introductory paragraph is normal. The quote
is set in italicized font, and the attribution is monospaced and right-aligned.

******ebook converter DEMO Watermarks*******

The quote in the following code was generated by one of my favorite sites
on the Internet: the Shakespearean insult generator. Nothing is more
satisfying than telling somebody off in iambic pentameter
(www.pangloss.com/seidel/Shaker/index.html.)

Figure 3-1: This page has three kinds of paragraphs.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>quote.html</title>
 <style type = "text/css">
 #quote {
 font: bold italic 130% Garamond, Comic Sans MS, fantasy;
 text-align: center;
 }
 #attribution {
 font: 80% monospace;
 text-align: right;
 }
 </style>
 </head>
 <body>
 <h1>Literature Quote of the Day</h1>
 <p>
 How to tell somebody off the classy way:
 </p>
 <p id = "quote">
 [Thou] leathern-jerkin, crystal-button, knot-pated,

******ebook converter DEMO Watermarks*******

http://www.pangloss.com/seidel/Shaker/index.html

 agate-ring, puke-stocking, caddis-garter, smooth-tongue,
Spanish pouch!
 </p>
 <p id = "attribution">
 -William Shakespeare (Henry IV Part I)
 </p>
 </body>
</html>

Styling identified paragraphs
Until now, you've used CSS to apply a particular style to an element all
across the page. For example, you can add a style to the <p> tag, and that
style applies to all the paragraphs on the page.
Sometimes (as in the Shakespeare insult page), you want to give one
element more than one style. You can do this by naming each element and
using the name in the CSS style sheet. Here's how it works:

1. Add an id attribute to each HTML element you want to modify.

For example, the paragraph with the attribution now has an id attribute
with the value attribution.

<p id = "attribution">

2. Make a style in CSS.

Use a pound sign followed by the element's ID in CSS to specify you're
not talking about a tag type any more, but a specific element: For
example, the CSS code contains the selector #attribution,
meaning, “Apply this style to an element with the attribution id.”

#attribution {

3. Add the style.

Create a style for displaying your named element. In this case, I want
the paragraph with the attribution ID right-aligned, monospace,
and a little smaller than normal. This style will be attached only to the
specific element.

#attribution {

******ebook converter DEMO Watermarks*******

 font: 80% monospace;
 text-align: right;
 }

The ID trick works great on any named element. IDs have to be unique
(you can't repeat the same ID on one page), so this technique is best when
you have a style you want to apply to only one element on the page. It
doesn't matter what HTML element it is (it could be a heading 1, a
paragraph, a table cell, or whatever). If it has the ID quote, the #quote
style is applied to it. You can have both ID selectors and ordinary
(element) selectors in the same style sheet.

Using Emphasis and Strong
Emphasis

You may be shocked to know that HTML doesn't allow italics or bold.
Old-style HTML had the <i> tag for italics and the tag for bold.
These seem easy to use and understand. Unfortunately, they can trap you.
In your HTML5, you shouldn't specify how something should be styled.
You should specify instead the purpose of the styling. The <i> and
tags in XHTML Strict are removed in HTML5 and replaced with
and .

The tag means emphasized. By default, em italicizes your text. The
 tag stands for strong emphasis. It defaults to bold.
Figure 3-2 illustrates a page with the default styles for em and strong.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 3-2: You can use em and strong to add emphasis.

The code for the emphasis.html page is pretty straightforward. It has
no CSS at all:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>emphasis.html</title>
 </head>
 <body>
 <h1>Emphasis and Strong Emphasis</h1>
 <p>
 This paragraph illustrates two main kinds of emphasis.
 This sentence uses the em tag.
 By default, emphasis is italic.
 This sentence uses strong emphasis.
 The default formatting of strong emphasis is bold.
 </p>
 <p>
 Of course you can change the formatting with CSS.
 This is a great example of semantic formatting.
 Rather than indicating the formatting
 of some text, you indicate how much it is
emphasized.
 </p>
 <p>
 This way, you can go back and change things, like adding
color

******ebook converter DEMO Watermarks*******

 to emphasized text without the formatting commands
 muddying your actual text.
 </p>
 </body>
</html>

It'd be improper to think that em is just another way to say italic and
strong is another way to say bold. In the old scheme, after you define
something as italic, you're pretty much stuck with that. The HTML way
describes the meaning, and you can define it how you want.

Modifying the Display of em and
strong

Figure 3-3 shows how you might modify the levels of emphasis. I used
yellow highlighting (without italics) for em and a larger red font for
strong.
The HTML code for emphasisStyle.html (as shown in Figure 3-3) is
identical to the code for emphasis.html (as shown in Figure 3-2). The
only difference is the addition of a style sheet. The style sheet is embedded
in the web page between style tags. Check out Chapter 1 of this minibook
for a refresher on how to incorporate CSS styles in your web pages.

<style type = "text/css">
 em {
 font-style: normal;
 background-color: yellow;
 }

strong {
 color: red;
 font-size: 110%;
 }
 </style>

The style is used to modify the HTML. The meaning in the HTML stays
the same — only the style changes.

******ebook converter DEMO Watermarks*******

Figure 3-3: You can change the way that em and strong modify text.

The semantic markups are more useful than the older (more literal) tags
because they still tell the truth even if the style has been changed. (In the
HTML code, the important thing is whether the text is emphasized, not
what it means to emphasize the text. That job belongs to CSS.)

 What's funny about the following sentence?
 is always bold.

Get it? That's a bold-faced lie! Sometimes I crack myself up.

Defining Classes
You can easily apply a style to all the elements of a particular type in a
page, but sometimes you might want to have tighter control of your styles.
For example, you might want to have more than one paragraph style. As an
example, look at the classes.html page featured in Figure 3-4.
Once again, multiple formats are on this page:

Questions have a large italic sans serif font. There's more than one
question.

******ebook converter DEMO Watermarks*******

Answers are smaller, blue, and in a cursive font. There's more than
one answer, too.

Figure 3-4: Each joke has a question and an answer.

Questions and answers are all paragraphs, so you can't simply style the
paragraph because you need two distinct styles. There's more than one
question and more than one answer, so the ID trick would be problematic.
Two different elements can't have the same ID. This is where the notion of
classes comes into play. Every ID belongs to a single element, but many
elements (even of different types) can share the same class.

Adding classes to the page
CSS allows you to define classes in your HTML and make style definitions
that are applied across a class. It works like this:

1. Add the class attribute to your HTML questions.

Unlike ID, several elements can share the same class. All my questions
are defined with this variation of the <p> tag. Setting the class to
question indicates these paragraphs will be styled as questions:

<p class = "question">
 What kind of cow lives in the Arctic?
 </p>

******ebook converter DEMO Watermarks*******

Owner
Highlight

2. Add similar class attributes to the answers by setting the class of
the answers to answer:

<p class = "answer">
 An Eskimoo!
 </p>

Now you have two different subclasses of paragraph: question and
answer.

3. Create a class style for the questions.

The class style is defined in CSS. Specify a class with the period (.)
before the class name. Classes are defined in CSS like this:

<style type = "text/css">
 .question {
 font: italic 150% arial, sans-serif;
 text-align: left;
 }

In this situation, the question class is defined as a large sans serif
font aligned to the left.

4. Define the look of the answers.

The answer class uses a right-justified cursive font.

.answer {
 font: 120% "Comic Sans MS", cursive;
 text-align: right;
 color: #00F;
 }
 </style>

Using classes
Here's the code for the classes.html page, showing how to use CSS
classes:

<!DOCTYPE html>
<html lang = "en-US">

******ebook converter DEMO Watermarks*******

<head>
 <meta charset = "UTF-8">
 <title>classes.html</title>
 <style type = "text/css">
 .question {
 font: italic 150% arial, sans-serif;
 text-align: left;
 }
 .answer {
 font: 120% "Comic Sans MS", cursive;
 text-align: right;
 color: #00F;
 }
 </style>
 </head>
 <body>
 <h1>Favorite Jokes</h1>
 <p class = "question">
 What kind of cow lives in the Arctic?
 </p>
 <p class = "answer">
 An Eskimoo!
 </p>
 <p class = "question">
 What goes on top of a dog house?
 </p>
 <p class = "answer">
 The woof!
 </p>
 </body>
</html>

 Sometimes you see selectors, like
p.fancy

that include both an element and a class name. This style is applied only to
paragraphs with the fancy class attached. Generally, I like classes
because they can be applied to all kinds of things, so I usually leave the
element name out to make the style as reusable as possible.

Combining classes
One element can use more than one class. Figure 3-5 shows an example of

******ebook converter DEMO Watermarks*******

this phenomenon.

Figure 3-5: There's red, there's script, and then there's both.

The paragraphs in Figure 3-5 appear to be in three different styles, but only
red and script are defined. The third paragraph uses both classes. Here's the
code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>redScript.html</title>
 <style type = "text/css">
 .red {
 color: white;
 background-color: red;
 }
 .script {
 font-family: cursive;
 }
 </style>
 </head>
 <body>
 <h1>Multiple Classes</h1>
 <p class = "red">
 This paragraph uses the red class
 </p>
 <p class = "script">

******ebook converter DEMO Watermarks*******

 This paragraph uses the script class
 </p>
 <p class = "red script">
 This paragraph uses both classes
 </p>
 </body>
</html>

The style sheet introduces two classes. The red class makes the paragraph
red (well, white text with a red background), and the script class applies
a cursive font to the element.
The first two paragraphs each have a class, and the classes act as you'd
expect. The interesting part is the third paragraph because it has two
classes.

<p class = "red script">

This assigns both the red and script classes to the paragraph. Both
styles will be applied to the element in the order they are written. Note that
both class names occur inside quotes and no commas are needed (or
allowed). You can apply more than two classes to an element if you wish.
If the classes have conflicting rules (say one makes the element green and
the next makes it blue), the latest class in the list will overwrite earlier
values.
An element can also have an ID. The ID style, the element style, and all the
class styles are taken into account when the browser tries to display the
object.

 Normally, I don't like to use colors or other specific formatting
instructions as class names. Usually, it's best to name classes based on
their meaning (like mainBackgroundColor). You might decide that
green is better than red, so you either have to change the class name or
you have to have a red class that colored things green. That'd be
weird.

Introducing div and span
So far, I've applied CSS styles primarily to paragraphs (with the <p> tag),

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

but you can really use any element you want. In fact, you may want to
invent your own elements. Perhaps you want a particular style, but it's not
quite a paragraph. Maybe you want a particular style inside a paragraph.
HTML has two very useful elements that are designed as generic elements.
They don't have any predefined meaning, so they're ideal candidates for
modification with the id and class attributes.

div: A block-level element (like the p element). It acts just like a
paragraph. A div usually has carriage returns before and after it.
Generally, you use div to group a series of paragraphs.
span: An inline element. It doesn't usually cause carriage returns
because it's meant to be embedded into some other block-level element
(usually a paragraph or a div). Usually, a span is used to add some
type of special formatting to an element that's contained inside a block-
level element.

Organizing the page by meaning
To see why div and span are useful, take a look at Figure 3-6.

Figure 3-6: This page has names and phone numbers.

The formatting of the page isn't complete (read about positioning CSS in
Book III), but some formatting is in place. Each name and phone number

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

pair is clearly a group of things. Names and phone numbers are formatted
differently. The interesting thing about this page is the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>divSpan.html</title>
 <style type = "text/css">
 .contact {
 background-color: #CCCCFF;
 }
 .name {
 font: italic 110% arial, sans-serif;
 }
 .phone {
 font: 100% monospace;
 }
 </style>
 </head>
 <body>
 <div class = "contact">
 Andy
 111-1111
 </div>
 <div class = "contact">
 Elizabeth
 222-2222
 </div>
 <div class = "contact">
 Matthew
 333-3333
 </div>
 </body>
</html>

What's exciting about this code is its clarity. When you look at the HTML,
it's very clear what type of data you're talking about because the structure
describes the data. Each div represents a contact. A contact has a name
and a phone number.

 The HTML doesn't specify how the data displays, just what it
means.

******ebook converter DEMO Watermarks*******

Why not make a table?
This is where experienced web people shake their heads in disbelief. This
page seems like a table, so why not make it one? What matters here isn't
that the information is in a table, but that names and phone numbers are
part of contacts. There's no need to bring in artificial table elements if you
can describe the data perfectly well without them.
If you still want to make the data look like a table, that's completely
possible, as shown in Figure 3-7. See Book III to see exactly how some of
the styling code works. Of course, you're welcome to look at the source
code for this styled version (dubbed divSpanStyled.html on the
companion website) if you want a preview. See this book's Introduction for
more on the companion website.

Figure 3-7: After you define the data, you can style it as a table if you want.

The point is this: After you define the data, you can control it as much as
you want. Using span and div to define your data gives you far more
control than tables and leaves your HTML code much cleaner.
div and span aren't simply a replacement for tables. They're tools for
organizing your page into segments based on meaning. After you have
them in place, you can use CSS to apply all kinds of interesting styles to
the segments.

******ebook converter DEMO Watermarks*******

Using Pseudo-Classes to Style Links
Now that you have some style going in your web pages, you may be a bit
concerned about how ugly links are. The default link styles are useful, but
they may not fit with your color scheme.

Styling a standard link
Adding a style to a link is easy. After all, <a> (the tag that defines links) is
just an HTML tag, and you can add a style to any tag. Here's an example,
where I make my links black with a yellow background:

a {
 color: black;
 background-color: yellow;
}

That works fine, but links are a little more complex than some other
elements. Links actually have three states:

Normal: This is the standard state. With no CSS added, most browsers
display unvisited links as blue underlined text.
Visited: This state is enabled when the user visits a link and returns to
the current page. Most browsers use a purple underlined style to
indicate that a link has been visited.
Hover: The hover state is enabled when the user's mouse is lingering
over the element. Most browsers don't use the hover state in their
default settings.

If you apply a style to the <a> tags in a page, the style is applied to all the
states of all the anchors.

Styling the link states
You can apply a different style to each state, as illustrated by Figure 3-8. In
this example, I make ordinary links black on a white background. A visited
link is black on yellow; and, if the mouse is hovering over a link, the link is
white with a black background.

******ebook converter DEMO Watermarks*******

Figure 3-8: Links can have three states: normal, visited, and hover.

Take a look at the code and see how it's done:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>linkStates.html</title>
 <style type = "text/css">
 a {
 color: black;
 background-color: white;
 }
 a:visited {
 color: black;
 background-color: #FFFF33;
 }
 a:hover {
 color: white;
 background-color: black;
 }
 </style>
 </head>
 <body>
 <h1>Pseudo-classes and links</h1>
 <p>
 This link is normal
 </p>
 <p>

******ebook converter DEMO Watermarks*******

 This link has been
visited
 </p>
 <p>
 The mouse is hovering over
this link
 </p>
 </body>
</html>

Nothing is special about the links in the HTML part of the code. The links
change their state dynamically while the user interacts with the page. The
style sheet determines what happens in the various states. Here's how you
approach putting the code together:

1. Determine the ordinary link style first by making a style for the <a>
tag.

If you don't define any other pseudo-classes, all links will follow the
ordinary link style.

2. Make a style for visited links.

A link will use this style after that site is visited during the current
browser session. The a:visited selector indicates links that have
been visited.

3. Make a style for hovered links.

The a:hover style is applied to the link only when the mouse is
hovering over the link. As soon as the mouse leaves the link, the style
reverts to the standard or visited style, as appropriate.

Best link practices
Link styles have some special characteristics. You need to be a little bit
careful how you apply styles to links. Consider the following issues when
applying styles to links:

The order is important. Be sure to define the ordinary anchor first.
The pseudo-classes are based on the standard anchor style.

******ebook converter DEMO Watermarks*******

Make sure they still look like links. It's important that users know
something is intended to be a link. If you take away the underlining
and the color that normally indicates a link, your users might be
confused. Generally, you can change colors without trouble, but links
should be either underlined text or something that clearly looks like a
button.
Test visited links. Testing visited links is a little tricky because, after
you visit a link, it stays visited. Most browsers allow you to delete the
browser history, which should also clear the link states to
unvisited.
Don't change font size in a hover state. Unlike most styles, hover
changes the page in real time. A hover style with a different font size
than the ordinary link can cause problems. The page is automatically
reformatted to accept the larger (or smaller) font, which can move a
large amount of text on the screen rapidly. This can be frustrating and
disconcerting for users. It's safest to change colors or borders on hover
but not the font family or font size.

Selecting in Context
CSS allows some other nifty selection tricks. Take a look at Figure 3-9 and
you see a page with two kinds of paragraphs in it.
The code for the context-style.html page is deceptively simple:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>context-style</title>
 <style type = "text/css">
 #special p {
 text-align: right;
 }
 </style>
 </head>
 <body>
 <h1>Selecting By Context</h1>
 <div>

******ebook converter DEMO Watermarks*******

 <p>This paragraph is left-justified.</p>
 <p>This paragraph is left-justified.</p>
 <p>This paragraph is left-justified.</p>
 </div>
 <div id = "special">
 <p>The paragraphs in this div are different.</p>
 <p>The paragraphs in this div are different.</p>
 <p>The paragraphs in this div are different.</p>
 </div>
 </body>
</html>

Figure 3-9: Obviously two kinds of paragraphs are here — or are there?

If you look at the code for context-style.html, you see some interesting
things:

The page has two divs. One div is anonymous, and the other is
special.
None of the paragraphs has an ID or class. The paragraphs in this
page don't have names or classes defined, yet they clearly have two
different types of behavior. The first three paragraphs are aligned to the
left, and the last three are aligned to the right.
The style rule affects paragraphs inside the special div. Take
another look at the style:

#special p {

******ebook converter DEMO Watermarks*******

This style rule means, “Apply this style to any paragraph appearing
inside something called special.” You can also define a rule that
could apply to an image inside a list item or emphasized items inside a
particular class. When you include a list of style selectors without
commas, you're indicating a nested style.

Paragraphs defined outside special aren't affected. This nested
selection technique can help you create very complex style
combinations. It becomes especially handy when you start building
positioned elements, like menus and columns.

Defining Styles for Multiple
Elements

Sometimes, you want a number of elements to share similar styles. As an
example, look at Figure 3-10.

Figure 3-10: H1, H2, and H3 have similar style rules.

As shown in Figure 3-10, the top three headings all have very similar
styles. Creating three different styles would be tedious, so CSS includes a
shortcut:

******ebook converter DEMO Watermarks*******

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>multiStyle.html</title>
 <style type = "text/css">
 h1, h2, h3 {
 text-align: center;
 font-family: "Bradley Hand ITC", cursive;
 background-color: yellow;
 }
 h3 {
 font-family: monospace;
 }
 </style>
 </head>
 <body>
 <h1>H1 Heading</h1>
 <h2>H2 Heading</h2>
 <h3>H3 Heading</h3>
 </body>
</html>

One style element (the one that begins h1, h2, h3) provides all the
information for all three heading types. If you include more than one
element in a style selector separated by commas, the style applies to all the
elements in the list. In this example, the centered cursive font with a yellow
background is applied to heading levels 1, 2, and 3 all in the same style.
If you want to make modifications, you can do so. I created a second h3
rule, changing the font-family attribute to monospace. Style rules
are applied in order, so you can always start with the general rule and then
modify specific elements later in the style if you wish.

 If you have multiple elements in a selector rule, it makes a huge
difference whether you use commas. If you separate elements with
spaces (but no commas), CSS looks for an element nested within
another element. If you include commas, CSS applies the rule to all the
listed elements.

It's possible to get even more specific about selectors with punctuation. For

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

example, the + selector describes sibling relationship. For example, look at
the following rule:
h1+p

This targets only the paragraph that immediately follows a level-one
headline. All other paragraphs will be ignored. There are other selectors as
well, but the ones mentioned here will suffice for most applications.

 You might wonder why we need so many different kinds of
selectors. You can use the tag name for most elements, and just apply a
class or ID to any element that requires special attention. That's true,
but one goal of CSS is to keep your HTML code as clean as possible.
As much as possible, you want to use the structure of the page itself to
help you determine the style.

Using New CSS3 Selectors
CSS3 supports several new selectors with interesting new capabilities.

Attribute selection
You can now apply a style to any element with a specific attribute value.
For example, the input tag takes many different forms, all determined by
the type attribute. If you apply a single style to the input element, that
style gets applied to many different kinds of elements: check boxes, text
fields, and radio buttons. By using the new attribute syntax, you can apply
a style to any particular type of input element:

input[type="text"]{
 background-color: #CCCCFF;
}

You can apply the style with or without a tag type, but it is possible to have
unexpected side effects if you choose an extremely common attribute.
Figure 3-11 illustrates the input selector in operation.

******ebook converter DEMO Watermarks*******

Figure 3-11: You can apply a style to elements with a particular attribute.

not
There are times you want an inverse selection. For example, imagine you
wanted to apply a style to all the paragraphs that are not members of the
special class:

p:not(.special) {
 border: 1px solid red;
}

nth-child
The nth-child selector allows you to select one or more elements in a
group. The basic version uses a numeric input:

#myList>li:nth-child(1){
 border: 1px solid blue;
 }

This allows you to apply a style to the first of a group of elements. In my
example, I have a list with four items. The style is applied to the list items,
not the list. (It seems to me the list items are children of the list, so it
should be the nth-child of the list, but nobody asked me.)
The numeric value can actually be a formula, like an+b. If you love
algebra (and who doesn't?), you can select all the even-numbered elements
like this:

******ebook converter DEMO Watermarks*******

#myList>li:nth-child(2n){
 border: 1px solid blue;
 }

A similar formula can be used to pick the odd-numbered children.
#myList>li:nth-child(2n+1){

 border: 1px solid blue;
 }

You could use this formula system to get all kinds of groupings (every
third element with 3n, for example), but most people simply need a
particular element, or all the even or odd rows. CSS3 supplies shortcut
keywords, even and odd, so you don't have to do it using math:

#myList>li:nth-child(even){
 color: white;
 background-color: red;
 }

The last keyword allows you to pick the last element from a group.
There are a few more variations of this selection technique:

:nth-last-child(N): Works just like nth-child, excepts counts
from the end of the group of elements rather than the beginning.
:nth-of-type(N): This selector works just like nth-child,
except it filters to a specific type and ignores any elements that are not
of exactly the same type of element.
last-child: This (naturally enough) selects the last child element.
last-nth-of-type(N): Works like nth-of-type, but from
the end of the group.
first-child: Grabs the first element (technically this was
available in CSS2, but it was rarely used).

These selection tools are fully-supported in all the recent browsers.
However, as they are generally used simply to improve readability, it
should be safe to use them. Older browsers simply skip the style.
Figure 3-12 shows a number of variations of the nth-child selector.

******ebook converter DEMO Watermarks*******

Figure 3-12: You can select specific elements in a group.

Other new pseudo-classes
Pseudo-classes allow you to specify styles based on the state of an element.
Modern CSS supports a number of new pseudo-classes:

:hover: The :hover pseudo-class has been a part of CSS from the
beginning, but it was officially defined only for the <a> tag. Now the
:hover pseudo-class can be applied to any element. If the mouse (or
other pointing device) is over an element, that element has the hover
state activated. Note that mobile devices don't always support hover
because the position of the pointing device (the stylus or finger) isn't
known until the item is activated. Mobile devices may have some sort
of tabbing mechanism to indicate which item is being hovered over.
:focus: The :focus pseudo-class is activated when an element is
ready to receive keyboard input.
:active: A form element is active when it is currently being used:
for example, when a button has been pressed but not yet released.
Mobile devices often skip directly to active mode without going
through hover mode. This can be an important design consideration
when using state for styling.

The state pseudo-classes are fully supported by all modern browsers except
******ebook converter DEMO Watermarks*******

the IE family of browsers. There is limited but buggy support in even early
versions of IE.

******ebook converter DEMO Watermarks*******

Chapter 4
Borders and Backgrounds

In This Chapter
 Creating borders
 Managing border size, style, and color
 Using the border shortcut style
 Understanding the box model
 Setting padding and margin
 Creating background and low-contrast images
 Changing background image settings
 Adding images to list items

CSS offers some great features for making your elements more colorful,
including a flexible and powerful system for adding borders to your
elements. You can also add background images to all or part of your page.
This chapter describes how to use borders and backgrounds for maximum
effect.

Joining the Border Patrol
You can use CSS to draw borders around any HTML element. You have
some freedom in the border size, style, and color. Here are two ways to
define border properties: using individual border attributes, and using a
shortcut. Borders don't actually change the layout, but they do add visual
separation that can be appealing, especially when your layouts are more
complex.

Using the border attributes
Figure 4-1 illustrates a page with a simple border drawn around the
heading.

******ebook converter DEMO Watermarks*******

Figure 4-1: This page features a double red border.

The code for the borderProps.html page demonstrates the basic
principles of borders in CSS:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>borderProps.html</title>
 <style type = "text/css">
 h1 {
 border-color: red;
 border-width: .25em;
 border-style: double;
 }
 </style>
 </head>
 <body>
 <h1>This has a border</h1>
 </body>
</html>

Each element can have a border defined. Borders require three attributes:

width: The width of the border. This can be measured in any CSS
unit, but border width is normally described in pixels (px) or ems.
(Remember: An em is roughly the width of the capital letter “M” in the

******ebook converter DEMO Watermarks*******

current font.)
color: The color used to display the border. The color can be defined
like any other color in CSS, with color names or hex values.
style: CSS supports a number of border styles. For the example, in
the following section, I chose a double border. This draws a border
with two thinner lines around the element.

 You must define all three attributes if you want borders to appear
properly. You can't rely on the default values to work in all browsers.

Defining border styles
CSS has a predetermined list of border styles you can choose from.
Figure 4-2 shows a page with all the primary border styles displayed.

Figure 4-2: This page shows the main border styles.

You can choose any of these styles for any border:

Solid: A single solid line around the element.
Double: Two lines around the element with a gap between them. The
border width is the combined width of both lines and the gap.

******ebook converter DEMO Watermarks*******

Groove: Uses shading to simulate a groove etched in the page.
Ridge: Uses shading to simulate a ridge drawn on the page.
Inset: Uses shading to simulate a pressed-in button.
Outset: Uses shading to simulate a button sticking out from the page.
Dashed: A dashed line around the element.
Dotted: A dotted line around the element.

I didn't reprint the source of borderStyles.html here, but it's
included on the companion website if you want to look it over. (See this
book's Introduction for more on the companion website.) I added a small
margin to each list item to make the borders easier to distinguish. Margins
are discussed later in this chapter in the “Border, margin, and padding”
section.

Shades of danger
Several border styles rely on shading to produce special effects. Here are a couple things
to keep in mind when using these shaded styles:

You need a wide border. The shading effects are typically difficult to see if the
border is very thin.
Browsers shade differently. All the shading tricks modify the base color (the color
you indicate with the border-color attribute) to simulate depth. Unfortunately,
the browsers don't all do this in the same way. I show a technique to define
different color schemes for each browser in Chapter 5 of this minibook. For now,
avoid shaded styles if this bothers you.
Black shading doesn't work in IE. IE makes colors darker to get shading effects.
If your base color is black, IE can't make anything darker, so you don't see the
shading effects at all. Likewise, white shading doesn't work well on Firefox.

Using the border shortcut
Defining three different CSS attributes for each border is a bit tedious.
Fortunately, CSS includes a handy border shortcut that makes borders a lot
easier to define, as Figure 4-3 demonstrates.

******ebook converter DEMO Watermarks*******

Figure 4-3: This border is defined with only one CSS rule.

You can't tell the difference from the output, but the code for
borderShortcut.html is extremely simple:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>borderShortcut.html</title>
 <style type = "text/css">
 h1 {
 border: red 5px solid;
 }
 </style>
 </head>
 <body>
 <h1>This page uses the border shortcut</h1>
 </body>
</html>

The order in which you describe border attributes doesn't matter. Just
specify a color, a size, and a border style.

Creating partial borders
If you want, you can have more precise control of each side of a border.
There are a number of specialized border shortcuts for each of the sub-
borders. Figure 4-4 shows how you can add borders to the top, bottom, or

******ebook converter DEMO Watermarks*******

sides of your element.

Figure 4-4: You can specify parts of your border if you want.

Figure 4-4 applies a border style to the bottom of the heading as well as
different borders above, below, and to the sides of the paragraphs. Partial
borders are pretty easy to build, as you can see from the code listing:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>subBorders.html</title>
 <style type = "text/css">
h1 {
 border-bottom: 5px black double;
}
p {
border-left:3px black dotted;
 border-right: 3px black dotted;
 border-top: 3px black dashed;
 border-bottom: 3px black groove;
 }
 </style>
 </head>
 <body>
 <h1>This heading has a bottom border</h1>
 <p>
 Paragraphs have several borders defined.

******ebook converter DEMO Watermarks*******

 </p>
 <p>
 Paragraphs have several borders defined.
 </p>
 </body>
</html>

Notice the border styles. CSS has style rules for each side of the border:
border-top, border-bottom, border-left, and border-
right. Each of these styles acts like the border shortcut, but it only acts
on one side of the border.

 There are also specific border attributes for each side (bottom-
border-width adjusts the width of the bottom border, for example), but
they're almost never used because the shortcut version is so much
easier.

Introducing the Box Model
XHTML and CSS use a specific type of formatting called the box model.
Understanding how this layout technique works is important. If you don't
understand some of the nuances, you'll be surprised by the way your pages
flow.
The box model relies on two types of elements: inline and block-level.
Block-level elements include <div> tags, paragraphs, and all headings
(h1– h6), whereas strong, a, and image are examples of inline
elements.
The main difference between inline and block-level elements is this:
Block-level elements always describe their own space on the screen,
whereas inline elements are allowed only within the context of a block-
level element.
Your overall page is defined in block-level elements, which contain inline
elements for detail.
Each block-level element (at least in the default setting) takes up the entire
width of the parent element. The next block-level element goes directly
underneath the last element defined.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Inline elements flow differently. They tend to go immediately to the right
of the previous element. If there's no room left on the current line, an inline
element drops down to the next line and goes to the far left.

Border, margin, and padding
Each block-level element has several layers of space around it, such as

Padding: The space between the content and the border.
Border: Goes around the padding.
Margin: Space outside the border between the border and the parent
element.

Figure 4-5 shows the relationship among margin, padding, and border.

Figure 4-5: Margin is outside the border; padding is inside.

You can change settings for the margin, border, and padding to adjust the
space around your elements. The margin and padding CSS rules are
used to set the sizes of these elements, as shown in Figure 4-6.

******ebook converter DEMO Watermarks*******

Figure 4-6: Margins and padding affect the positioning of an element.

In Figure 4-6, I applied different combinations of margin and padding
to a series of paragraphs. To make things easier to visualize, I drew a
border around the <div> containing all the paragraphs and each individual
paragraph element. You can see how the spacing is affected.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>marginPadding.html</title>
 <style type = "text/css">
 div {
 border: red 5px solid;
 }
 p {
 border: black 2px solid;
 }
 #margin {
 margin: 5px;
 }
 #padding {
 padding: 5px;
 }
 #both {
 margin: 5px;
 padding: 5px;
 }
 </style>

******ebook converter DEMO Watermarks*******

 </head>
 <body>
 <h1>Margins and padding</h1>
 <div id = "main">
 <p>This paragraph has the default margins and padding</p>
 <p id = "margin">This paragraph has a margin but no
padding</p>
 <p id = "padding">This paragraph has padding but no
margin</p>
 <p id = "both">This paragraph has a margin and padding</p>
 </div>
 </body>
</html>

You can determine margin and padding using any of the standard CSS
measurement units, but the most common are pixels and ems.

Positioning elements with margins and
padding
As with borders, you can use variations of the margin and padding
rules to affect spacing on a particular side of the element. One particularly
important form of this trick is centering.
In old-style HTML, you could center any element or text with the
<center> tag. This was pretty easy, but it violated the principle of
separating content from style. The text-align:center rule is a nice
alternative, but it only works on the contents of an element. If you want to
center an entire block-level element, you need another trick, as you can see
in Figure 4-7.

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text
The style section did not define "main" for <div> id below.

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Figure 4-7: Using margins to adjust positioning.

This page illustrates a few interesting ideas:

You can adjust the width of a block. The main div that contains all
the paragraphs has its width set to 75 percent of the page body width.
Center an element by setting margin-left and margin-right
to auto. Set both the left and right margins to auto to make an
element center inside its parent element. This trick is most frequently
used to center divs and tables.
Use margin-left to indent an entire paragraph. You can use
margin-left or margin-right to give extra space between the
border and the contents.
Percentages refer to percent of the parent element. When you use
percentages as the unit measurement for margins and padding, you're
referring to the percentage of the parent element; so a margin-
left of 50 percent leaves the left half of the element blank.
Borders help you see what's happening. I added a border to the
mainBody div to help you see that the div is centered.
Setting the margins to auto doesn't center the text. It centers the
div (or other block-level element). Use text-align: center to
center text inside the div.

******ebook converter DEMO Watermarks*******

The code that demonstrates these ideas is shown here:
<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>center.html</title>
 <style type = "text/css">
 #mainBody {
 border: 5px double black;
 width: 75%;
 margin-left: auto;
 margin-right: auto;
 }
 .indented {
 margin-left: 50%;
 }
 </style>
 </head>
 <body>
 <h1>Centering</h1>
 <div id = "mainBody">
 <p>
 This paragraph is part of the centered main body.
 </p>
 <p class = "indented">
 This paragraph is indented to the right.
 </p>
 </div>
 </body>
</html>

New CSS3 Border Techniques
Borders have been a part of CSS from the beginning, but CSS3 adds some
really exciting new options. Modern browsers now support borders made
from an image as well as rounded corners and box shadows. These
techniques promise to add exciting new capabilities to your designs.

Image borders
CSS3 allows you to use an image for an element border. The mechanism is
quite powerful because it detects the edges of an image and “slices” it to
create the edges and corners of the border from the edges and corners of
the image.

******ebook converter DEMO Watermarks*******

Owner
Highlight

For example, look at the simple picture frame image in Figure 4-8.

Figure 4-8: This image will be used as a border image.

The frame image is stored as frame.png in the same directory as the HTML
file. It has a transparent center. Apply the following code to add an image
border around all h2 elements on the page:

h2 {
 border-width: 15px;
 border-image: url("frame.png") 25% repeat;
 -webkit-border-image: url("frame.png") 25% repeat;
 -moz-border-image: url("frame.png") 25% repeat;
}

Here's how you add a border image:

1. Acquire your image.

The image should already be designed as some sort of border.
Typically it will be a shape around the edges, with either a solid-color
center or a transparent center. I typically make the image 100×100
pixels, so the math is easier to figure later.

******ebook converter DEMO Watermarks*******

2. Specify the border width.

You'll need to indicate the border width directly. The border of the
frame image is scaled to fit whatever size you want.

3. Calculate how much of the image's border you want.

I want to use the outer 25% of my frame image as the border, so
specify 25%. If you leave off the percent sign, the value calculates in
pixels. You can add four values if you prefer to use different amounts
of the original image for each boundary.

4. Indicate the behavior you want.

The original image is almost never the same size as the element you're
wanting to surround, so you can supply a tip to explain how the
browser should handle elements larger than the original. The most
common choices are repeat (repeat the original image) or stretch
(stretch the image to take up the entire space). With a simple image
like the frame.png used in this example, the results will be the same.

What's up with the -moz and -webkit stuff?
As you look over the code for the image border demo, you'll see three versions of the
border-image rule: border-image, -webkit-border-image, and -moz-border-
image. This is a pattern you'll see on many of the newer CSS elements. While an element
is still being finalized, some of the browser manufacturers will define a test version of the
rule using a special browser-specific prefix.-webkit is the rendering image used in
Chrome and Safari, and -moz is used by Firefox. Sometimes you'll also see the -o prefix
to indicate Opera, and -ms to represent Internet Explorer. You can always try the generic
rule name, but for newer rules like image border, it's also safe to include the vendor-
specific versions. As acceptance of these newer rules becomes more widespread, the
vendor prefixes will no longer be needed.

Figure 4-9 shows the image being used as a border around my headline.

******ebook converter DEMO Watermarks*******

Figure 4-9: Using an image as a custom border.

Adding Rounded Corners
Older CSS was known for being very rectangular, so web designers tried to
soften their designs by adding rounded corners. This was a difficult effect
to achieve. CSS3 greatly simplifies the creation of rounded corners with
the border-radius rule.
Figure 4-10 demonstrates a simple page with a rounded border.

Figure 4-10: This headline has rounded borders.

******ebook converter DEMO Watermarks*******

It's pretty easy to get rounded corners on those browsers that support the
tag:

 <!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>corners.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 h1 {
 width: 60%;
 background-color: #000066;
 color: #9999ff;
 border: #9999ff 3px groove;
 margin: auto;
 text-align: center;
 border-radius: .5em;
 }
 </style>
 </head>

<body>
 <h1>Round Corners Demo</h1>

</body>
</html>

The border-radius rule works by cutting an arc from each corner of
the element. The arc has the specified radius, so for sharp corners, you'll
want a small radius. You can measure the radius in any of the common
measurements, but pixels (px) and character width (em) are the most
commonly used.
The border is not visible unless the element has the background-
color or border defined. Note that there are variations of each tag to
support specific corners: border-top-left-radius and so on. This
can be useful if you do not wish to apply the same radius to all four corners
of your element. The most recent browsers now support the generic
border-radius rule. You can pick up a number of the previous-
generation browsers by using the vendor-specific prefix. If your browser
does not understand the border-radius rule, it will simply create the
ordinary squared corners.

Adding a box shadow
******ebook converter DEMO Watermarks*******

Owner
Highlight

Box shadows are often added to elements to create the illusion of depth.
Figure 4-11 displays a page with a simple box shadow.
The box shadow effect is not difficult to achieve, but it is normally done as
part of a class definition so it can be re-used throughout the page. Here's
some sample code:

 <!DOCTYPE HTML>
<html lang = "en">
<head>
 <title>boxShadow.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 .shadow {
 box-shadow: 10px 10px 10px #000000;

height: 200px;
 width: 200px;
 padding: 1em;
 border: 1px solid black;
 border-radius: 5px;

 background-color: #EEEEEE;
 }
 </style>
</head>
<body>
 <h1>Box Shadow Demo</h1>
 <div class = "shadow">
 This box has a shadow
 </div>
</body>
</html>

******ebook converter DEMO Watermarks*******

Figure 4-11: Adding a box shadow.

Adding a box shadow is much easier in CSS3 than it once was. Here are
the steps:

1. Define a class.

Often you'll want to apply the same settings to a number of elements
on a page, so the box shadow is often combined with other elements
like background-color and border in a CSS class that can be
reused throughout the page.

2. Add the box-shadow rule.

The latest browsers support the standard box-shadow rule, but you
may also want to include browser prefixes to accommodate older
browses.

3. Specify the offset.

A shadow is typically offset from the rectangle it belongs to. The first
two values indicate the horizontal and vertical offset. Measure using
any of the standard CSS measurements (normally pixels or ems).

4. Determine the blur and spread distances.
******ebook converter DEMO Watermarks*******

You can further modify the behavior of the shadow by specifying how
quickly the shadow blurs and how far it spreads. These are optional
parameters.

5. Indicate the shadow color.

You can make the shadow any color you wish. Black and gray are
common, but you can get interesting effects by picking other colors.

Many other shadow effects are possible. You can add multiple shadows,
and you can also use the inset keyword to produce an interior shadow to
make it look like part of the page is cut out.
There is a similar rule called text-shadow. It has the same general
behavior as box-shadow, but it's designed to work on text. It's possible
to get some really nice effects with this tool, but be careful not to impede
readability.

Changing the Background Image
You can use the img tag to add an image to your page, but sometimes you
want to use images as a background for a specific element or for the entire
page.
You can the background-image CSS rule to apply a background
image to a page or elements on a page. Figure 4-12 shows a page with this
feature.

******ebook converter DEMO Watermarks*******

Figure 4-12: This page has a background image for the body and another for the heading.

Background images are easy to apply. The code for backgroundImage.html
shows how:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>backgroundImage.html</title>
 <style type = "text/css">
 body {
 background-image: url("ropeBG.jpg");
 }
 h1 {
 background-image: url("ropeBGLight.jpg");
 }
 p {
 background-color: white;
 background-color: rgba(255, 255, 255, .85);
 }
 </style>
 </head>
 <body>
 <h1>Using Background Images</h1>
 <p>
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background with
 light transparency.
 </p>

******ebook converter DEMO Watermarks*******

 <p>
 The heading uses a lighter version of the background,
 and the paragraph uses a solid color background with
 light transparency.
 </p>
 </body>
</html>

Attaching the background image to an element through CSS isn't difficult.
Here are the general steps:

1. Find or create an appropriate image and place it in the same
directory as the page so it's easy to find.

2. Attach the background-image style rule to the page you want to
apply the image to.

If you want to apply the image to the entire page, use the body
element.

3. Tell CSS where background-image is by adding a url
identifier.

Use the keyword url() to indicate that the next thing is an address.

4. Enter the address of the image.

It's easiest if the image is in the same directory as the page. If that's the
case, you can simply type the image name. Make sure you surround the
URL with quotes.

5. Test your background image by viewing the web page in your
browser.

A lot can go wrong with background images. The image may not be in
the right directory, you might have misspelled its name, or you may
have forgotten the url() bit. (I do all those things sometimes.)

Getting a background check
It's pretty easy to add backgrounds, but background images aren't perfect.

******ebook converter DEMO Watermarks*******

Figure 4-13 demonstrates a page with a nice background. Unfortunately,
the text is difficult to read.

Figure 4-13: The text is very hard to read. Don't do this to your users!

Background images can add a lot of zing to your pages, but they can
introduce some problems, such as

Background images can add to the file size. Images are very large, so
a big background image can make your page much larger and harder to
download.
Some images can make your page harder to read. An image in the
background can interfere with the text, so the page can be much harder
to read.
Good images don't make good backgrounds. A good picture draws
the eye and calls attention to it. The job of a background image is to
fade into the background. If you want people to look at a picture,
embed it. Background images shouldn't jump into the foreground.
Backgrounds need to be low contrast. If your background image is
dark, you can make light text viewable. If the background image is
light, dark text shows up. If your image has areas of light and dark (like
nearly all good images), it'll be impossible to find a text color that
looks good against it.

******ebook converter DEMO Watermarks*******

Solutions to the background conundrum
Web developers have come up with a number of solutions to background
image issues over the years. I used several of these solutions in the
backgroundImage.html page (the readable one shown in Figure 4-12).

Using a tiled image
If you try to create an image the size of an entire web page, the image will
be so large that dial-up users will almost never see it. Even with
compression techniques, a page-sized image is too large for quick or
convenient loading.
Fortunately, you can use a much smaller image and fool the user into
thinking it takes up the entire screen. Figure 4-14 shows the ropeBG.jpg
that I used to cover the entire page.

Image courtesy of Julian Burgess (Creative Commons License)
Figure 4-14: The image is only 500×500 pixels.

******ebook converter DEMO Watermarks*******

 I used a specially created image for the background. Even though
it's only 500 pixels wide by 500 pixels tall, it's been carefully designed
to repeat so you can't see the seams. If you look carefully, you can tell
that the image repeats, but you can't tell exactly where one copy ends
and the next one begins.

This type of image is a tiled background or sometimes a seamless texture.

Getting a tiled image
If you want an image that repeats seamlessly, you have two main options:

Find an image online. A number of sites online have free seamless
backgrounds for you to use on your site. Try a search and see what you
come up with.
Make your own image. If you can't find a pre-made image that does
what you want, you can always make your own. All the main image
editing tools have seamless background tools. In GIMP, choose Filters
⇒ Map ⇒ Make Seamless. Check Book VIII, Chapter 4 for a
technique to build your own tiled backgrounds in GIMP.

By default, a background image repeats as many times as necessary in both
the horizontal and vertical dimensions to fill up the entire page. This fills
the entire page with your background, but you only have to download a
small image.

Setting background colors
Background colors can be a great tool for improving readability. If you set
the background color of a specific element, that background color appears
on top of the underlying element's background image. For the
backgroundImage.html example, I set the background color of all p objects
to white, so the text appears on white regardless of the complex
background. This is a useful technique for body text (like <p> tags)
because text tends to be smaller and readability is especially important. If
you want, you can set a background color that's similar to the background
image. Just be sure the foreground color contrasts with the background
color so the text is easy to read.

******ebook converter DEMO Watermarks*******

Setting a semi-transparent background color
In modern browsers, you will be able to see the background through the
paragraph. I achieved this trick by setting the background color twice. The
first background-color rule sets the background to white. This always
works (but it won't produce any transparency). The second
background-color rule uses a newer form of the color rule called
rgba. This trick allows you to supply a color value with transparency.
This rule takes four parameters. The first few are the RGB values (in base
10, so white is 255, 255, 255). The fourth parameter is the alpha value,
which represents transparency. Alpha is specified by a value between 0 and
1, where 0 is fully transparent and 1 is fully opaque. To make your text
readable, you should set alpha quite high. I used .85 for this example.
There is also an HSLA color rule that allows you to add alpha to a color
defined with the HSL mechanism described in Chapter 1 of this mini-book.
Like RGBA, it simply takes a fourth 0-1 parameter to indicate the amount
of alpha.

 When you use a dark background image with light text, be sure to
also set the background-color to a dark color. This way the text is
readable. Images take longer to load than colors and may be broken.
Make sure the user can read the text immediately.

Reducing the contrast
In backgroundImage.html, the heading text is pretty dark, which won't
show up well against the dark background image. I used a different trick
for the h1 heading. The heading uses a different version of the ropes
image; this one is adjusted to be much brighter. The image is shown in
Figure 4-15.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 4-15: This is the ropes image with the brightness turned way up.

With this element, I kept the ropes image, but I made a much brighter
background so the dark text would show up well underneath. This
technique allows you to use the background image even underneath text,
but here are a few things to keep in mind if you use it:

Make the image very dark or very light. Use the Adjust Colors
command in IrfanView or your favorite image editor to make your
image dark or light. Don't be shy. If you're creating a lighter version,
make it very light. (See Book I, Chapter 6 for details on color
manipulation in IrfanView and Book VIII, Chapter 4 for how to change
colors in GIMP.)
Set the foreground to a color that contrasts with the background. If
you have a very light version of the background image, you can use
dark text on it. A dark background requires light text. Adjust the text
color with your CSS code.
Set a background color. Make the background color representative of
the image. Background images can take some time to appear, but the

******ebook converter DEMO Watermarks*******

background color appears immediately because it is defined in CSS.
This is especially important for light text because white text on the
default white background is invisible. After the background image
appears, it overrides the background color. Be sure the text color
contrasts with the background, whether that background is an image or
a solid color.
Use this trick for large text. Headlines are usually larger than body
text, and they can be easier to read, even if they have a background
behind them. Try to avoid putting background images behind smaller
body text. This can make the text much harder to read.

Manipulating Background Images
After you place your background image, you might not be completely
pleased with the way it appears. Don't worry. You still have some control.
You can specify how the image repeats and how it's positioned.

Turning off the repeat
Background images repeat both horizontally and vertically by default. You
may not want a background image to repeat, though. Figure 4-16 is a page
with the ropes image set to not repeat at all.

******ebook converter DEMO Watermarks*******

Figure 4-16: The background doesn't repeat at all.

The code uses the background-repeat attribute to turn off the
automatic repetition.

 <!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>noRepeat.html</title>
 <style type = "text/css">
 body {
 background-image: url("ropeBG.jpg");
 background-repeat: no-repeat;
 }
 h1 {
 background-color: white;
 }
 </style>
 </head>
 <body>
 <h1>Background with no-repeat</h1>
 </body>
</html>

The background-repeat attribute can be set to one of four values:

repeat: The default value; the image is repeated indefinitely in both
x- and y-axes.
no-repeat: Displays the image one time; no repeat in x- or y-axis.
repeat-x: Repeats the image horizontally but not vertically.
repeat-y: Repeats the image vertically but not horizontally.

Using CSS3 Gradients
A gradient (which is a blend between two or more colors) can be a nice
background. Previously, developers would create a gradient by building a
thin gradient strip in an image editor, and then using the repeat-x or repeat-
y rules to make that smaller image replicate across the page. This was a
nice technique, but it was not terribly flexible because the image size was
still fixed, and only relatively simple linear gradients were possible.
CSS3 has added a remarkable gradient rule that makes gradients natively

******ebook converter DEMO Watermarks*******

Owner
Highlight

through CSS. When this technique is fully adopted, it makes gradients
much easier to work with.
Figure 4-17 demonstrates a number of examples of CSS3 gradients in
action:
CSS3 supports two major types of gradients: linear and radial. A linear
gradient changes colors along a straight line, and a radial gradient radiates
outward from a center point.
The gradient mechanism has been one of the slower parts of CSS to be
standardized and adopted, so it's still changing, but it looks like the
browsers are finally setting on a standard. Unfortunately, the vendor-
specific prefixes are necessary for the time being, making this technique a
bit tedious.

 Up until very recently, the gradient syntax was even more messy
than it is now, with WebKit (Chrome and Safari) using an entirely
different gradient syntax than Mozilla, and Microsoft refusing to add
any implementation at all. Now it looks like everybody's settling on the
Mozilla-style implementation, which is pretty easy to use and the one
demonstrated here. If you search on the web, you will see some other
syntaxes, especially for WebKit-based browsers, but the mechanism
described here looks to be the standard.

Building a simple gradient

******ebook converter DEMO Watermarks*******

Figure 4-17: CSS3 allows a number of interesting gradient types.

The simplest gradient is demonstrated in box 1 of Figure 4-17. It varies
from left to right, starting at red and ending with white. (of course, you'll
need to see this in color to fully appreciate it). Check gradient.html
on the book's companion site to see this example in its multicolor glory.

#box1 {
 background-image: linear-gradient(left, red, white);
 background-image: -moz-linear-gradient(left, red, white);
 background-image: -webkit-linear-gradient(left, red, white);
}

Here's how you build a simple linear gradient:

1. Define the selector.

A gradient is defined in CSS, and you'll need to use any of your
standard CSS selectors to determine which element you'll be adding the
gradient to. See Chapter 3 of this mini-book if you need more details
on CSS selectors.

2. Use the background-image rule.

A gradient is a special form of image. You can use the background-
image rule to apply a gradient to the background of any element,
including the entire body of the page.

******ebook converter DEMO Watermarks*******

Owner
Highlight

3. Invoke the linear-gradient function.

A few CSS elements such as url() and rgba() require parentheses
because technically they are functions. The distinction doesn't matter
right now, but you need to incorporate the parentheses when you use
this type of value. The linear-gradient technique is a function.
(You'll write your own functions in JavaScript in Book IV and in PHP
in Book V.)

4. Determine the direction the gradient will flow.

You can make a gradient flow in any direction you want inside the
element. Indicating left causes the element to flow from left to right.
You can use top to flow from top to bottom, or top left to go
from top left to bottom right. Use any combination of top, left,
bottom, and right. You can also specify an angle in degrees, as
demonstrated in the next example.

5. Indicate a starting color.

Use any of the standard color tools (color names, hex colors,
rgb()/rgba(), or hsl()) to determine the beginning color.

6. Indicate an ending color.

The last color indicated will be the ending color of the gradient. The
gradient flows from the beginning to ending color evenly.

7. Repeat with browser extensions.

By the time you read this, it's possible that the browsers will all use the
standard linear-gradient mechanism, and browser-specific rules
will no longer be necessary. For the moment, though, you'll need to
add variants for the specific browsers. You'll need to make a new
version of the background-image rule for each major vendor.

Making a more interesting gradient
As you look at box 2 of Figure 4-17, you'll see a more complex gradient

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

showing multiple colors and an interesting angle.
#box2 {
 background-image:
 linear-gradient(75deg, red, white 33%, white 66%, blue);
 background-image:
 -moz-linear-gradient(75deg, red, white 33%, white 66%,
blue);
 background-image:
 -webkit-linear-gradient(75deg, red, white 33%, white 66%,
blue);
}

Here's how you add more pizazz to your gradients.

1. Use an angle for direction.

Rather than specifying your gradient direction with the standard
top/left keywords, you can specify a starting angle. Angles are
measured mathematically in degrees, with 0 coming from the right and
90 coming from top-down. You must specify the degree measurement
with deg, so 75 degrees is written as 75deg.

2. Add as many colors as you wish.

A gradient can have any number of colors in it. Each change in colors
is called a color stop. My example shows three different colors.

3. Determine where the color stops happen.

By default, the colors are evenly distributed along the gradient. If you
want, you can move any color to appear anywhere on the gradient you
wish. The color stop locations are indicated by percentages. It is not
necessary to add a location for the first and last color stop, as they are
presumed to be 0% and 100%.

4. Create a band of color by providing two stops of the same color.

Box 2 features a band of white. To get this effect, I produced two color
stops with white, one appearing at 33%, and the other at 66%. This
breaks my gradient roughly into thirds.

******ebook converter DEMO Watermarks*******

Owner
Highlight

5. Put two colors at the same location for an abrupt color change.

If you want an abrupt color change, simply put two different colors at
the same percentage.

6. Repeat for all browsers.

Again, you'll need to consider the various browsers until this technique
becomes more standardized.

Building a radial gradient
CSS3 supports a second gradient type called the radial gradient. The basic
idea is the same, except rather than following a straight line like a linear
gradient, a radial gradient appears to flow from a central spot in the
element and radiate outwards.
The basic radial gradient shown in box 3 is created with this CSS code:

#box3 {
 background-image: radial-gradient(white, blue);
 background-image: -moz-radial-gradient(white, blue);
 background-image: -webkit-radial-gradient(white, blue);
}

As you can see, the basic radial gradient is created much like a linear
gradient, except it uses the radial-gradient function instead of the
linear-gradient function.

Radial gradients have many options, which makes them quite promising,
but the browser support for these various standards is quite spotty. Box 4
has a radial gradient with three colors:

#box4 {
 background-image:
 radial-gradient(red, white, blue);
 background-image:
 -moz-radial-gradient(red, white, blue);
 background-image:
 -webkit-radial-gradient(red, white, blue);
 }

It's also possible to change the shape of the gradient from circle to ellipse,
to change the center of the gradient to a different point inside the element,
and to specify color stops. You'll need to check the current specifications to

******ebook converter DEMO Watermarks*******

see how these things are done, as they are still quite experimental.

Using Images in Lists
It's not quite a background, but you can also use images for list items.
Sometimes, you might want some type of special bullet for your lists, as
shown in Figure 4-18.

Figure 4-18: I can't get enough of those Arrivivi Gusanos.

On this page, I've listed some of my (many) favorite varieties of peppers.
For this kind of list, a custom pepper bullet is just the thing. Of course,
CSS is the answer:

<!DOCTYPE html>

<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>listImages.html</title>
 <style type = "text/css">
 li {
 list-style-image: url("pepper.gif");
 }
 </style>
 </head>
 <body>
 <h1>My Favorite Peppers</h1>

******ebook converter DEMO Watermarks*******

 Green
 Habenero
 Arrivivi Gusano

 </body>
</html>

The list-style-image attribute allows you to attach an image to a
list item. To create custom bullets:

1. Begin with a custom image.

Bullet images should be small, so you may have to make something
little. I took a little pepper image and resized it to 25×25 pixels. The
image will be trimmed to an appropriate width, but it will have all the
height of the original image, so make it small.

2. Specify the list-style-image with a url attribute.

You can set the image as the list-style-image, and all the
bullets will be replaced with that image.

3. Test the list in your browser.

Be sure everything is working correctly. Check to see that the browser
can find the image, that the size is right, and that everything looks like
you expect.

 If you don't want to use an image, CSS has a number of other
styles you can apply to your list items. Use the list-style-type
rule to set your list to one of many styles. Look at official CSS
documentation for a complete list, but the most commonly used style
types are disc, circle, square, decimal, upper-
roman, lower-roman, upper-latin, and lower-latin.
Note that you can apply a numeric styling to a list item in an ordered or
unordered list, so the distinction between these list types is less
important than it used to be.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 5
Levels of CSS

In This Chapter
 Building element-level styles
 Creating external style sheets
 Creating a multipage style
 Managing cascading styles
 Working with a CSS reset style
 Using conditional comments

CSS is a great tool for setting up the visual display of your pages. When
you first write CSS code, you're encouraged to place all your CSS rules in
a style element at the top of the page. CSS also allows you to define
style rules inside the body of the HTML and in a separate document. In this
chapter, you read about these alternative methods of applying style rules,
when to use them, and how various style rules interact with each other.

Managing Levels of Style
Styles can be applied to your pages at three levels:

Local styles: Defined by specifying a style within an HTML element's
attributes.
Page-level styles: Defined in the page's header area. This is the type of
style used in Chapters 1 through 4 of this minibook.
External styles: Defined on a separate document and linked to the
page.

Using local styles
A style can be defined directly in the HTML body. Figure 5-1 is an

******ebook converter DEMO Watermarks*******

Owner
Highlight

example of this type of code. A local style is also sometimes called an
element-level style because it modifies a particular instance of an element
on the page.
You can't see the difference from Figure 5-1, but if you look over the code,
you'll see it's not like the style code you see in the other chapters in this
minibook:

Figure 5-1: This page has styles, but they're defined in a new way.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>localStyles.html</title>
 </head>
 <body>
 <h1>Local Styles</h1>
 <p style = "border: 2em #FF00FF groove">
 This paragraph has a locally-defined border
 </p>
 <p style = "font-family: sans-serif;
 font-size: 1.2em;
 font-style: italic">
 This paragraph has a series of font and text rules
applied.
 </p>
 </body>
 </html>

******ebook converter DEMO Watermarks*******

Owner
Highlight

As you look over this code, a couple things should become evident:

No <style> element is in the header. Normally, you use a
<style> section in the page header to define all your styles. This
page doesn't have such a segment.
Paragraphs have their own style attributes. I added a style
attribute to each paragraph in the HTML body. All HTML elements
support the style attribute.
The entire style code goes in a single pair of quotes. For each styled
element, the entire style goes into a pair of quotes because it's one
HTML attribute. You can use indentation and white space (as I did) to
make things easier to understand.

When to use local styles
Local styles should not be your first choice, but they can be useful in some
circumstances.
If you're writing a program to translate from a word processor or other tool,
local styles are often the easiest way to make the translation work. If you
use a word processor to create a page and you tell it to save the page as
HTML, it will often use local styles because word processors often use this
technique in their own proprietary format. Usually when you see an HTML
page with a lot of local styles, it's because an automatic translation tool
made the page.
Sometimes, you see local styles used in code examples. For example, the
following code could be used to demonstrate different border styles:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>localBorders.html</title>
 </head>
 <body>
 <h1>Inline Borders</h1>
 <p style = "border: 5px solid black">
 This paragraph has a solid black border
 </p>
 <p style = "border: 5px double black">

******ebook converter DEMO Watermarks*******

 This paragraph has a double black border
 </p>
 </body>
</html>

For example purposes, it's helpful to see the style right next to the element.
This code would be fine for demonstration or testing purposes (if you just
want to get a quick look at some border styles), but it wouldn't be a good
idea for production code.
Local styles have very high priority, so anything you apply in a local style
overrides the other style rules. This can be a useful workaround if things
aren't working like you expect, but it's better to get your styles working
correctly than to rely on a workaround.

The drawbacks of local styles
It's pretty easy to apply a local style, but for the most part, the technique
isn't usually recommended because it has some problems, such as

Inefficiency: If you define styles at the element level with the style
attribute, you're defining only the particular instance. If you want to set
paragraph colors for your whole page this way, you'll end up writing a
lot of style rules.
Readability: If style information is interspersed throughout the page,
it's much more difficult to find and modify than if it's centrally located
in the header (or in an external document, as you'll see shortly).
Lack of separation: Placing the styles at the element level defeats the
goal of separating content from style. It becomes much more difficult
to make changes, and the mixing of style and content makes your code
harder to read and modify.
Awkwardness: An entire batch of CSS rules has to be stuffed into a
single HTML attribute with a pair of quotes. This can be tricky to read
because you have CSS integrated directly into the flow of HTML.
Quote problems: The HTML attribute requires quotes, and some CSS
elements also require quotes (font families with spaces in them, for
example). Having multiple levels of quotes in a single element is a
recipe for trouble.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Using an external style sheet
CSS supports another way to use styles, called external style sheets. This
technique allows you to define a style sheet as a separate document and
import it into your web pages. To see why this might be attractive, take a
look at the following figure.
Figure 5-2 shows a page with a distinctive style.

Figure 5-2: This page has styles for the body, h1, and paragraph tags.

When you look at the code for externalStyle.html, you might be surprised
to see no obvious style information at all!

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>externalStyle.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "myStyle.css" />
 </head>
 <body>
 <h1>External Style</h1>
 <p>
 This page has styles set for paragraphs, body, and header
1.

******ebook converter DEMO Watermarks*******

 </p>
 <p>
 The styles are defined in an external style sheet.
 </p>
 </body>
</html>

Where you normally see style tags (in the header), there is no style.
Instead, you see a <link> tag. This special tag is used to connect the
current document with another document.

Defining the external style
When you use an external style, the style elements aren't embedded in the
page header but in an entirely separate document.
In this case, the page is connected to a special file called myStyle.css. This
file contains all the CSS rules:

/* myStyle.css */

body {
 background-color: #333300;
 color: #FFFFFF;
}

h1 {
 color: #FFFF33;
 text-align: center;
 font: italic 200% fantasy;
}

p {
 background-color: #FFFF33;
 color: #333300;
 text-align: right;
 border: 3px groove #FFFF33;
}

The style sheet looks just like a page-level style, except for a few key
differences:

The style sheet rules are contained in a separate file. The style is no
longer part of the HTML page but is an entirely separate file stored on
the server. CSS files usually end with the .css extension.

******ebook converter DEMO Watermarks*******

There are no <style></style> tags. These aren't needed because
the style is no longer embedded in HTML.
The code begins with a comment. The /* */ pair indicates a
comment in CSS. Truthfully, you can put comments in CSS in the page
level just like I did in this external file. External CSS files frequently
have comments in them.
The style document has no HTML. CSS documents contain nothing
but CSS. This comes closer to the goal of separating style (in the CSS
document) and content (in the HTML document).
The document isn't tied to any particular page. The great advantage
of external CSS is reuse. The CSS document isn't part of any particular
page, but any page can use it.

Reusing an external CSS style
External style sheets are really fun when you have more than one page that
needs the same style. Most websites today use multiple pages, and they
should share a common style sheet to keep consistency. Figure 5-3 shows a
second page using the same myStyle.css style sheet.

Figure 5-3: Another page using exactly the same style.

The code shows how easily this is done:
<!DOCTYPE html>

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>SecondPage.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "myStyle.css" />
 </head>
 <body>
 <h1>Second Page</h1>
 <p>
 This page uses the same style as
 externalStyle.html.
 </p>
 </body>
</html>

External style sheets have some tremendous advantages:

One style sheet can control many pages: Generally, you have a large
number of different pages in a website that all share the same general
style. You can define the style sheet in one document and have all the
HTML files refer to the CSS file.
Global changes are easier: Say you have a site with a dozen pages,
and you decide you want some kind of chartreuse background (I don't
know why — go with me here). If each page has its own page-level
style definition, you have to make the change 12 times. If you're using
external styles, you make the change in one place and it's automatically
propagated to all the pages in the system.
Separation of content and design: With external CSS, all the design
is housed in the CSS, and the data is in HTML.
Easy upgrades: Because the design parameters of the entire site are
defined in one file, you can easily change the site without having to
mess around with individual HTML files.

Understanding the link tag
The <link> tag is the key to adding a CSS reference to an HTML
document. The <link> tag has the following characteristics:

The <link> tag is part of the HTML page. Use a <link> tag in
******ebook converter DEMO Watermarks*******

your HTML document to specify which CSS document will be used by
the HTML page.
The <link> tag only occurs in the header. Unlike the <a> tag, the
<link> tag can occur only in the header.
The tag has no visual presence. The user can't see the <link> tag,
only its effects.
The <link> tag is used to relate the document with another
document. You use the <link> tag to describe the relationship
between documents.
The <link> tag has a rel attribute,which defines the type of
relationship. For now, the only relationship you'll use is the stylesheet
attribute.
The <link> tag also has an href attribute, which describes the
location of the other document.

 Link tags are often used to connect a page to an externally
defined style document (more on them in the next section).

 Most people refer to the hyperlinks created by the anchor (<a>)
tag as hyperlinks or links. This can lead to some confusion because, in
this sense, the link tag doesn't create that type of link. If it were up to
me, the <a> tag would have been called the <link> tag, and the tag
now called link would have been called import or something.
Maybe Tim Berners-Lee meant to call me the day he named these
elements, and he just forgot. That's what I'm thinking.

Specifying an external link
To use the <link> tag to specify an external style sheet, follow these
steps:

1. Define the style sheet.

******ebook converter DEMO Watermarks*******

Owner
Highlight

External style sheets are very similar to the ones you already know.
Just put all the styles in a separate text document without the
<style> and </style> tags. In my example, I created a new text
file called myStyle.css.

2. Create a link element in the HTML page's head area to define
the link between the HTML and CSS pages.

My link element looks like this:

<link rel = "stylesheet"
 type = "text/css"
 href = "myStyle.css" />

3. Set the link ’s relationship by setting the rel = " stylesheet "
attribute.

Honestly, stylesheet is almost the only relationship you'll ever
use, so this should become automatic.

4. Specify the type of style by setting type = " text/css " (just like
you do with page-level styles).

5. Determine the location of the style sheet with the href attribute.

Understanding the Cascading Part of
Cascading Style Sheets

The C in CSS stands for cascading, which is an elegant term for an equally
elegant and important idea. Styles cascade or flow among levels. An
element's visual display may be affected by rules in another element or
even another document.

Inheriting styles
When you apply a style to an element, you change the appearance of that
element. If the element contains other elements, the style is often passed on
to those containers. Take a look at Figure 5-4 for an illustration.

******ebook converter DEMO Watermarks*******

Figure 5-4 shows several paragraphs, all with different font styles. Each
paragraph is white with a black background. All the paragraphs use a
fantasy font. Two of the paragraphs are italicized, and one is also bold.
Look at the code to see how the CSS is defined.

Figure 5-4: The last paragraph inherits several style rules.

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>CascadingStyles</title>
 <style type = "text/css">
 body {
 color: white;
 background-color: black;
 }
 p {
 font-family: comic sans ms, fantasy;
 }
 .italicized {
 font-style: italic;
 }
 #bold {
 font-weight: bold;
 }
 </style>
 </head>
 <body>
 <h1>Cascading Styles</h1>
 <p>This is an ordinary paragraph</p>

******ebook converter DEMO Watermarks*******

 <p class = "italicized">
 This paragraph is part of a special class
 </p>
 <p class = "italicized"
 id = "bold">
 This paragraph has a class and an ID
 </p>
 </body>
</html>

Take a look at the page, and you'll notice some interesting things:

Everything is white on a black background. These styles were
defined in the body. Paragraphs without specific colors will inherit the
colors of the parent element (in this case, the body). There's no need
to specify the paragraph colors because the body takes care of them.
Paragraphs all use the fantasy font. I set the paragraph's font-
family attribute to fantasy. All paragraphs without an explicit
font-family attribute will use this rule.
A class is used to define italics. The second paragraph is a member of
the italicized class, which gives it italics. Because it's also a
paragraph, it gets the paragraph font, and it inherits the color rules from
the body.
The bold ID only identifies font weight. The third paragraph has all
kinds of styles associated with it. This paragraph displays all the styles
of the second, plus the added attributes of its own ID.

In the cascadingStyles.html example, the final paragraph inherits the font
from the generic p definition, italics from its class, and boldfacing from its
ID. Any element can attain style characteristics from any of these
definitions.

Hierarchy of styles
An element will display any style rules you define for it, but certain rules
are also passed on from other places. Generally, this is how style rules
cascade through the page:

The body defines overall styles for the page. Any style rules that you
want the entire page to share should be defined in the body. Any

******ebook converter DEMO Watermarks*******

element in the body begins with the style of the page. This makes it
easy to define an overall page style.
A block-level element passes its style to its children. If you define a
div with a particular style, any elements inside that div will inherit
the div 's style attributes. Likewise, defining a list will also define the
list items.
You can always override inherited styles. Of course, if you don't
want paragraphs to have a particular style inherited from the body, you
can just change them.

 Not all style rules are passed on to child elements. The text
formatting and color styles are inherited, but border and positioning
rules are not. This actually makes sense. Just because you define a
border around a div doesn't mean you want the same border around
the paragraphs inside that div.

Overriding styles
The other side of inherited style is the ability to override an inherited style
rule. For example, take a look at this code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>overRide.html</title>
 <style type = "text/css">
 body { color: red; }
 p {color: green; }
 .myClass { color: blue; }
 #whatColor { color: purple; }
 </style>
 </head>
 <body>
 <div>
 This div has only the style from the body.
 </div>
 <p>
 This is a regular paragraph with paragraph styling

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

 </p>
 <p class = "myClass">
 This paragraph is a member of a class
 </p>
 <p class = "myClass" id = "whatColor">
 This paragraph is a member of a class and has an ID,
 both with style rules.
 </p>
 </body>
</html>

 The code listing has a different indentation scheme than I've used
in the rest of the chapter. Because all the styles had one rule, I chose
not to indent to save space.

The question is this: What color will the whatColor element display? It's
a member of the body, so it should be red. It's also a paragraph, and
paragraphs are green. It's also a member of the myClass class, so it
should be blue. Finally, it's named whatColor, and elements with this ID
should be purple.
Four seemingly conflicting color rules are all dropped on this poor element.
What color will it be?
CSS has a clear ranking system for handling this type of situation. In
general, more specific rules trump more general rules. Here's the
precedence (from highest to lowest precedence):

1. User preference: The user always has the final choice about what
styles are used. Users aren't required to use any styles at all and can
always change the style sheet for their own local copy of the page. If a
user needs to apply a special style (for example, high contrast for
people with visual disabilities), he should always have that option.

2. Local style: A local style (defined with the style attribute in the
HTML) has the highest precedence of developer-defined styles. It
overrules any other styles.

3. id : A style attached to an element id has a great deal of weight
because it overrides any other styles defined in the style sheet.

4. Class: Styles attached to a class override the style of the object's
******ebook converter DEMO Watermarks*******

element. So, if you have a paragraph with a color green that belongs to
a class colored blue, the element will be blue because class styles
outrank element styles.

5. Element: The element style takes precedence over any of its
containers. For example, if a paragraph is inside a div, the paragraph
style has the potential to override both the div and the body.

6. Container element: divs, tables, lists, and other elements used as
containers pass their styles on. If an element is inside one or more of
these containers, it can inherit style attributes from them.

7. Body: Anything defined in the body style is an overall page default,
but it will be overridden by any other styles.

In the overRide.html example, the id rule takes precedence, so the
paragraph displays in purple.
If you want to see a more complete example, look at cascadingStyles.html
on the companion website. It extends the whatColor example with other
paragraphs that demonstrate the various levels of the hierarchy.

Precedence of style definitions
When you have styles defined in various places (locally, page level, or
externally), the placement of the style rule also has a ranking. Generally, an
external style has the weakest rank. You can write a page-level style rule to
override an external style.
You might do this if you decide all your paragraphs will be blue, but you
have one page where you want the paragraphs green. Define paragraphs as
green in the page-level style sheet, and your page will have the green
paragraphs without interfering with the other pages' styles.
Page-level styles (defined in the header) have medium weight. They can
override external styles but are overridden by local styles.
Locally defined styles (using the HTML style attribute) have the highest
precedence, but they should be avoided as much as possible. Use classes or
IDs if you need to override the page-level default styles.
In general, a style defined later in the page takes precedence over one
defined earlier.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Managing Browser Incompatibility
While we're messing around with style sheets, there's one more thing you
should know. Although all the modern browsers manage CSS pretty well
these days, Internet Explorer (especially the earlier versions) is well known
for doing things in non-standard ways.
Most of what you know works equally well in any browser. I've focused on
the established standards, which work very well on most browsers.
Unfortunately, Internet Explorer (especially before version 7) is notorious
for not following the standards exactly. Internet Explorer (IE) doesn't do
everything exactly right. When IE had unquestioned dominance, everybody
just made things work for IE. Now you have a bigger problem. You need to
make your code work for standards-compliant browsers, and sometimes
you need to make a few changes to make sure that IE displays things
correctly.

Coping with incompatibility
This has been a problem since the beginning of web development, and a
number of solutions have been proposed over the years, such as

“Best viewed with” disclaimers: One common technique is to code
for one browser or another and then ask users to agree with your choice
by putting up this disclaimer. This isn't a good technique because the
user shouldn't have to adapt to you. Besides, sometimes the choice is
out of the user's hands. More and more custom devices (such as
gaming consoles, tablets and cellphones) have browsers built in, which
are difficult to change. IE isn't available on Linux machines, and not
everyone can install a new browser.
Parallel pages: You might be tempted to create two versions of your
page, one for IE and one for the standards-compliant browsers
(Firefox, Netscape Navigator, Opera, Safari, and so on). This is also a
bad solution because it's twice (or more) as much work. You'll have a
lot of trouble keeping track of changes in two different pages. They'll
inevitably fall out of synch.
JavaScript-based browser detection: In Book IV, you see that
JavaScript has features for checking on the browser. This is good, but it

******ebook converter DEMO Watermarks*******

Owner
Highlight

still doesn't quite handle the differences in style sheet implementation
between the browsers.
CSS hacks: The CSS community has frequently relied on a series of
hacks (unofficial workarounds) to handle CSS compatibility problems.
This approach works by exploiting certain flaws in IE to overcome
others. The biggest problem with this is that when Microsoft fixes
some flaws (as they've done with IE 10), many of the flaws you relied
on to fix a problem may be gone, but the original problem is still there.
Conditional comments: Although IE has bugs, it also has some
innovative features. One of these features, conditional comments, lets
you write code that displays only in IE. Because the other browsers
don't support this feature, the IE-specific code is ignored in any
browser not based on IE. This is the technique currently preferred by
coders who adhere to web standards.

Making Internet Explorer–specific code
It's a little easier for you to see how conditional comments work if I show
you a simple example and then show you how to use the conditional
comment trick to fix CSS incompatibility problems.
Figure 5-5 shows a simple page with Firefox. Figure 5-6 shows the exact
same page displayed in IE 7.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Figure 5-5: This isn't IE.

Figure 5-6: And this is IE. Somehow the code knows the difference.

Take a look at the code for IEorNot.html and see how it works.
<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>IEorNot.html</title>
 </head>
 <body>
 <p>
 I will now use a conditional comment to determine your
 browser. I'll let you know if you're using IE.
 </p>
 <[!--if IE]
 <h1>You're using IE</h1>
 <![endif]-->
 </body>
</html>

The only part that's new is the strange comments:
<!--[if IE]>

 <h1>You're using IE</h1>
 <![endif]-->

Conditional comments are a special feature available only in Internet

******ebook converter DEMO Watermarks*******

Explorer. They allow you to apply a test to your browser. You can place
any HTML code you wish between <!-- [if IE]> and <![endif]-
-> , but that code is rendered only by versions of Internet Explorer. Any
other browser reads the entire block as a comment and ignores it
completely.
So, when you look at IEorNot.html in IE, it sees the conditional comment,
says to itself, “Why yes, I'm Internet Explorer,” and displays the “Using
IE” headline. If you look at the same page with Firefox, the browser
doesn't understand the conditional comment but sees an HTML comment
(which begins with <!-- and ends with -->). HTML comments are
ignored, so the browser does nothing.

Using a conditional comment with CSS
Conditional comments on their own aren't that interesting, but they can be
a very useful tool for creating compatible CSS. You can use conditional
comments to create two different style sheets, one that works for IE and
one that works with everything else. Figures 5-7 and 5-8 illustrate a simple
example of this technique:

Figure 5-7: This page has a yellow background in most browsers.

Most browsers will read a standard style sheet that creates a yellow
background.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Figure 5-8: The same page uses a different style sheet in IE.

If the page is rendered in IE, it uses a second style sheet.
Look at the code, and you'll see it's very similar to the IEorNot.html page.

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>WhatBrowser.html</title>
 <!-- default style -->
 <style type = "text/css">
 body {
 background-color: yellow;
 color: blue;
 }
 </style>
 <!-- IE only style overrides default -->
 <!--[if IE]>
 <style type = "text/css">
 body {
 background-color: red;
 color: yellow;
 }
 </style>
 <![endif]-->
 </head>
 <body>
 <p>
 This page has a red background in IE, and a yellow

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text
This does not work any-more. In addition, I am using Microsoft Edge now,because Chrome cannot play video.

Owner
Highlight

 background in other browsers.
 </p>
 </body>
</html>

If you want a page to use different styles in IE and other browsers, do the
following:

1. Define the default style first.

Begin by creating the style that will work in most browsers. Most of
the time, this style will also work in IE. You can create the style at the
page level (with the <style></style> pair) or externally (with the
<link> tag).

2. Create a conditional comment in the header.

Create a conditional comment after the primary style, as shown in this
code snippet.

<!-- default style -->
 <style type = "text/css">
 body {
 background-color: yellow;
 color: blue;
 }
 </style>

<!-- IE only style overrides default -->
 <!--[if IE]>

<![endif]-->

3. Build a new IE-specific style inside the comment.

The style inside the comment will be applied only to IE browsers, such
as in the following lines:

<!--[if IE]>
 <style type = "text/css">
 body {
 background-color: red;
 color: yellow;

******ebook converter DEMO Watermarks*******

 }
 </style>
 <![endif]-->

4. The commented style can be page level or external.

Like the default style, you can use the <style></style> pair to
make a page-level style, or you can use the <link> tag to pull in an
externally defined style sheet.

5. Only place code that solves IE issues in the conditional style.

IE will read the code in both styles, so there's no need to repeat
everything. Use the conditional style for only those areas where IE
doesn't do what you expect.

6. Don't forget to end the conditional comment.

If you leave off the end of your conditional comment (or any comment,
for that matter), most of your page won't appear. That could be bad.

Checking the Internet Explorer version
So far, you haven't encountered many situations that require conditional
comments, but they're handy when you need them. One more trick can be
useful. You can specify which version of IE you're using. This is important
when you read about positionable CSS in Book III because IE versions 7
and later work pretty well with standards-compliant code, but the earlier
versions do not. You can use this variation to specify code only for IE 6
and earlier.

<!--[if lte IE 6]>
...
<[endif]-->

The lte signifies less than or equal to, so code inside this condition will
run only on early versions of IE. If you know the user is using IE version
10 or later, most of the concepts described in this book will work fine. For
earlier versions of IE, you may have to rely on conditional comments to
make everything work.

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text

Owner
Typewritten Text
These tests do not work -

Owner
Typewritten Text

Owner
Typewritten Text
anymore!

Using a CSS reset
Even when browsers agree on which CSS elements to incorporate, they
sometimes differ on the actual details. For example, they may choose
different margins and paddings for list elements. Web developers often use
a special CSS style called a css reset. This is simply an external CSS file
that explicitly determines the details of every single element. When you
use a CSS reset, you're less likely to be surprised by differences between
browsers. A number of great resets are available to use for free from
www.cssreset.com. For HTML5 use, I prefer the HTML5 Doctor CSS
reset available from that page.
Although page resets are a godsend for designers, they do slow down the
page load and rendering time a bit (as they reset every single element
whether it is used in the page or not). You should never use a page reset as
the only CSS, but modify it to suit your specific needs. Also, you'll find
that resets aren't critical until you're concerned that things work exactly the
same on every browser (which is not likely to happen anyway).
For these reasons, I do not use CSS resets in this book, but they are
frequently used in web frameworks and CMS systems as described in Book
VIII.

******ebook converter DEMO Watermarks*******

http://www.cssreset.com

Chapter 6
CSS Special Effects

In This Chapter
 Adding reflections
 Working with opacity
 Manipulating text with strokes and shadows
 Adding transformations to elements
 Animating with transitions

CSS is great for adding visual interest to websites. Newer implementations
of CSS go even further, adding new capabilities to web pages that once
required hours of work in an image editor or programming language. In
this chapter, you discover what you need to know to make your page
elements pop out, reflect, turn, move, and even respond to basic input, all
with CSS.

Image Effects
CSS allows you to apply some interesting special effects to your pages.
These effects can be applied to any element, but they generally are applied
to images and headlines. Note that these are still considered experimental,
so the browser implementations vary.

Transparency
CSS3 has complete support for adjustable opacity. This is reflected in a
couple of ways. First, any element has an opacity attribute that can be
set from 0 (fully transparent) to 1 (fully opaque).

Figure 6-1 shows a div with partial transparency superimposed on an
image.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Figure 6-1: The box and text are partially transparent.

The complete code for this page is easy to follow:
 <!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>opacity.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 body {
 background-image: url("apoyo.jpg");
 background-repeat: no-repeat;
 }
 h1 {
 color: rgba(0, 0, 0, .3);
 }

 #box {
 position: absolute;
 top: 350px;
 left: 100px;
 height: 100px;
 width: 100px;
 border: 1px solid red;
 background-color: white;
 opacity: .3;
 }
 </style>
 </head>

******ebook converter DEMO Watermarks*******

<body>
 <h1>Opacity Demo</h1>

<div id = "box"></div>

</body>
 </html>

All of the code is common HTML and CSS2 stuff, except the last attribute.
The opacity attribute takes a single floating point value between 0 and
1. Zero (0) is completely transparent and one (1) is completely opaque.
Note that Figure 6-1 also illustrates the other main form of transparency
supported by CSS — the headline uses the RGBA model to add alpha
transparency to a color. Take a look at Chapter 4 of this mini-book for
more on the rgba and hsla color models. In general, use alpha when you
want to add partial transparency to an individual color. Opacity can be used
for an entire element, even something complex like an image or a video.
All of the recent browser versions support opacity without requiring
vendor-specific prefixes. Older browsers simply display the element as
fully opaque, so anything under a partially transparent element may be
invisible to older browsers.

Reflections
Reflection is another one of those visual elements that adds quite a bit to a
page when done well. Although it's not a formal part of the CSS3
specification, it is a promising technology. Currently only the WebKit-
based browsers (that is, Safari, iPhone/iPad, and Chrome) support this
capability. However, it shows such promise that some form of this
capability is likely to appear in the other browsers at some point.
Figure 6-2 shows a reflected headline and image.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Figure 6-2: Using the reflection attribute on text and an image.

Apply the following CSS to make any element with the reflect class
have a nice-looking reflection in the supported browsers:

-webkit-box-reflect: below 2px;

Basic reflections are quite simple:

1. Apply the -webkit-box-reflect attribute.

Unfortunately, there is no generic version, nor has the reflect
attribute been duplicated by other browsers.

2. Specify where the reflection is to be placed.

Normally the reflection goes below the primary element, but it can also
be above, left, or right.

3. Indicate a gap width.

The reflection can be placed right next to the original element, but
often it looks better with a small gap. The gap is normally measured in
pixels.

This will produce a very nice reflection.

******ebook converter DEMO Watermarks*******

However, reflections aren't usually pixel-perfect duplications. They tend to
fade out over distance. WebKit allows you to add a gradient to a reflection.
In this case, the gradient goes from completely opaque (white) to
completely transparent (transparent).

.reflect {
 -webkit-box-reflect: below 2px
 -webkit-linear-gradient(bottom, white, transparent 40%,
transparent); }

The standard part of the reflection is just like the previous example, but it
includes a gradient that fades the reflection to transparency.

1. Build a linear gradient.

The gradient for a reflection is nearly linear. Note that the gradient is
NOT a new CSS rule, but simply a parameter in the existing reflection
rule.

2. Make the gradient move from bottom to top.

Use top to indicate the gradient starts at the top, and bottom to
indicate the gradient starts at the bottom. These values represent the top
and bottom of the original image, not the reflection (which will, of
course, be reversed). Normally, your gradient starts at the bottom of the
original image (which is at the top of the reflected image).

3. Begin with complete opacity.

The bottom of the original image is the top of the reflected image, and
the top of the reflected image should be completely opaque. This
gradient isn't really about color, but about which parts of the reflection
are visible. Setting the initial color to white makes the top of the
reflection completely opaque. (Of course, you can use rgba() to set
any other transparency value you want, but only the alpha part is
important in this context.)

4. Finish at complete opacity.

The top of the original image (the bottom of the reflection) should be

******ebook converter DEMO Watermarks*******

completely transparent, so end the gradient with the special color
keyword transparent (which is equivalent to rgba(255, 255,
255, 0)).

5. Add a color-stop to adjust the fade.

Add a color stop to indicate where in the reflection you want the image
to begin fading. I want the picture to begin fading around 40%, so I
added an internal transparent color stop at 40%.

If you need a refresher on how gradients work, please check Chapter 4 of
this mini-book.
Note that the reflected image is not calculated as a separate element for
page layout purposes, so text and other content will flow right on top of
your reflection.
Reflections are commonly applied to images, but they can be applied to
any element, even video!

 It's possible to get a reflection effect in other browsers with
clever use of the transformation and gradient attributes. For now,
though, it's probably safest to reserve this effect for situations where
you know the user will be using a supported browser or when the
reflected effect is not absolutely necessary.

Text Effects
The most significant improvement to text in CSS is the @font mechanism
described in Chapter 2 of this minibook. This technique allows you to
define your own fonts and package them with your website. CSS3 has
other text-formatting tricks available, too. The text-stroke and
text-shadow rules allow you to make interesting transformations on
text in your pages.
Both of these rules are used to decorate text, but they can impact
readability, so you should use them carefully. They're more appropriate for

******ebook converter DEMO Watermarks*******

larger text (like headlines) than the main content of your site.

Text stroke
With CSS3, you can specify a stroke color for your text. This defines an
outline around the letter. You can specify the stroke color (using any of the
standard CSS color values) as well as a stroke width (using the normal size
attributes).
Figure 6-3 shows a page with stroked text.

Figure 6-3: You can add an outline to text for interesting effects.

The text-stroke rule applies this effect. You can see it used in the code:
 <!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>textStroke.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 h2 {
 color: yellow;
 -webkit-text-stroke: 2px red;
 font-size: 300%;
 }
 </style>

</head>

******ebook converter DEMO Watermarks*******

<body>
 <h1>Text Stroke Demo</h1>

<h2>This text has a stroke</h2>
 </body>
</html>

Currently no browsers support the text-stroke attribute directly, but
WebKit-based browsers (Chrome and Safari) support the vendor-specific -
webkit- version. A browser that does not support the rule will simply
ignore it, so this should not be a significant part of your design until
support is more complete.

Text-shadow
Shadows are another common feature of modern web designs. Shadows
add an element of depth to a page, but they can also enhance readability (if
used properly) to lift a headline from the page. The text-shadow
attribute was technically part of CSS2, but it has only recently been
supported by major browsers. Figure 6-4 illustrates text-shadow in
action:

 <!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>textShadow.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 h2 {
 font-size: 300%;
 text-shadow: 5px 5px 2px #cccccc;
 }
 </style>
 </head>

<body>
 <h1>Text Shadow Demo</h1>

<h2>This text has a shadow</h2>

</body>
</html>

******ebook converter DEMO Watermarks*******

Figure 6-4: This text has a shadow.

The text-shadow attribute has four parameters:

offset-x: Determines how far in the x (left-right) axis the shadow will
be from the original text. A positive value moves the shadow to the
right, and a negative value moves to the left.
offset-y: Determines how far in the y (up-down) axis the shadow will
be from the original text. A positive value moves the shadow down,
and a negative value moves the shadow up.
blur: Specifies the blur radius of the shadow. If the value is 0px, there
is no blur, and the shadow looks just like the original text. Generally,
you'll want the blur value to be near the longest of your offsets. This
allows the shadow to be recognizable as a shadow of the text without
becoming a distraction.
color: Defines the shadow color. Generally a dark gray is preferred,
but you can also try other colors for special effects. Note that blurring
tends to lighten the shadow color. If there is a great deal of blur
applied, the shadow color can be the same color as the text. If the
shadow will not be blurred much, you may need to lighten the shadow
color for readability.

The size of the shadow is determined indirectly with a combination of

******ebook converter DEMO Watermarks*******

offsets and blurs. You may have to experiment to get the shadow you're
looking for. Shadow effects are best when they are subtle because they can
affect readability. For Figure 6-4, I made the shadow darker than I would in
a normal web page to ensure that the shadow is visible in the screen shot.
Normally, I'd make the shadow even lighter to give an almost subconscious
indication of depth.
A special case of text shadowing can be used to help text stand out against
a background image. Apply a small shadow of a contrasting color. This
technique is frequently used when you need to have text on a background
because each letter produces its own high-contrast background. Again, be
sure not to sacrifice readability for sake of design ethic.
All latest-model browsers support the text-shadow feature. No special
prefixes are necessary.

Transformations and Transitions
One of the most consistent criticisms of early HTML was the limitations on
how elements are displayed on the screen. An entire mini-book (Book III)
is dedicated to screen layout, but CSS3 incorporates a significant new set
of tools for modifying the position, size, and orientation of any element.
The transformation mechanism allows you to apply classic transformations
(rotation, translation, or scale) on any element. The transition mechanism
allows you to perform these changes over time. Together, these two
techniques allow a relatively simple and powerful form of animation that
once required sophisticated programming techniques or an external plug-in
like Flash.

Transformations
CSS3 includes the ability to apply geometric transformations onto any
element. This provides a remarkable level of visual control not previously
available to web developers.
The transform attribute allows you to apply a mathematical
transformation to any div. When you apply transform to an element,
you need to apply one or more of the following parameters to describe the
type of transformation:

******ebook converter DEMO Watermarks*******

Owner
Highlight

translate: Moves the object from its default position. Translation
requires two parameters, an X measurement and a Y measurement. Use
the standard CSS measurement units.
rotate: Rotates the image around its center value. Takes one
parameter, an angle measurement in degrees. (For example, 30 degrees
is 30deg.)
scale: Changes the size of the object. The standard version changes
both the horizontal and vertical size uniformly. The scalex and
scaley attributes can be used to adjust the scale along an individual
axis. Scale is measured in the standard CSS measurement units. If scale
is larger than 1, the object is larger than the original. A scale between
zero and one makes the item smaller than it was. Zero or negative scale
values are not defined.
skew: This allows you to tilt the element by some angle. The skew
parameter requires an angle measurement in degrees. The skewx and
skewy variations allow for more complete control of the
transformation.

You can combine multiple parameters by listing them after the transform
attribute separated by spaces.
To illustrate, imagine the following HTML snippet:

<div id = "box1">box 1</div><div id = "box2"> box 2</div><div id
= "box3"> box 3</div><div id = "box4"> box 4</div><div id =
"box5"> box 5</div>

The code shows five identical divs. For illustration purposes, all the divs
share the same common CSS:

#box1, #box2, #box3, #box4, #box5{ width: 100px; height:
80px; border: 3px solid black; background-color: yellow; }

Apply variations of the transform attribute to each element to see how
the transformations work.

#box2 { transform: translate(100px, 0px); } #box3
{ transform: rotate(45deg); } #box4 { transform:
scale(2) translate(100px, 0px); } #box5 { transform:
skew(3); }

This code is illustrated in Figure 6-5.

******ebook converter DEMO Watermarks*******

Figure 6-5: Page elements can be transformed.

Note that browser support is changing on this element. Chrome and Safari
still expect the -webkit prefix, but Firefox and Opera support the non-
prefixed version. IE 10 theoretically works with the standard version, but
version 9 requires the -ms- prefix, and earlier versions of IE simply
ignore transformations altogether. If you view the actual source code of the
transform.html site, you'll see multiple versions of each rule to handle the
various browsers:

#box2 {
 transform: translate(100px, 0px);
 -webkit-transform: translate(100px, 0px);
 -ms-transform: translate(100px, 0px);
 }

Eventually, common sense will break out and vendor-specific prefixes will
no longer be necessary, but for the time being, it's safest to put them all in
place. If you want to catch older versions of Firefox and Opera, you can
also include these (-moz- and -o-) prefixes as well.

Three-dimensional transformations
As browsers become more powerful, interesting new capabilities are
emerging. One of the more exciting developments is the formation of 3D
transformations. A 3D transform is similar to the traditional
transformations, but it allows for a virtual third axis.

******ebook converter DEMO Watermarks*******

Ordinary, 2D animations utilize the 2D coordinate system, with an X axis
going side-to-side and a Y axis traversing top-to-bottom. Even in 2D
transformations, there is a tacit acknowledgment of a Z axis. The Z axis
goes through the center of the object and points directly to the viewer's
eyes and back into infinity behind the screen. 2D rotations are around this
imaginary Z axis. You can determine which elements overlap other
elements through the CSS z-index property, so although all screen
elements are the same actual distance from the user, they appear to have
some form of depth.
3D transformations have the same general operations as 2D (translate,
rotate, and scale), but you can apply the transformation along one of the
three axes: X, Y, or Z. This might seem confusing, so take a look at
Figure 6-6 for some clarification:

Figure 6-6: These boxes are transformed in three dimensions.

In Figure 6-6, you see five boxes with nearly identical styles. Each box has
a different 3D transformation applied:

Box 1 has default behavior: Box 1 uses ordinary layout with no 3D
transformation applied at all.
Box 2 is rotated 45 degrees around x: Box 2 appears to be truncated,
but it's actually rotated around the horizontal (X) axis. Note that both
the box itself and the text inside the box are shortened.

******ebook converter DEMO Watermarks*******

Box 3 is nearly invisible: Box 3 has also been rotated around the X
axis, but this one is rotated nearly 90 degrees, so it's almost invisible.
(Had I rotated 90 degrees, it would be invisible because the element has
no depth.)
Box 4 is upside-down: I rotated box 4 180 degrees around the X axis,
flipping it completely. Note that rotating around the Y axis would also
flip the box, but the text would remain at the top, and would be
reversed along the vertical axis.
Box 5 is doing all kinds of crazy things: Box 5 has two
transformations applied at the same time. It is rotated 45 degrees
around x and -45 degrees along y.

Take a look at the code to see exactly what is happening here.
<!DOCTYPE HTML>
<html lang = "en">
 <head>
 <title>transform3D.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css"> body {
 perspective: 1000;
 -webkit-perspective: 1000;
 }

#box1, #box2, #box3, #box4, #box5{
 width: 100px;
 height: 80px;
 border: 3px solid black;
 background-color: yellow;
 }

#box2 {
 transform: rotateX(45deg);
 -webkit-transform: rotateX(45deg);
 }

#box3 {
 transform: rotateX(89deg);
 -webkit-transform: rotateX(89deg);
 }

#box4 {

******ebook converter DEMO Watermarks*******

 transform: rotateX(180deg);
 -webkit-transform: rotateX(180deg);
 }

#box5 {
 transform: rotate3D(1, 2, 0, 45deg);
 -webkit-transform: rotate3D(1, -1, 0, 45deg);
 }

</style>
 </head>

<body>
 <h1>3D Transform Demo</h1>

<div id = "box1">box 1</div>
 <div id = "box1">box 2</div>
 <div id = "box1">box 3</div>
 <div id = "box1">box 4</div>
 <div id = "box1">box 5</div>

</body>
</html>

The first new rule is perspective. Change the perspective of the parent
element that will contain your transformed elements. This gives you the
ability to determine how the elements appear to be displayed. The
perspective indicates how close the camera appears to be to the elements. I
applied a perspective of 1,000 to my example, which gives a decent
illusion.
Boxes 2 through 4 all use the same transformation rule: rotateX(). This
mechanism is much like the 2D rotate() function, but it rotates along
the X axis. There are also rotateY() and rotateZ() functions, but
rotateZ() is infrequently used because it's just like the 2D rotate()
technique.
If you want to apply more than one rotation, you can use the
rotate3d() function. This function takes four parameters. The first
three are modifiers for the three axes, and the fourth is an angle. Looking at
box 5, I've rotated 45 degrees in the X and Y axes.

******ebook converter DEMO Watermarks*******

CSS3 also supports the translateX, translateY(), and
translateZ() functions. These mechanisms allow you to specify a
translation along a specific axis. (They are not used frequently because the
2D translate() method encapsulates both translateX and
translateY, and z-index is a well-established way to translate along
the z axis.) The translate3d() function allows you to translate along
multiple axes at the same time.
CSS3 includes scaleX, scaleY, and scaleZ functions, but again these
are not always used because they act similar to the 2D scaling function.
There is also a scale3d() function for use with multiple scales.
Support for the 3D transformations is growing but not complete. At the
moment, the -webkit and no-prefix versions will support most browsers.
The IE family of browsers has limited support for 3D transformations.

Transition animation
It's already possible to change CSS properties on the fly through pseudo-
classes (like hover) or with JavaScript code. Prior to CSS3, all CSS state
changes happened instantly. With the new transition attribute, you
can cause transitions to happen over time.
Figure 6-7 demonstrates transitions, but as it involves movement, you
really need to see this example in your browser.

******ebook converter DEMO Watermarks*******

Figure 6-7: As you hover over elements, they change!

Look at a simple h1 heading:
<h1>Transition Demo</h1>

The CSS code is mainly quite straightforward:
h1 { color: black font-size: 300%; transition:color 1s
ease-in; }

h1:hover { color: red; }

Begin by ignoring the transition attribute. If you look at the rest of the
code, it's easy to see what it does. In the normal state, the heading is black.
In the hover state, the color is red. Typically, the heading turns red as soon
as the mouse hovers over it, and will instantly turn black when the mouse
leaves. However, when the transition attribute is added, the color
change is not immediate, but takes a second. The color gradually changes
from black to red and back.
Transitions are even more interesting when you pair them with
transformations. Imagine a very simple div:

<div id = "box">Box 1</div>

Apply a little CSS3 magic and when the user hovers over the div, it
rotates smoothly until it is upside-down. When the user leaves the div, it
smoothly rotates back to its original position:

#box { transition: all 1s ease-in; height: 100px; width:
100px; border: 1px solid black; }

#box:hover { transform: rotate(180deg); }

The transform is defined in the: hover pseudo-class. The only new
element is the transition specified in the class’ standard style.
The transition attribute takes several parameters:

animation property: The type of animation defined by this tag.
The default value is all, but other types are expected to work, including
color, length, width, percentage, opacity, and
number. If in doubt, use the standard all.

******ebook converter DEMO Watermarks*******

duration: The length of the animation in seconds. One second is 1s.
timing function: If you want the animation to occur at a constant
speed, use linear. If you want a more natural motion that gradually
speeds up and slows down at the ends of the animation, use one of the
following: ease, ease-in, ease-out, ease- in-out.
delay: If you include a second time value, this will be considered a
delay. The animation will not begin until after the delay.

If you prefer, you can use individual properties for the various parts of the
animation, but most developer prefer the one-line shortcut (like the one
used for borders).
Not all CSS attributes can be animated, but many can be. It may require
some experimentation to determine which CSS attributes can be animated
with the transition attribute.

Unfortunately, the stock transition attribute is not supported by any
major browsers, but there are vendor-specific versions for Mozilla (-moz-
), WebKit (-webkit-), and Opera (-o-). Your best bet until support is
widespread is to include all vendor-specific versions in addition to the
standard version.

Animations
The transform behavior is pretty cool, but CSS3 promises an even more
exciting form of animation called the (wait for it) animation
mechanism.
Figure 6-8 illustrates an animation of a box moving around the screen.
Of course, it doesn't make sense to view an animation in a book. You'll
need to see this on the website.

******ebook converter DEMO Watermarks*******

Figure 6-8: The box auto-matically moves as indicated by the arrows.

Here's the basic strategy for building a CSS animation:

1. Generate a set of keyframes.

Animations are based on the notion of keyframes. Each keyframe
specifies the state of an object, and the browser attempts to smoothly
transition between keyframes.

2. Provide a percentage for each keyframe.

The keyframe starts with a percentage, indicating where in the
animation the keyframe will happen. The first keyframe should be 0%
(the beginning of the animation) and the last should be 100% (the end
of the animation). You can indicate as many intermediate keyframes as
you want.

3. Add a mini style sheet for each keyframe.

Place any styles you want modified in a little style sheet. At the
indicated place in the timeline, an element following this animation
will display the given style behavior. You can place any style
information you want here.

******ebook converter DEMO Watermarks*******

4. Apply the animation to your elements.

The animation rule allows you to apply a keyframe to an element.
You can reuse the same keyframes among many different elements if
you want.

5. Modify the animation.

You can apply many of the same characteristics to an animation as you
do a transition. There are a number of parameters, but the most
commonly used elements are keyframe, time, and repeat.

Take a look at the code for animation.html to see it all in action:
<!doctype html>
<html lang="en">
 <head><meta charset="UTF-8"><title> animation.html</title>

<style type = "text/css"> @keyframes anim { 0% {left:
0px; top: 0px;} 25%
 {left: 100px; top: 0px;} 50% {left: 100px; top:
100px;} 75% {left: 0px;
 top: 100px;} 100% {left: 0px; top: 0px;} } @-webkit-
keyframes anim { 0%
 {left: 0px; top: 0px;} 25% {left: 100px; top: 0px;} 50%
{left: 100px;
 top: 100px;} 75% {left: 0px; top: 100px;} 100% {left:
0px; top: 0px;}
 } @-moz-keyframes anim { 0% {left: 0px; top: 0px;} 25%
{left: 100px;
 top: 0px;} 50% {left: 100px; top: 100px;} 75% {left:
0px; top: 100px;}
 100% {left: 0px; top: 0px;} } @-o-keyframes anim
{ 0% {left: 0px; top:
 0px;} 25% {left: 100px; top: 0px;} 50% {left: 100px; top:
100px;} 75%
 {left: 0px; top: 100px;} 100% {left: 0px; top: 0px;}
} #box { position:
 absolute; border: 1px solid black; -webkit-animation: anim
5s linear
 infinite; -moz-animation: anim 5s linear infinite; -o-
animation: anim
 5s linear infinite; animation: anim 5s linear
infinite; }

******ebook converter DEMO Watermarks*******

</style>
 </head>
 <body><div id = "box"> Moving box</div>
 </body>
</html>

There are a number of things to note about this example:

Create a keyframes set called anim: The @keyframes rule (much
like the @font-family rule described in Chapter 2 of this mini-
book) is used to create a page-level resource that can be used in the rest
of the CSS. In this case, it's used to generate a keyframe set.
Build browser-specific versions: Unfortunately, the animation
mechanism still requires browser-specific prefixes. It's usually easiest
to target one browser (I usually start with WebKit) and then copy for
the other browsers when the basic behavior is working.
This example moves an element in a square pattern: For this
particular example, I intend to make a div move in a square motion.
As you look at the keyframes, you'll see that I simply change the left
and top position of the div throughout time.
Make beginning and end the same: Because I plan to run this
animation continuously, I want the beginning and ending places to be
the same.
Apply the anim keyframe set to the box element: Apply the anim
keyframe set by using the animation rule.
Indicate the length of the animation: Animations are about changes
over time, so the animation tag also requires a duration, measured
in seconds (s) or milliseconds (ms).
Determine the easing: Easing is how the animation acts at the
beginning and end of an animation segment. The linear rule used
here keeps the animation at a constant speed. You can also use ease-
in-out (the default behavior) to make the element move at a variable
rate.
Determine the number of repetitions: You can specify a number of
times to repeat the animation. If you leave this part out, the animation
will happen only once when the page first loads. You can specify
infinite (as I did in the example) to make the animation repeat as long

******ebook converter DEMO Watermarks*******

as the page is in memory.

Note there are many other parameters you can set, such as easing
(described in the “Transition animation” section of this chapter) and
delay. These can be set through the animation rule or with individual
rules. For now, I tend to keep my animations as simple as possible, at least
until the browsers can all manage animations without vendor prefixes.
You learn much more sophisticated animation techniques with JavaScript
programming in Book IV.

******ebook converter DEMO Watermarks*******

Book III
Building Layouts with CSS

 Visit www.dummies.com/extras/html5css3aio for
more on resetting and extending CSS.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: Fun with the Fabulous Float
Chapter 2: Building Floating Page Layouts
Chapter 3: Styling Lists and Menus
Chapter 4: Using Alternative Positioning

******ebook converter DEMO Watermarks*******

Chapter 1
Fun with the Fabulous Float

In This Chapter
 Understanding the pitfalls of traditional layout tools
 Using float with images and block-level tags
 Setting the width and margins of floated elements
 Creating attractive forms with float
 Using the clear attribute with float

One of the big criticisms against HTML is that it lacks real layout tools.
You can do a lot with your page, but it's still basically a list of elements
arranged vertically on the screen. As the web matures and screen
resolutions improve, people want web pages to look more like print matter,
with columns, good-looking forms, and more layout options. CSS provides
several great tools for building nice layouts. After you get used to them,
you can build just about any layout you can imagine. This chapter
describes the amazing float attribute and how it can be used as the
foundation of great page layouts.

Avoiding Old-School Layout Pitfalls
Back in the prehistoric (well, pre-CSS) days, no good option was built into
HTML for creating a layout that worked well. Clever web developers and
designers found some ways to make things work, but these proposed
solutions all had problems.

Problems with frames
Frames were a feature of the early versions of HTML. They allowed you to
break a page into several segments. Each segment was filled with a
different page from the server. You could change pages independently of
each other, to make a very flexible system. You could also specify the
width and height of each frame.

******ebook converter DEMO Watermarks*******

At first glance, frames sound like an ideal solution to layout problems. In
practice, they had a lot of disadvantages, such as

Complexity: If you had a master page with four segments, you had to
keep track of five web pages. A master page kept track of the relative
positions of each section, but had no content of its own. Each of the
other pages had content but no built-in awareness of the other pages.
Linking issues: The default link action caused content to pop up in the
same frame as the original link, which isn't usually what you want.
Often, you'd put a menu in one frame and have the results of that menu
pop up in another frame. This meant most anchors had to be modified
to make them act properly.
Backup nightmares: If the user navigated to a page with frames and
then caused one of the frames to change, what should the backup
button do? Should it return to the previous state (with only the one
segment returned to its previous state) or was the user's intent to move
entirely off the master page to what came before? There are good
arguments for either and no good way to determine the user's intention.
Nobody ever came up with a reasonable compromise for this problem.
Ugliness: Although it's possible to make frames harder to see, they did
become obvious when the user changed the screen size and scroll bars
would automatically pop up.
Search engine problems: Search engines had a lot of problems with
frame-based pages. The search engine might only index part of a
frame-based site, and the visitor might get incomplete websites missing
navigation or sidebars.

For all these reasons, frames are no longer supported in HTML5. The
layout techniques you read about in this chapter more than compensate for
the loss of frames as layout tools.

 HTML5 does allow one limited type of frame called the iFrame,
but even it is not necessary. Read how to integrate content from other
pages on the server with AJAX in Book VII, Chapter 6.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Problems with tables
When it became clear that frames weren't the answer, web designers turned
to tables. HTML has a flexible and powerful table tool, and it's possible to
do all kinds of creative things with that tool to create layouts. A few web
developers still do this, but you'll see that flow-based layout is cleaner and
easier. Tables are meant for tabular data, not as a layout tool. When you
use tables to set up the visual layout of your site, you'll encounter these
problems:

Complexity: Although table syntax isn't that difficult, a lot of nested
tags are in a typical table definition. To get exactly the look you want,
you probably won't use an ordinary table but tricks, like rowspan and
colspan, special spacer images, and tables inside tables. It doesn't
take long for the code to become bulky and confusing.
Content and display merging: Using a table for layout violates the
principle of separating content from display. If your content is buried
inside a complicated mess of table tags, it'll be difficult to move and
update.
Inflexibility: If you create a table-based layout and then decide you
don't like it, you basically have to redesign the entire page from
scratch. It's no simple matter to move a menu from the left to the top in
a table-based design, for example.

Tables are great for displaying tabular data. Avoid using them for layout
because you have better tools available.

Problems with huge images
Some designers skip HTML altogether and create web pages as huge
images. Tools, like Photoshop, include features for creating links in a large
image. Again, this seems ideal because a skilled artist can have control
over exactly what is displayed. Like the other techniques, this has some
major drawbacks, such as

Size and shape limitations: When your page is based on a large
image, you're committed to the size and shape of that image for your
page. If a person wants to view your page on a cellphone or PDA, it's

******ebook converter DEMO Watermarks*******

Owner
Highlight

unlikely to work well, if at all.
Content issues: If you create all the text in your graphic editor, it isn't
really stored to the web page as text. In fact, the web page will have no
text at all. This means that search engines can't index your page, and
screen-readers for people with disabilities won't work.
Difficult updating: If you find an error on your page, you have to
modify the image, not just a piece of text. This makes updating your
page more challenging than it would be with a plain HTML document.
File size issues: An image large enough to fill a modern browser
window will be extremely large and slow to download. Using this
technique will all but eliminate users with slower access from using
your site.

Problems with Flash
Another tool that's gained great popularity is the Flash animation tool from
Adobe. This tool allows great flexibility in how you position things on a
page and supports techniques that were once difficult or impossible in
ordinary HTML, such as sound and video integration, automatic motion
tweening, and path-based animation. Flash certainly had an important place
in web development (especially for embedded games — check out my
earlier book, Beginning Flash Game Programming For Dummies,
published by John Wiley & Sons). Even though Flash has historic
significance, you should avoid using it for ordinary web development for
the following reasons:

Cost: The Flash editor isn't cheap, and it doesn't look like it'll get
cheaper. The tool is great, but if free or low-cost alternatives work just
as well, it's hard to justify the cost.
Binary encoding: All text in a Flash web page is stored in the Flash
file itself. It's not visible to the browser. Flash pages (like image-based
pages) don't work in web searches and aren't useful for people with
screen-readers.
Updating issues: If you need to change your Flash-based page, you
need the Flash editor installed. This can make it more difficult to keep
your page up-to-date.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

No separation of content: As far as the browser is concerned, there's
no content but the Flash element, so there's absolutely no separation of
content and layout. If you want to make a change, you have to change
the Flash application.
Search engine problems: Code written in Flash can't always be read
by search engines (though Google is working on the problem).
Technical issues: Flash is not integrated directly into the browser,
which leads to a number of small complications. The Forward and
Back buttons don't work as expected, printing can be problematic, and
support is not universal.
Limited mobile access: Flash is not supported on iPhones and iPads,
and support is limited on other mobile platforms. As the mobile
platform becomes more and more important, it's hard to justify
working with a system that is not supported on these platforms.
It's no longer necessary: HTML5, CSS3, and JavaScript have now
addressed many of the shortcomings that once made Flash such a
compelling alternative. You no longer need a plug-in to play audio and
video, or to program games. (In fact, I now do all my web-based game
programming in HTML5 — see another of my books, HTML5 Game
Programming For Dummies, published by John Wiley & Sons).

Introducing the Floating Layout
Mechanism

CSS supplies a couple techniques for layout. The preferred technique for
most applications is a floating layout. The basic idea of this technique is to
leave the HTML layout as simple as possible, but to provide style hints that
tell the various elements how to interact with each other on the screen.
In a floating layout, you don't legislate exactly where everything will go.
Instead, you provide hints and let the browser manage things for you. This
ensures flexibility because the browser will try to follow your intentions,
no matter what size or shape the browser window becomes. If the user
resizes the browser, the page will flex to fit to the new size and shape, if

******ebook converter DEMO Watermarks*******

possible.
Floating layouts typically involve less code than other kinds of layouts
because only a few elements need specialized CSS. In most of the other
layout techniques, you need to provide CSS for every single element to
make things work as you expect.

Using float with images
The most common place to use the float attribute is with images.
Figure 1-1 has a paragraph with an image embedded inside.

Figure 1-1: The default image behavior is to act like a single character.

It's more likely that you want the image to take up the entire left part of the
paragraph. The text should flow around the paragraph, similar to Figure 1-
2.
When you add a float:left attribute to the img element, the image
tends to move to the left, pushing other content to the right. Now, the text
flows around the image. The image is actually removed from the normal
flow of the page layout, so the paragraph takes up all the space. Inside the
paragraph, the text avoids overwriting the image.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 1-2: Now the text wraps around the image.

Adding the float property
The code for adding the float property is pretty simple:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>imgFloatLeft.html</title>
 <style type = "text/css">
 img {
 float: left;
 }
 </style>
 </head>
 <body>
 <p>
 <img src = "ball.gif"
 alt = "ball" />
 The image now has its float attribute set to left. That
means
 that the text will flow around the image as it normally
does
 in a magazine.
 The image now has its float attribute set to left. That
means
 that the text will flow around the image as it normally
does

******ebook converter DEMO Watermarks*******

 in a magazine.
 The image now has its float attribute set to left. That
means
 that the text will flow around the image as it normally
does
 in a magazine.
 The image now has its float attribute set to left. That
means
 that the text will flow around the image as it normally
does
 in a magazine.
 The image now has its float attribute set to left. That
means
 that the text will flow around the image as it normally
does
 in a magazine.
 </p>
 </body>
</html>

Figure 1-3: Now the image is floated to the right.

The only new element in the code is the CSS float attribute. The img
object has a float:left attribute. It isn't necessary to change any other
attributes of the paragraph because the paragraph text knows to float
around the image.
Of course, you don't have to simply float to the left. Figure 1-3 shows the
same page with the image's float attribute set to the right.

******ebook converter DEMO Watermarks*******

Using Float with Block-Level
Elements

The float attribute isn't only for images. You can also use it with any
element (typically p or div) to create new layouts. Using the float
attribute to set the page layout is easy after you understand how things
really work.

Floating a paragraph
Paragraphs and other block-level elements have a well-defined default
behavior. They take the entire width of the page, and the next element
appears below. When you apply the float element to a paragraph, the
behavior of that paragraph doesn't change much, but the behavior of
succeeding paragraphs is altered.
To illustrate, I take you all the way through the process of building two
side-by-side paragraphs.
Begin by looking at a page with three paragraphs. Paragraph 2 has its
float property set to left. Figure 1-4 illustrates such a page.

Figure 1-4: Paragraphs 2 and 3 are acting strangely.

As you can see, some strange formatting is going on here. I improve on
******ebook converter DEMO Watermarks*******

Owner
Highlight

things later to make the beginnings of a two-column layout, but for now,
just take a look at what's going on:

I've added borders to the paragraphs. As you'll see, the width of an
element isn't always obvious by looking at its contents. When I'm
messing around with float, I often put temporary borders on key
elements so I can see what's going on. You can always remove the
borders when you have it working right.
The first paragraph acts normally. The first paragraph has the same
behavior you see in all block-style elements. It takes the entire width of
the page, and the next element will be placed below it.
The second paragraph is pretty normal. The second paragraph has
its float attribute set to left. This means that the paragraph will be
placed in its normal position, but that other text will be placed to the
right of this element.
The third paragraph seems skinny. The third paragraph seems to
surround the second, but the text is pushed to the right. The float
parameter in the previous paragraph causes this one to be placed in any
remaining space (which currently isn't much). The remaining space is
on the right and eventually underneath the second paragraph.

The code to produce this is simple HTML with equally simple CSS
markup:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>floatDemo</title>
 <style type = "text/css">
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 }
 </style>
 </head>
 <body>
 <h1>Float Demo</h1>

******ebook converter DEMO Watermarks*******

Owner
Highlight

 <p>
 Paragraph 1.
 This paragraph has the normal behavior of a block-level
element.
 It takes up the entire width of the page, and the next
element
 is placed underneath.
 </p>
 <p class = "floated">
 Paragraph 2.
 This paragraph is floated left. It is placed to the left,
and the
 next element will be placed to the right of it.
 </p>
 <p>
 Paragraph 3.
 This paragraph has no floating, width or margin. It takes
whatever
 space it can to the right of the floated element, and then
flows
 to the next line.
 </p>
 </body>
</html>

As you can see from the code, I have a simple class called floated with
the float property set to left. The paragraphs are defined in the
ordinary way. Even though paragraph 2 seems to be embedded inside
paragraph 3 in the screen shot, the code clearly shows that this isn't the
case. The two paragraphs are completely separate.
I added a black border to each paragraph so you can see that the size of the
element isn't always what you'd expect.

Adjusting the width
When you float an element, the behavior of succeeding elements is highly
dependent on the width of the first element. This leads to a primary
principle of float-based layout:

If you float an element, you must also define its width.

 The exception to this rule is elements with a predefined width,
such as images and many form elements. These elements already have

******ebook converter DEMO Watermarks*******

an implicit width, so you don't need to define width in the CSS. If in
doubt, try setting the width at various values until you get the layout
you're looking for.

Figure 1-5 shows the page after I adjusted the width of the floated
paragraph to 50 percent of the page width.

Figure 1-5: The floated paragraph has a width of 50 percent of the page.

Things look better in Figure 1-5, but paragraph 2 still seems to be
embedded inside paragraph 3. The only significant change is in the CSS
style:

<style type = "text/css">
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 width: 50%;
 }
 </style>

I've added a width property to the floated element.

Elements that have the float attribute enabled generally also have a
width defined, except for images or other elements with an inherent width.

******ebook converter DEMO Watermarks*******

 When you use a percentage value in the context of width, you're
expressing a percentage of the parent element (in this case, the body
because the paragraph is embedded in the document body). Setting the
width to 50% means I want this paragraph to span half the width of
the document body.

Setting the next margin
Things still don't look quite right. I added the borders around each
paragraph so you can see an important characteristic of floating elements.
Even though the text of paragraph 3 wraps to the right of paragraph 2, the
actual paragraph element still extends all the way to the left side of the
page. The element doesn't necessarily flow around the floated element, but
its contents do. The background color and border of paragraph 3 still take
as much space as they normally would if paragraph 2 didn't exist.
This is because a floated element is removed from the normal flow of the
page. Paragraph 3 has access to the space once occupied by paragraph 2,
but the text in paragraph 3 will try to find its own space without stepping
on text from paragraph 2.
Somehow, you need to tell paragraph 3 to move away from the paragraph 2
space. This isn't a difficult problem to solve after you recognize it.
Figure 1-6 shows a solution.

******ebook converter DEMO Watermarks*******

Figure 1-6: The left margin of paragraph 3 is set to give a two-column effect.

The margin-left property of paragraph 3 is set to 52 percent. Because
the width of paragraph 2 is 50 percent, this provides a little gap between
the columns. Take a look at the code to see what's going on here:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>floatWidthMargin.html</title>
 <style type = "text/css">
 p {
 border: 2px black solid;
 }
 .floated {
 float: left;
 width: 50%;
 }
 .right {
 margin-left: 52%;
 }
 </style>
 </head>
 <body>
 <h1>Specifying the width</h1>
 <p>
 Paragraph 1.
 This paragraph has the normal behavior of a block-level

******ebook converter DEMO Watermarks*******

element.
 It takes up the entire width of the page, and the next
element
 is placed underneath.
 </p>
 <p class = "floated">
 Paragraph 2.
 This paragraph is floated left. The
 next element will be placed to the right of it. Now this
has a width
 of 50%.
 </p>
 <p class = "right">
 Paragraph 3.
 This paragraph now has a margin-left so it is separated
from the
 previous paragraph. Its width is still automatically
 determined.
 </p>
 </body>
</html>

Using Float to Style Forms
Many page layout problems appear to require tables. Some clever use of
the CSS float can help elements with multiple columns without the
overhead of tables.
Forms cause a particular headache because a form often involves labels in
a left column followed by input elements in the right column. You'd
probably be tempted to put such a form in a table. Adding table tags makes
the HTML much more complex and isn't required. It's much better to use
CSS to manage the layout.
You can float elements to create attractive forms without requiring tables.
Figure 1-7 shows a form with float used to line up the various elements.

As page design gets more involved, it makes more sense to think of the
HTML and the CSS separately. The HTML will give you a sense of the
overall intent of the page, and the CSS can be modified separately. Using
external CSS is a natural extension of this philosophy. Begin by looking at
floatForm.html and concentrate on the HTML structure before worrying
about style:

******ebook converter DEMO Watermarks*******

Figure 1-7: This is a nice-looking form defined without a table.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>floatForm.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "floatForm.css" />
 </head>
 <body>
 <form action = "">
 <fieldset>
 <label>Name</label>
 <input type = "text"
 id = "txtName" />
 <label>Address</label>
 <input type = "text"
 id = "txtAddress" />
 <label>Phone</label>
 <input type = "text"
 id = "txtPhone" />
 <button type = "button">
 submit request
 </button>
 </fieldset>
 </form>
 </body>
</html>

******ebook converter DEMO Watermarks*******

While you look over this code, note several interesting things about how
the page is designed:

The CSS is external. CSS is defined in an external document. This
makes it easy to change the style and helps you to focus on the HTML
document in isolation.
The HTML code is minimal. The code is very clean. It includes a
form with a fieldset. The fieldset contains labels, input
elements, and a button.
There isn't a table. There's no need to add a table as an artificial
organization scheme. A table wouldn't add to the clarity of the page.
The form elements themselves provide enough structure to allow all
the formatting you need.
Labels are part of the design. I used the label element throughout
the form, giving me an element that can be styled however I wish.
Everything is selectable. I'll want to apply one CSS style to labels,
another to input elements, and a third style to the button. I've set
up the HTML so I can use CSS selectors without requiring any id or
class attributes.
There's a button. I used a button element instead of <input
type = “button”> on purpose. This way, I can apply one style to
all the input elements and a different style to the button element.

 Designing a page like this one so its internal structure provides
all the selectors you need is wonderful. This keeps the page very clean
and easy to read. Still, don't be afraid to add classes or IDs if you need
them.

Figure 1-8 demonstrates how the page looks with no CSS.
It's often a good idea to look at your page with straight HTML before you
start messing around with CSS.

******ebook converter DEMO Watermarks*******

Figure 1-8: The plain HTML is a start, but some CSS would help a lot.

 If you have a page with styles and you want to see how it will
look without the style rules, use Chrome developer tools or Firebug.
You can temporarily disable some or all CSS style rules to see the
default content underneath. This can sometimes be extremely handy.

Using float to beautify the form
It'd be very nice to give the form a tabular feel, with each row containing a
label and its associated input element. My first attempt at a CSS file for this
page looked like this:

/* floatNoClear.css
 CSS file to go with float form
 Demonstrates use of float, width, margin
 Code looks fine but the output is horrible.
*/

fieldset {
 background-color: #AAAAFF;
}
label {
 float: left;
 width: 5em;
 text-align: right;

******ebook converter DEMO Watermarks*******

 margin-right: .5em;
}
input {
 background-color: #CCCCFF;
 float: left;
}
button {
 float: left;
 width: 10em;
 margin-left: 7em;
 margin-top: 1em;
 background-color: #0000CC;
 color: #FFFFFF;
}

This CSS looks reasonable, but you'll find it doesn't quite work right. (I
show the problem and how to fix it later in this chapter.) Here are the steps
to build the CSS:

1. Add colors to each element.

Colors are a great first step. For one thing, they ensure that your
selectors are working correctly so that everything's where you think it
is. This color scheme has a nice modern feel to it, with a lot of blues.

2. Float the labels to the left.

Labels are all floated to the left, meaning they should move as far left
as possible, and other things should be placed to the right of them.

3. Set the label width to 5em.

This gives you plenty of space for the text the labels will contain.

4. Set the labels to be right-aligned.

Right-aligning the labels makes the text snug up to the input
elements but gives them a little margin-right so the text isn't too
close.

5. Set the input's float to left.

******ebook converter DEMO Watermarks*******

This tells each input element to go as far to the left (toward its label)
as it can. The input element goes next to the label if possible and on
the next line, if necessary. Like images, input elements have a
default width, so it isn't absolutely necessary to define the width in
CSS.

6. Float the button, too, but give the button a little top margin so
it has a respectable space at the top. Set the width to 10em.

This seems to be a pretty good CSS file. It follows all the rules, but if you
apply it to floatNoClear.html, you'll be surprised by the results shown in
Figure 1-9.
After all that talk about how nice float-based layout is, you're probably
expecting something a bit neater. If you play around with the page in your
browser, you'll find that everything works well when the browser is
narrow, but when you expand the width of the browser, it gets ugly.
Figure 1-10 shows the form when the page is really skinny.

Figure 1-9: This form is … well … ugly.

******ebook converter DEMO Watermarks*******

Figure 1-10: The form looks great when the page is skinny.

Things get worse when the page is a little wider, as you can see in
Figure 1-11.

Figure 1-11: With a slightly wider browser, things get strange.

If you make the page as wide as possible, you'll get a sense of what the
browser was trying to accomplish in Figure 1-12.

******ebook converter DEMO Watermarks*******

Figure 1-12: The browser is trying to put all the inputs on the same line.

When CSS doesn't do what you want, it's usually acting on some false
assumptions, which is the case here. Floating left causes an element to go
as far to the left as possible and on the next line, if necessary. However,
that's not really what you want on this page. The inputs should float next to
the labels, but each label should begin its own line. The labels should float
all the way to the left margin with the inputs floating left next to the labels.

Adjusting the fieldset width
One approach is to consider how well the page behaves when it's skinny
because the new label and input combination will simply wrap down to the
next line. You can always make a container narrow enough to force the
behavior you're expecting. Because all the field elements are inside the
fieldset, you can simply make it narrower to get a nice layout, as
shown in Figure 1-13.

 When you want to test changes in CSS, nothing beats the CSS
editor in the Chrome developer tools. I made Figure 1-13 by editing the
CSS on the fly with this tool.

Setting the width of the fieldset to 15em does the job. Because the

******ebook converter DEMO Watermarks*******

widths of the other elements are already determined, forcing them into a
15em-wide box makes everything line up nicely with the normal wrapping
behavior of the float attribute. If you don't want the width change to be
so obvious, you can apply it to the form element, which doesn't have any
visible attributes (unless you add them, such as color or border).

Figure 1-13: With a narrower fieldset, all the elements look much nicer.

Unfortunately, this doesn't always work because the user may adjust the
font size and mess up all your careful design.

Using the clear attribute to control page
layout
Adjusting the width of the container is a suitable solution, but it does feel
like a bit of a hack. There should be some way to make the form work
right, regardless of the container's width. There is exactly such a
mechanism.
The clear attribute is used on elements with a float attribute. The
clear attribute can be set to left, right, or both. Setting the clear
attribute to left means you want nothing to the left of this element. In
other words, the element should be on the left margin of its container.
That's exactly what you want here. Each label should begin its own line, so
set its clear attribute to left.

******ebook converter DEMO Watermarks*******

To force the button onto its own line, set its clear attribute to both. This
means that the button should have no elements to the left or the right. It
should occupy a line all its own.

 If you want an element to start a new line, set both its float and
clear attributes to left. If you want an element to be on a line
alone, set float to left and clear to both.

Using the clear attribute allows you to have a flexible-width container
and still maintain reasonable control of the form design. Figure 1-14 shows
that the form can be the same width as the page and still work correctly.
This version works, no matter the width of the page.

Figure 1-14: When you apply clear to floating elements, you can control the layout.

Here's the final CSS code, including clear attributes in the labels and
button:

/* floatForm.css
 CSS file to go with float form
 Demonstrates use of float, width, margin, and clear
*/

fieldset {
 background-color: #AAAAFF;

******ebook converter DEMO Watermarks*******

Owner
Highlight

}

label {
 clear: left;
 float: left;
 width: 5em;
 text-align: right;
 margin-right: .5em;
}

input {
 float: left;
 background-color: #CCCCFF;
}

button {
 float: left;
 clear: both;
 margin-left: 7em;
 margin-top: 1em;
 background-color: #0000CC;
 color: #FFFFFF;
}

You now have the basic tools in place to use flow layout. Look to Chapter
2 of this minibook to see how these tools are put together to build a
complete page layout.

******ebook converter DEMO Watermarks*******

Chapter 2
Building Floating Page Layouts
In This Chapter

 Creating a classic two-column page
 Creating a page-design diagram
 Using temporary background colors
 Creating fluid layouts and three-column layouts
 Working with and centering fixed-width layouts

The floating layout technique provides a good alternative to tables, frames,
and other layout tricks formerly used. You can build many elegant multi-
column page layouts with ordinary HTML and CSS styles.

Creating a Basic Two-Column
Design

Many pages today use a two-column design with a header and footer. Such
a page is quite easy to build with the techniques you read about in this
chapter.

Designing the page
It's best to do your basic design work on paper, not on the computer. Here's
my original sketch in Figure 2-1.

******ebook converter DEMO Watermarks*******

Figure 2-1: This is a very standard two-column style.

Draw the sketch first so you have some idea what you're aiming for. Your
sketch should include the following information:

Overall page flow: How many columns do you want? Will it have a
header and footer?
Section names: Each section needs an ID, which will be used in both
the HTML and the CSS.
Width indicators: How wide will each column be? (Of course, these
widths should add up to 100 percent or less.)
Fixed or percentage widths: Are the widths measured in percentages
(of the browser size) or in a fixed measurement (pixels)? This has
important implications. For this example, I'm using a dynamic width
with percentage measurements.
Font considerations: Do any of the sections require any specific font
styles, faces, or colors?
Color scheme: What are the main colors of your site? What will be the
color and background color of each section?

******ebook converter DEMO Watermarks*******

This particular sketch (in Figure 2-1) is very simple because the page will
use default colors and fonts. For a more complex job, you need a much
more detailed sketch. The point of the sketch is to separate design decisions
from coding problems. Solve as much of the design stuff as possible first
so you can concentrate on building the design with HTML and CSS.

A note to perfectionists
If you're really into detail and control, you'll find this chapter frustrating. People accustomed
to having complete control of a design (as you often do in the print world) tend to get really
stressed when they realize how little actual control they have over the appearance of a web
page.

Really, it's okay. This is a good thing. When you design for the web, you give up absolute
control, but you gain unbelievable flexibility. Use the ideas outlined in this chapter to get
your page looking right on a standards-compliant browser. Take a deep breath and look at
it on something else (like Internet Explorer 6 if you want to suffer a heart attack!).
Everything you positioned so carefully is all messed up. Take another deep breath and use
conditional comments to fix the offending code without changing how it works in those
browsers that do things correctly. It is now becoming reasonable to expect most users to
have a browser that is at least partially HTML5-compliant.

Building the HTML
After you have a basic design in place, you're ready to start building the
HTML code that will be the framework. Start with basic CSS, but create a
div for each section that will be in your final work. You can put a
placeholder for the CSS, but don't add any CSS yet. Here's my basic code. I
removed some of the redundant text to save space:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>twoColumn.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "twoCol.css" />
 </head>
 <body>
 <div id = "head">

******ebook converter DEMO Watermarks*******

 <h1>Two Columns with Float</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Vivamus dui.
 </p>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Vivamus dui.
 </p>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </body>
</html>

What's up with the Latin?
The flexible layouts built throughout this chapter require some kind of text so the browser
knows how big to make things. The actual text isn't important, but something needs to be
there.

Typesetters have a long tradition of using phony Latin phrases as filler text. Traditionally,
this text has begun with the words “Lorem Ipsum,” so it's called Lorem Ipsum text.

This particular version is semi-randomly generated from a database of Latin words.

If you want, you can also use Lorem Ipsum in your page layout exercises. Conduct a
search for Lorem Ipsum generators on the web to get as much fake text as you want for
your mockup pages.

Although Lorem Ipsum text is useful in the screen shots, it adds nothing to the code
listings. Throughout this chapter, I remove the Lorem Ipsum text from the code listings to
save space. See the original files on the website for the full pages in all their Caesarean
goodness. This book's Introduction explains how to access the companion website.

Nothing at all is remarkable about this HTML code, but it has a few
important features, such as

It's standards-compliant. It's good to check and make sure the basic
HTML code is well formed before you do a lot of CSS work with it.

******ebook converter DEMO Watermarks*******

Sloppy HTML can cause you major headaches later.
It contains four divs. The parts of the page that will be moved later
are all encased in div elements.
Each div has an ID. All the divs have an ID determined from the
sketch.
No formatting is in the HTML. The HTML code contains no
formatting at all. That's left to the CSS.
It has no style yet. Although a <link> tag is pointing to a style sheet,
the style is currently empty.

Figure 2-2 shows what the page looks like before you add any CSS to it.

Figure 2-2: The plain HTML is plain indeed; some CSS will come in handy.

Using temporary background colors
And now for one of my favorite CSS tricks… Before doing anything else,
create a selector for each of the named divs and add a temporary
background color to each div. Make each div a different color. The CSS
might look like this:

#head {
 background-color: lightblue;
}

******ebook converter DEMO Watermarks*******

#left {
 background-color: yellow;
}

#right {
 background-color: green;
}

#footer {
 background-color: orange;
}

You won't keep these background colors, but they provide some very
useful cues while you're working with the layout:

Testing the selectors: While you change the background of each
selector, you can see whether you've remembered the selector's name
correctly. It's amazing how many times I've written code that I thought
was broken just because I didn't write the selector properly.
Identifying the divs: If you make each div a different color, it'll be
easier to see which div is which when they are not acting the way you
want.
Specifying the size of each div: The text inside a div isn't always a
good indicator of the actual size. The background color tells you what's
really going on.

Of course, you won't leave these colors in place. They're just helpful tools
for seeing what's going on during the design process. Look at bg.html and
bg.css on the website to see the full code.
Figure 2-3 displays how the page looks with the background colors turned
on.

******ebook converter DEMO Watermarks*******

Figure 2-3: Colored backgrounds make it easier to manipulate the divs.

 It's fine that you can't see the actual colors in the black-and-white
image in Figure 2-3. Just appreciate that when you see the page in its
full-color splendor, the various colors will help you see what's going
on.

Setting up the floating columns
This particular layout doesn't require major transformation. A few CSS
rules will do the trick:

#head {
 border: 3px black solid;
}

#left {
 border: 3px red solid;
 float: left;
 width: 20%;
}

#right {
 border: 3px blue solid;
 float: left;

******ebook converter DEMO Watermarks*******

 width: 75%
}

#footer {
 border: 3px green solid;
 clear: both;
}

I made the following changes to the CSS:

Float the #left div. Set the #left div's float property to left
so other divs (specifically the #right div) are moved to the right of
it.
Set the #left width. When you float a div, you must also set its
width. I've set the left div width to 20 percent of the page width as a
starting point.
Float the #right div, too. The right div can also be floated left, and
it'll end up snug to the left div. Don't forget to add a width. I set the
width of #right to 75 percent, leaving another 5 percent available for
padding, margins, and borders.
Clear the footer. The footer should take up the entire width of the
page, so set its clear property to both.

Figure 2-4 shows how the page looks with this style sheet in place (see
floated.html and floated.css on the website for complete code).

******ebook converter DEMO Watermarks*******

Figure 2-4: Now, the left column is floated.

Tuning up the borders
The colored backgrounds in Figure 2-4 point out some important features
of this layout scheme. For instance, the two columns are not the same
height. This can have important implications.
You can change the borders to make the page look more like a column
layout. I'm going for a newspaper-style look, so I use simple double
borders. I put a black border under the header, a gray border to the left of
the right column, and a gray border on top of the bottom segment.
Tweaking the padding and centering the footer complete the look. Here's
the complete CSS:

 #head {
 border-bottom: 3px double black;
}
#left {
 float: left;
 width: 20%;
}
#right {
 float: left;
 width: 75%;
 border-left: 3px double gray;
}
#footer {
 clear: both;

******ebook converter DEMO Watermarks*******

 text-align: center;
 border-top: 3px double gray;
}

The final effect is shown in Figure 2-5.

Figure 2-5: This is a decent design, which adjusts with the page width.

Advantages of a fluid layout
This type of layout scheme (with floats and variable widths) is often called
a fluid layout because it has columns but the sizes of the columns are
dependent on the browser width. This is an important issue because, unlike
layout in the print world, you really have no idea what size the browser
window that displays your page will be. Even if the user has a widescreen
monitor, the browser may be in a much smaller window. Fluid layouts can
adapt to this situation quite well.
Fluid layouts (and indeed all other float-based layouts) have another great
advantage. If the user turns off CSS or can't use it, the page still displays.
The elements will simply be printed in order vertically, rather than in the
intended layout. This can be especially handy for screen readers or devices
with exceptionally small screens, like phones.

Using semantic tags
As web developers began using floating layout techniques, they almost

******ebook converter DEMO Watermarks*******

Owner
Highlight

always created divs called nav, header, and footer. The developers
of HTML5 decided to create new elements with these names. Take a look
at the following code to see the semantic tags in action.

<!DOCTYPE HTML>
<html lang="en">
<head>
 <title>semantic</title>
 <meta charset="UTF-8">
 <style type = "text/css">
 header {
 border-bottom: 5px double black;
 }

nav {
 float: left;
 width: 20%;
 clear: left;
 min-height: 400px;
 border-right: 1px solid black;
 }

section {
 float: left;
 width: 75%;
 padding-left: 1em;
 }

article {
 float: left;
 width: 75%;
 padding-left: 1em;
 }

footer {
 clear: both;
 border-top: 5px double black;
 text-align: center;
 }

</style>
</head>
<body>
 <header>
 <h1>This is my header</h1>
 </header>

******ebook converter DEMO Watermarks*******

<nav>
 <h2>Navigation</h2>

 link a
 link b
 link c
 link d
 link e

 </nav>

<section id = "1">
 <h2>Section 1</h2>
 <p>Section body...</p>
 </section>

<section id = "2">
 <h2>Section 2</h2>
 <p>Section body...</p>
 </section>

<article>
 <h2>Article</h2>
 <p>Article body...</p>
 </article>

<footer>
 <h2>Footer</h2>
 <address>
 Andy Harris

 andy@aharrisbooks.net
 </address>
 </footer>

</body>
</html>

As you can see, there are a number of new semantic markup tags in
HTML5:

header: This is not the same as the h1-h6 tags. It denotes a chunk of
the page that will contain a header for the page. Often the header will

******ebook converter DEMO Watermarks*******

fill up the page width, and will have some sort of banner image. It
frequently contains h1 content.
nav: This tag indicates some kind of navigation section. It has no
particular style of its own, but it is frequently used as either a
horizontal or vertical menu for site navigation.
section: A section is used to specify a generic part of the page. You
can have multiple sections on the same page.
article: An article is like a section, but it's intended for use with
external resources. Many pages are built automatically by software,
and when these pages integrate content from other sources, it's
intended to use the article tag to integrate this content.
footer: A footer is intended to display footer contents at the bottom of
a page. Typically a footer covers the bottom of a page, although this is
not the default behavior.

Note that none of these elements have any specific formatting. It's up to
you to provide formatting through CSS code. Each of the elements can be
formatted directly as an HTML element (because that's what it is). All
latest-version browsers support the semantic markup tags, but if you want
to support older browsers (especially IE before version 8), you'll still need
to use divs.

More fun with semantic tags
HTML5 introduced a number of other semantic tags. Most of them have no specific
formatting. Still, you will run across them, so here are a few that seem likely to make the
cut:

address: Holds contact information.

aside: Indicates a page fragment that is related to but separate from the main
content.
menu/command: Eventually, will allow a pop-up menu or toolbar. to be defined in
the page, and commands will be embedded inside that menu. Not supported yet.
figure: Incorporates an image and a caption.

figcaption: Describes an image, normally enclosed in a figure tag.

time: Display dates or times.

******ebook converter DEMO Watermarks*******

summary/detail: A summary is visible at all times, and when it is clicked on, the
detail appears. Not supported yet.
svg: Allows you to use the SVG language to describe a vector image through code.

meter: Indicates a numeric value falling within a specific range.

output: Intended for output in interactive applications.

progress: Should indicate progress of a task (but it doesn't look like a progress
bar yet).

Building a Three-Column Design
Sometimes, you'll prefer a three-column design. It's a simple variation of
the two-column approach. Figure 2-6 shows a simple three-column layout.

Figure 2-6: This is a three-column floating layout.

This design uses very basic CSS with five named divs. Here's the code
(with the dummy paragraph text removed for space):

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>threeColumn.html</title>

******ebook converter DEMO Watermarks*******

 <link rel = "stylesheet"
 type = "text/css"
 href = "threeColumn.css" />
 </head>
 <body>
 <div id = "head">
 <h1>Three-Column Layout</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Vivamus dui.
 </p>
 </div>
 <div id = "center">
 <h2>Center Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Vivamus dui.
 </p>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Vivamus dui.
 </p>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </body>
</html>

Styling the three-column page
As you can see from the HTML, there isn't really much to this page. It has
five named divs, and that's about it. All the really exciting stuff happens in
the CSS:

#head {
 text-align: center;
}

#left {
 float: left;
 width: 20%;
 padding-left: 1%;

******ebook converter DEMO Watermarks*******

}

#center {
 float: left;
 width: 60%;
 padding-left: 1%;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

Each element (except the head) is floated with an appropriate width. The
process for generating this page is similar to the two-column layout:

1. Diagram the layout.

Begin with a general sense of how the page will look and the relative
width of the columns. Include the names of all segments in this
diagram.

2. Create the HTML framework.

Create all the necessary divs, including id attributes. Add
representative text so you can see the overall texture of the page.

3. Add temporary background colors.

Add a temporary background color to each element so you can see
what's going on when you start messing with float attributes. This
also ensures you have all the selectors spelled properly.

******ebook converter DEMO Watermarks*******

4. Float the leftmost element.

Add the float attribute to the leftmost column. Don't forget to
specify a width (in percentage).

5. Check your work.

Frequently save your work and view it in a browser. Use the browser's
F5 key for a quick reload after you've saved the page.

6. Float the center element.

Add float and width attributes to the center element.

7. Float the right-most element.

Incorporate float and width in the right element.

8. Ensure the widths total around 95 percent.

You want the sum of the widths to be nearly 100 percent but not quite.
Generally, you need a little space for margins and padding. Final
adjustments come later, but you certainly don't want to take up more
than 100 percent of the available real estate.

9. Float and clear the footer.

To get the footer acting right, you need to float it and clear it on both
margins. Set its width to 100 percent, if you want.

10. Tune up.

Remove the temporary borders, adjust the margins and padding, and
set alignment as desired. Use percentages for margins and padding, and
then adjust so all percentages equal 100 percent.

******ebook converter DEMO Watermarks*******

 Early versions of Internet Explorer (6 and earlier) have a well-
documented problem with margins and padding. According to the
standards, the width of an element is supposed to be the width of the
content, with borders, margins, and padding outside. A properly
behaved browser won't shrink your content when you add borders and
margins. The early versions of Internet Explorer (IE) counted the width
as including all borders, padding, and margin, effectively shrinking the
content when you added these elements. If your page layout is looking
a little off with IE, this may be the problem. Use the conditional
comment technique described in Chapter 5 of Book II to make a variant
style for IE if this bothers you.

Problems with the floating layout
The floating layout solution is very elegant, but it does have one drawback.
Figure 2-7 shows the three-column page with the background colors for
each element.

Figure 2-7: The columns aren't really columns; each is a different height.

Figure 2-7 shows an important aspect of this type of layout. The columns
are actually blocks, and each is a different height. Typically, I think of a
column as stretching the entire height of a page, but this isn't how CSS

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

does it. If you want to give each column a different background color, for
example, you'll want each column to be the same height. This can be done
with a CSS trick (at least, for the compliant browsers).

Specifying a min-height
The standards-compliant browsers (all versions of Firefox and Opera, and
IE 7+) support a min-height property. This specifies a minimum height
for an element. You can use this property to force all columns to the same
height. Figure 2-8 illustrates this effect.

Figure 2-8: The min-height attribute forces all columns to be the same height.

The CSS code simply adds the min-height attribute to all the column
elements:

#head {
 text-align: center;
 border-bottom: 3px double gray;
}

#left {
 float: left;
 width: 20%;
 min-height: 30em;
 background-color: #EEEEEE;
}

******ebook converter DEMO Watermarks*******

#center {
 float: left;
 width: 60%;
 padding-left: 1%;
 padding-right: 1%;
 min-height: 30em;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
 min-height: 30em;
 background-color: #EEEEEE;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

 Some guesswork is involved still. You have to experiment a bit
to determine what the min-height should be. If you guess too short,
one column will be longer than the min-height, and the columns
won't appear correctly. If you guess too tall, you'll have a lot of empty
space at the bottom of the screen.

All modern browsers support min-height, but a few of the older
browsers may not support this attribute.

Using height and overflow
The min-height trick is ideal if you know the size of your content, but
modern web development is all about multiple screen sizes. It's hard to
predict how your page will look on a smart phone or other smaller browser.
If you use min-height and the text is too large to fit the screen, you can
use another strategy. You can set the height of each element if you wish
using the height rule. Like all CSS, the height is a suggestion. The question

******ebook converter DEMO Watermarks*******

is what to do when content that fits fine in a large browser is forced to fit in
a smaller space. The answer is a range of techniques popularly called
responsive design. The basic idea of responsive design is to design a page
so it naturally adjusts to a good view regardless of the device it's on. One
very basic approach to responsive design is to specify both width and
height for a page element, but then allow the browser to manage overflow
conditions. Figure 2-9 illustrates a page that is shrunk below the minimum
size needed to display the text. See Book VII chapter 7 for more
information on responsive web design and mobile web development.

Figure 2-9: The page is too small to hold the text. Note the scroll bar.

If you set the height and width to a specific percentage of the page width,
there is a danger the text will not fit. You can resolve this by adding an
overflow rule in your CSS.

Take a look at the CSS code used in overflow.html:
#head {
 text-align: center;
 border-bottom: 3px double gray;
}

#left {
 float: left;
 width: 20%;

******ebook converter DEMO Watermarks*******

Owner
Highlight

 height: 30em;
 overflow: auto;
 background-color: #EEEEEE;
}

#center {
 float: left;
 width: 60%;
 padding-left: 1%;
 padding-right: 1%;
 height: 30em;
 overflow: auto;
}

#right {
 float: left;
 width: 17%;
 padding-left: 1%;
 height: 30em;
 overflow: auto;
 background-color: #EEEEEE;
}

#footer {
 border: 1px black solid;
 float: left;
 width: 100%;
 clear: both;
 text-align: center;
}

Setting the overflow property tells the browser what to do if it cannot place
the text in the indicated space. Use overflow: auto to place scrollbars
only when necessary. Other options for the overflow rule are visible
(text flows outside the box — the default value), hidden (overflow is not
shown), and scroll (always place a scrollbar). I prefer auto.

Building a Fixed-Width Layout
Fluid layouts are terrific. They're very flexible, and they're not hard to
build. Sometimes, though, it's nice to use a fixed-width layout, particularly
if you want your layout to conform to a particular background image.
The primary attribute of a fixed-width layout is the use of a fixed

******ebook converter DEMO Watermarks*******

measurement (almost always pixels), rather than the percentage
measurements used in a fluid layout.
Figure 2-10 shows a two-column page.

Figure 2-10: A fixed-width layout can work well but looks off-center.

The next examples will look off-center. Follow along to see what's going
on, and see how to center a floated layout in the “Building a Centered
Fixed-width Layout” section later in this chapter.

Setting up the HTML
As usual, the HTML code is minimal. It contains a few named divs. (Like
usual, I've removed filler text for space reasons.)

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>fixedWidth.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "fixedWidth.css" />
 </head>
 <body>
 <div id = "header">
 <h1>Fixed Width Layout</h1>

******ebook converter DEMO Watermarks*******

 </div>
 <div id = "left">
 <h2>Left Column</h2>
 </div>
 <div id = "right">
 <h2>Right Column</h2>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </body>
</html>

Fixing the width with CSS
After the HTML is set up, you can use CSS to enforce the two-column
scheme.
Here's the CSS code:

#header {
 background-color: #e2e393;
 border-bottom: 3px solid black;
 text-align: center;
 width: 800px;
 padding-top: 1em;
}

#left {
 float: left;
 width: 200px;
 clear: left;
 border-right: 1px solid black;
 height: 30em;
 overflow: auto;
 padding-right: .5em;
}

#right {
 float: left;
 width: 570px;
 height: 30em;
 overflow: auto;
 padding-left: .5em;
}

#footer {
 width: 800px;

******ebook converter DEMO Watermarks*******

 text-align: center;
 background-color: #e2e393;
 border-top: 3px double black;
 clear: both;
}

It's all pretty straightforward:

1. Color each element to see what's happening.

Begin by giving each div a different background color so you can see
what is happening.

2. Determine the overall width of the layout.

Pick a target width for the entire layout. I chose 800 pixels because it's
a reasonably standard width.

3. Adjust the widths of the page-wide elements.

It's often easiest to start with elements like the header and footer that
often take up the entire width of the design.

4. Float the columns.

The columns are floated as described throughout this chapter. Float
each column to the left.

5. Set the column widths.

Begin by making the column widths add up to the width of the entire
design (in my case, 800 pixels). Later you'll adjust a bit for margins
and borders.

6. Clear the left column.

Ensure the left column has the clear: left rule applied.

7. Set column heights.

Give each column the same height. This makes things look right if you
******ebook converter DEMO Watermarks*******

add borders or background colors to the columns.

8. Adjust borders and padding.

Use borders, padding, and margin to adjust your page to get the look
you want. In my case, I added a border to the left column to separate
the columns, and I added padding to keep the text from sitting right on
the border.

9. Adjust widths again.

Adding borders, padding, and margin can change the widths of the
existing elements. After you've modified these attributes, take a careful
look at your layout to be sure it didn't get messed up, and modify the
various widths if necessary.

Building a Centered Fixed-Width
Layout

Fixed-width layouts are common, but they look a little strange if the
browser isn't the width specified in the CSS. If the browser is too narrow,
the layout won't work, and the second column will (usually) drop down to
the next line.
If the browser is too wide, the page appears to be scrunched onto the left
margin with a great deal of white space on the right.
The natural solution is to make a relatively narrow fixed-width design
that's centered inside the entire page. Figure 2-11 illustrates a page with
this technique.

******ebook converter DEMO Watermarks*******

Figure 2-11: Now the fixed-width layout is centered in the browser.

Some have called this type of design (fixed-width floating centered in the
browser) a jello layout because it's not quite fluid and not quite fixed.

Making a surrogate body with an all div
In any case, the HTML requires only one new element, an all div that
encases everything else inside the body (as usual, I removed the
placeholder text):

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>fixedWidthCentered.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "fixedWidthCentered.css" />
 </head>
 <body>
 <div id = "all">
 <div id = "header">
 <h1>Fixed Width Centered Layout</h1>
 </div>
 <div id = "left">
 <h2>Left Column</h2>
 </div>
 <div id = "right">

******ebook converter DEMO Watermarks*******

 <h2>Right Column</h2>
 </div>
 <div id = "footer">
 <h3>Footer</h3>
 </div>
 </div>
 </body>
</html>

The entire page contents are now encapsulated in a special all div. This
div will be resized to a standard width (typically 640 or 800 pixels). The
all element will be centered in the body, and the other elements will be
placed inside all as if it were the body:

 #all {
 width: 800px;
 height: 600px;
 margin-left: auto;
 margin-right: auto;
 border: 1px solid gray;
}

#header {
 background-color: #e2e393;
 border-bottom: 3px solid black;
 text-align: center;
 width: 800px;
 height: 100px;
 padding-top: 1em;
}

#left {
 float: left;
 width: 200px;
 clear: left;
 border-right: 1px solid black;
 height: 400px;
 padding-right: .5em;
}

#right {
 float: left;
 width: 580px;
 height: 400px;
 padding-left: .5em;
}

******ebook converter DEMO Watermarks*******

#footer {
 width: 800px;
 height: 60px;
 text-align: center;
 background-color: #e2e393;
 border-top: 3px double black;
 padding-bottom: 1em;
 clear: both;
}

How the jello layout works
This code is very similar to the fixedWidth.css style, but it has some
important new features:

The all element has a fixed width. This element's width will
determine the width of the fixed part of the page.
all also needs a fixed height. If you don't specify a height, all will
be 0 pixels tall because all the elements inside it are floated.
Center all. Remember, to center divs (or any other block-level
elements) you set margin-left and margin-right both to
auto.
Do not float all. The margin: auto trick doesn't work on floated
elements. all shouldn't have a float attribute set.
Ensure the interior widths add up to all's width. If all has a
width of 800 pixels, be sure that the widths, borders, and margins of all
the elements inside all add up to exactly 800 pixels. If you go even
one pixel over, something will spill over and mess up the effect. You
may have to fiddle with the widths to make everything work.
Adjust the heights: If your design has a fixed height, you'll also need
to fiddle with the heights to get everything to look exactly right.
Calculations will get you close, but you'll usually need to spend some
quality time fiddling with exact measurements to get everything just
right.

Limitations of the jello layout
Jello layouts represent a compromise between fixed and fluid layouts, but

******ebook converter DEMO Watermarks*******

they aren't perfect:

Implicit minimum width: Very narrow browsers (like cellphones)
can't render the layout the way you want. Fortunately, the content will
still be visible, but not in exactly the format you wanted.
Wasted screen space: If you make the rendered part of the page
narrow, a lot of space isn't being used in higher-resolution browsers.
This can be frustrating.
Complexity: Although this layout technique is far simpler than table-
based layouts, it's still a bit involved. You do have to plan your divs to
make this type of layout work.

You can investigate a number of other layout techniques in Chapter 4 of
this mini-book.

Doesn't CSS3 support columns?
If you've been looking through the CSS3 specifications (and what better bedtime reading is
there?), you may have discovered the new column rule. I was pretty excited when I found
support for columns because it seemed like the answer to the complexities of floating
layouts. Unfortunately, the column mechanism isn't really useful for page layout. The
columns are all exactly the same width, and there's no way to determine exactly which
content is displayed in which column. It's useful if you want to have a magazine-style layout
with text that flows in columns, but for page layout, CSS3 has a better new tool, the flexible
box layout model (described in Chapter 4 of this mini-book). If you want to experiment with
columns, take a look at this example from one of my other books:
www.aharrisbooks.net/h5qr/part6/columns.html.

******ebook converter DEMO Watermarks*******

http://www.aharrisbooks.net/h5qr/part6/columns.html

Chapter 3
Styling Lists and Menus

In This Chapter
 Using CSS styles with lists
 Building buttons from lists of links
 Dynamically displaying sublists
 Managing vertical and horizontal lists
 Building CSS-based menus

Most pages consist of content and navigation tools. Almost all pages have
a list of links somewhere on the page. Navigation menus are lists of links,
but lists of links in plain HTML are ugly. There has to be a way to make
’em prettier.
It's remarkably easy to build solid navigation tools with CSS alone (at
least, in the modern browsers that support CSS properly). In this chapter,
you rescue your lists from the boring 1990s sensibility, turning them into
dynamic buttons, horizontal lists, and even dynamically cascading menus.

Revisiting List Styles
HTML does provide some default list styling, but it's pretty dull. You often
want to improve the appearance of a list of data. Most site navigation is
essentially a list of links. One easy trick is to make your links appear as a
set of buttons, as shown in Figure 3-1.

******ebook converter DEMO Watermarks*******

Figure 3-1: These buttons are actually a list. Note that one button is depressed.

The buttons in Figure 3-1 are pretty nice. They have a 3D effect with
shadows. They also act like buttons, with each button depressing when the
mouse hovers over it. When you click one of these buttons, it acts like a
link, taking you to another page, but they aren't really buttons at all, but a
list, cleverly disguised to look and act like buttons.

Defining navigation as a list of links
If you look at the HTML, you'll be astonished at its simplicity:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>buttonList.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "buttonList.css" />
 </head>
 <body>
 <h1>Button Lists</h1>
 <div id = "menu">

 Google
 Wiley
 Wikipedia

******ebook converter DEMO Watermarks*******

 Reddit

 </div>
 </body>
</html>

Turning links into buttons
As far as the HTML code is concerned, it's simply a list of links. There's
nothing special here that makes this act like a group of buttons, except the
creation of a div called menu. All the real work is done in CSS:

#menu li {
 list-style-type: none;
 width: 7em;
 text-align: center;
 margin-left: -2.5em;
}

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 background-color: #EEEEFF;
 box-shadow: 5px 5px 5px gray;
 margin-bottom: 2px;
}

#menu a:hover {
 background-color: #DDDDEE;
 box-shadow: 3px 3px 3px gray;
 border: none;
}

The process for turning an ordinary list of links into a button group like this
is simply an application of CSS tricks:

1. Begin with an ordinary list that will validate properly.

It doesn't matter if you use an unordered or ordered list. Typically, the
list will contain anchors to other pages. In this example, I'm using this
list of links to some popular websites:

<div id = "menu">

******ebook converter DEMO Watermarks*******

 Google

 Wiley

 <a href =
"http://www.wikipedia.org">Wikipedia
 Reddit

 </div>

2. Enclose the list in a named div.

Typically, you still have ordinary links on a page. To indicate that
these menu links should be handled differently, put them in a div
named menu. All the CSS-style tricks described here refer to lists and
anchors only when they're inside a menu div.

3. Remove the bullets by setting the list-style-type to none.

This removes the bullets or numbers that usually appear in a list
because these features distract from the effect you're aiming for (a
group of buttons). Use CSS to specify how list items should be
formatted when they appear in the context of the menu ID:

 #menu li {
 list-style-type: none;
 width: 5em;
 text-align: center;
 margin-left: -2.5em;
}

4. Specify the width of each button:
width: 5em;

 A group of buttons looks best if they're all the same size. Use
the CSS width attribute to set each li to 5em.

5. Remove the margin by using a negative margin-left value, as
shown here:

******ebook converter DEMO Watermarks*******

margin-left: -2.5em;

Lists have a default indentation of about 2.5em to make room for the
bullets or numbers. Because this list won't have bullets, it doesn't need
the indentations. Overwrite the default indenting behavior by setting
margin-left to a negative value.

6. Clean up the anchor by setting text-decoration to none and
setting the anchor's color to something static, such as black text on
light blue in this example:

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 background-color: #EEEEFF;
 box-shadow: 5px 5px 5px gray;
 margin-bottom: 2px;
}

The button's appearance will make it clear that users can click it, so this
is one place you can remove the underlining that normally goes with
links.

7. Give each button a box shadow, as shown in the following:
box-shadow: 5px 5px 5px gray;

The shadow makes it look like a 3D button sticking out from the page.
This is best attached to the anchor, so you can swap the border when
the mouse is hovering over the button.

8. Set the anchor's display to block.

This is a sneaky trick. Block display normally makes an element act
like a block-level element inside its container. In the case of an anchor,
the entire button becomes clickable, not just the text. This makes your
page easier to use because the mouse has a much bigger target to aim
for:

display: block;

9. Provide a small gap to separate each element.
******ebook converter DEMO Watermarks*******

Use the margin-bottom rule to separate each button. This will
enhance the 3D effect by making the shadows more obvious.

margin-bottom: 2px;

10. Provide a border radius for rounded corners.

Use of the border-radius property gives the corners a nice
rounded effect, enhancing the button feel.

11. Use an outset border for a little more dimension.

Setting the border to outset can give the buttons just a bit more 3D
appeal.

12. Make the button depress when the mouse hovers on an anchor:
#menu a:hover {
 background-color: #DDDDEE;
 box-shadow: 3px 3px 3px gray;
 border: none;
}

When the mouse hovers on the button, the shadow is smaller, and the
background color of the element is darker. I also removed the border,
making the button feel flat. These techniques together give a
convincing illusion of the button being depressed.

This list makes an ideal navigation menu, especially when placed inside
one column of a multicolumn floating layout.

 The shadow trick is easy, but there are many variations. If you
prefer, you can build two empty button images (one up and one down)
in your image editor and simply swap the background images rather
than changing the shadows. Some variations also involve changing the
border.

Building horizontal lists
Sometimes, you want horizontal button bars. Because HTML lists tend to

******ebook converter DEMO Watermarks*******

be vertical, you might be tempted to think that a horizontal list is
impossible. In fact, CSS provides all you need to convert exactly the same
HTML to a horizontal list. Figure 3-2 shows such a page.

Figure 3-2: This list uses the same HTML but different CSS.

There's no need to show the HTML again because it hasn't changed at all.
(Ain't CSS grand?) Even the CSS hasn't changed much:

 #menu ul {
 margin-left: -2.5em;
}

#menu li {
 list-style-type: none;
 width: 7em;
 text-align: center;
 float: left;
}

#menu a {
 text-decoration: none;
 color: black;
 display: block;
 background-color: #EEEEFF;
 box-shadow: 5px 5px 5px gray;
 margin-bottom: 2px;
 margin-right: 2px;
 border-radius: 5px;

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

 border: 3px outset #EEEEFF;
}

#menu a:hover {
 background-color: #DDDDEE;
 box-shadow: 3px 3px 3px gray;
 border: none;
}

The modifications are incredibly simple:

1. Float each list item by giving each li a float:left value:
 #menu li {
 list-style-type: none;
 float: left;
 width: 5em;
 text-align: center;
}

2. Move the margin-left of the entire ul by taking the margin-
left formatting from the li elements and transferring it to the
ul:

#menu ul {
 margin-left: -2.5em;
}

3. Add a right margin.

Now that the button bar is horizontal, add a little space to the right of
each button so they don't look so crowded together:

margin-right: 2px;

Creating Dynamic Lists
A simple list of buttons can look better than ordinary HTML links, but
sometimes, your page needs to have a more complex navigation scheme.
For example, you may want to create a menu system to help the user see
the structure of your site.
When you think of a complex hierarchical organization (which is how most
multipage websites end up), the easiest way to describe the structure is in a

******ebook converter DEMO Watermarks*******

set of nested lists. HTML lists can contain other lists, and this can be a
great way to organize data.
Nested lists are a great way to organize a lot of information, but they can
be complicated. You can use some special tricks to make parts of your list
appear and disappear when needed. In the sections “Hiding the inner lists”
and “Getting the inner lists to appear on cue,” later in this chapter, you
expand this technique to build a menu system for your pages.

Building a nested list
Begin by creating a system of nested lists without any CSS at all. Figure 3-
3 shows a page with a basic nested list.

Figure 3-3: This nested list has no styles yet.

No CSS styling is in place yet, but the list has its own complexities:

The primary list has three entries. This is actually a multilayer list.
The top level indicates categories, not necessarily links.
Each element in the top list has its own sublist. A second layer of
links has various links in most elements.
The Web Development element has another layer of sublists. The
general layout of this list entry corresponds to a complex hierarchy of
information — like most complex websites.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

The list validates to the HTML Strict standard. It's especially
important to validate your code before adding CSS when it involves
somewhat complex HTML code, like the multilevel list. A small
problem in the HTML structure that may go unnoticed in a plain
HTML document can cause all kinds of strange problems in your CSS.

Here is the code for the nested list in plain HTML:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>nestedList.html</title>
 </head>
 <body>
 <h1>Some of my favorite links</h1>

 Social networking

 digg
 reddit
 <a href =
"http://www.stumbleupon.com">stumbleupon

 Reference

 google
 wikipedia

 dictionary

 Web development

 XHTML/CSS

 w3
schools
 htmlHelp

 CSS
Zen Garden

 Programming

******ebook converter DEMO Watermarks*******

 <a href =
"http://javascript.com">javascript.com
 php.net
 mysql.com

 </body>
</html>

 Take special care with your indentation when making a complex
nested list like this one. Without proper indentation, it becomes very
difficult to establish the structure of the page. Also, a list item can
contain text and another list. Any other arrangement (putting text
between list items, for example) will cause a validation error and big
headaches when you try to apply CSS.

Hiding the inner lists
The first step of creating a dynamic menu system is to hide any lists that
are embedded in a list item. Add the following CSS style to your page:

li ul {
 display: none;
}

 In reality, you usually apply this technique only to a specially
marked div, like a menu system. Don't worry about that for now. Later
in this chapter, I show you how to combine this technique with a
variation of the button technique for complex menu systems.

Your page will undergo a startling transformation, as shown in Figure 3-4.

******ebook converter DEMO Watermarks*******

Figure 3-4: Where did everything go?

That tiny little snippet of CSS code is a real powerhouse. It does some
fascinating things, such as

Operating on unordered lists that appear inside list items: What
this really means is the topmost list won't be affected, but any
unordered list that appears inside a list item will have the style applied.
Using display:none to make text disappear: Setting the
display attribute to none tells the HTML page to hide the given
data altogether.

This code works well on almost all browsers. It's pretty easy to make text
disappear. Unfortunately, it's a little trickier to make all the browsers bring
it back.

Getting the inner lists to appear on cue
The fun part is getting the interior lists to pop up when the mouse is over
the parent element. A second CSS style can make this happen:

li ul {
 display: none;
}

li:hover ul {

******ebook converter DEMO Watermarks*******

 display: block;
}

The new code is pretty interesting. When the page initially loads, it appears
the same as what's shown in Figure 3-4, but see the effect of holding the
mouse over the Social Networking element in Figure 3-5.

Figure 3-5: Holding the mouse over a list item causes its children to appear.

 This code doesn't work on all browsers! Internet Explorer 6 (IE6)
and earlier versions don't support the:hover pseudo-class on any
element except a. Provide a conditional comment with an alternative
style for early versions of IE. All modern browsers (including IE 7 and
later) work fine.

Here's how the list-reappearing code works:

All lists inside lists are hidden. The first style rule hides any list that's
inside a list element.
li:hover refers to a list item that's being hovered on. That is, if
the mouse is situated on top of a list item, this rule pertains to it.
li:hover ul refers to an unordered list inside a hovered list
item. In other words, if some content is an unordered list that rests

******ebook converter DEMO Watermarks*******

inside a list that currently has the mouse hovering over it, apply this
rule. (Whew!)
Display the list as a block. display:block overrides the previous
display:none instruction and displays the particular element as a
block. The text reappears magically.

This hide-and-seek trick isn't all that great on its own. It's actually quite
annoying to have the contents pop up and go away like that. There's
another more annoying problem. Look at Figure 3-6 to see what can go
wrong.

Figure 3-6: If the mouse hovers on Web development, both submenus appear.

To see why this happens, take another look at the CSS code that causes the
segment to reappear:

li:hover ul {
 display: block;
}

This code means set display to block for any ul that's a child of a
hovered li. The problem is that the Web Development li contains a ul
that contains two more uls. All the lists under Web Development appear,
not just the immediate child.
One more modification of the CSS fixes this problem:

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

li ul {
 display: none;
}

li:hover > ul {
 display: block;
}

The greater than symbol (>) is a special selector tool. It indicates a direct
relationship. In other words, the ul must be a direct child of the hovered
li, not a grandchild or great-grandchild. With this indicator in place, the
page acts correctly, as shown in Figure 3-7.

Figure 3-7: Now, only the next menu level shows up on a mouse hover.

This trick allows you to create nested lists as deeply as you wish and to
open any segment by hovering on its parent.
My current code has a list with three levels of nesting, but you can add as
many nested lists as you want and use this code to make it act as a dynamic
menu.
Figure 3-8 illustrates how to open the next section of the list.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 3-8: You can create these lists as deep as you wish.

 I'm not suggesting that this type of menu is a good idea. Having
stuff pop around like this is actually pretty distracting. With a little
more formatting, you can use these ideas to make a functional menu
system. I'm just starting here so you can see the hide-and-seek behavior
in a simpler system before adding more details.

Building a Basic Menu System
You can combine the techniques of buttons and collapsing lists to build a
menu system entirely with CSS. Figure 3-9 shows a page with a vertically
arranged menu.

******ebook converter DEMO Watermarks*******

Figure 3-9: Only the top-level elements are visible by default.

When the user hovers over a part of the menu, the related sub-elements
appear, as shown in Figure 3-10.

Figure 3-10: The user can select any part of the original nested list.

This type of menu has a couple interesting advantages, such as

It's written entirely with CSS. You don't need any other code or
programming language.

******ebook converter DEMO Watermarks*******

The menus are simply nested lists. The HTML is simply a set of
nested lists. If the CSS turns off, the page is displayed as a set of nested
lists, and the links still function normally.
The relationships between elements are illustrated. When you select
an element, you can see its parent and sibling relationships easily.

 Nice as this type of menu system is, it isn't perfect. Because it
relies on the li:hover trick, it doesn't work in versions of Internet
Explorer (IE) prior to 7.0. You need alternate CSS for these users.

Building a vertical menu with CSS
The vertical menu system works with exactly the same HTML as the
hiddenList example — only the CSS changed. Here's the new CSS file:

/* vertMenu.css */
/* unindent entire list */
#menu ul {
 margin-left: -2.5em;
}

/* set li as buttons */
#menu li {
 list-style-type: none;
 border: 1px black solid;;
 width: 10em;
 background-color: #cccccc;
 text-align: center;
}

/* display anchors as buttons */
#menu a {
 color: black;
 text-decoration: none;
 display: block;
}

/* flash white on anchor hover */
#menu a:hover {
 background-color: white;
}

******ebook converter DEMO Watermarks*******

/* collapse menus */
#menu li ul {
 display: none;
}

/* show submenus on hover */
#menu li:hover > ul {
 display: block;
 margin-left: -2em;
}

Of course, the CSS uses a few tricks, but there's really nothing new. It's just
a combination of techniques you already know:

1. Un-indent the entire list by setting the ul's margin-left to a
negative value to compensate for the typical indentation. 2.5em is
about the right amount.

Because you're removing the list-style types, the normal
indentation of list items will become a problem.

2. Format the li tags.

Each li tag inside the menu structure should look something like a
button. Use CSS to accomplish this task:

/* set li as buttons */
#menu li {
 list-style-type: none;
 border: 1px black solid;
 width: 10em;
 background-color: #cccccc;
 text-align: center;
}

a. Set list-style-type to none.
b. Set a border with the border attribute.
c. Center the text by setting text-align to center.
d. Add a background color or image, or you'll get some strange border bleed-through

later when the buttons overlap.

3. Format the anchors as follows:
/* display anchors as buttons */

******ebook converter DEMO Watermarks*******

#menu a {
 color: black;
 text-decoration: none;
 display: block;
}

a. Take out the underline with text-decoration: none.
b. Give the anchor a consistent color.
c. Set display to block (so the entire area will be clickable, not just the text).

4. Give some indication it's an anchor by changing the background
when the user hovers on the element:

/* flash white on anchor hover */
#menu a:hover {
 background-color: white;
}

Because the anchors no longer look like anchors, you have to do
something else to indicate there's something special about these
elements. When the user moves the mouse over any anchor tag in the
menu div, that anchor's background color will switch to white.

5. Collapse the menus using the hidden menus trick (discussed in the
section “Hiding the inner lists,” earlier in this chapter) to hide all
the sublists:

/* collapse menus */
#menu li ul {
 display: none;
}

6. Display the hidden menus when the mouse hovers on the parent
element by adding the code described in the “Getting the inner lists
to appear on cue” section:

/* show submenus on hover */
#menu li:hover > ul {
 display: block;
 margin-left: -2em;
}

Building a horizontal menu
You can make a variation of the menu structure that will work along the
top of a page. Figure 3-11 shows how this might look.

******ebook converter DEMO Watermarks*******

Figure 3-11: The same list is now a horizontal menu.

The submenus come straight down from their parent elements. I find a little
bit of indentation helpful for deeply nested lists, as shown in Figure 3-12.

Figure 3-12: For the multilevel menus, a little bit of indentation is helpful.

Again, the HTML is identical. The CSS for a horizontal menu is
surprisingly close to the vertical menu. The primary difference is floating
the list items:

/* vertMenu.css */

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

/* unindent each unordered list */

#menu ul {
 margin-left: -2.5em;
}

/* turn each list item into a solid gray block */
#menu li {
 list-style-type: none;
 border: black solid 1px;
 float: left;
 width: 10em;
 background-color: #CCCCCC;
 text-align: center;
}

/* set anchors to act like buttons */
#menu a {
 display: block;
 color: black;
 text-decoration: none;
}

/* flash anchor white when hovered */
#menu a:hover {
 background-color: white;
}

/* collapse nested lists */
#menu li ul {
 display: none;
}

/* display sublists on hover */
#menu li:hover > ul {
 display: block;
}

/* indent third-generation lists */
#menu li li li{
 margin-left: 1em;
}

The CSS code has just a few variations from the vertical menu CSS:

******ebook converter DEMO Watermarks*******

Float each list item by adding float and width attributes.
 /* turn each list item into a solid gray block */
#menu li {
 list-style-type: none;
 border: black solid 1px;
 float: left;
 width: 10em;
 background-color: #CCCCCC;
 text-align: center;
}

This causes the list items to appear next to each other in the same line.

Give each list item a width. In this case, 10em seems about right.
Indent a deeply nested list by having the first-order sublists appear
directly below the parent.

A list nested deeper than its parent is hard to read. A little indentation
helps a lot with clarity.

Use #menu li li li to indent nested list items, as shown here:
/* indent third-generation lists */
#menu li li li{
 margin-left: 1em;
}

This selector is active on an element which has #menu and three list
items in its family tree. It will work only on list items three levels deep.
This special formatting isn't needed at the other levels but is helpful to
offset the third-level list items.

These tricks are just the beginning of what you can do with some creativity
and the amazing power of CSS and HTML. You can adopt the simple
examples presented here to create your own marvels of navigation.

 These menu systems work pretty well, but if they're used in a
standard layout system, the rest of the page can shift around to fit the
changing shape of the menus. To avoid this, place the menu using the
fixed mechanisms described in Chapter 4 of this minibook.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 4
Using Alternative Positioning

In This Chapter
 Setting position to absolute
 Managing z-index
 Creating fixed and flexible layouts
 Working with fixed and relative positioning
 Using the new flexbox model

Floating layouts (described in Chapter 2 of this minibook) are the preferred
way to set up page layouts today but, sometimes, other alternatives are
useful. You can use absolute, relative, or fixed positioning techniques to
put all your page elements exactly where you want them. Well, almost
exactly. It's still web development, where nothing's exact. Because none of
these alternatives are completely satisfying, the W3C (web standards body)
has introduced a very promising new layout model called the flexbox
model.
The techniques described in this chapter will give you even more
capabilities when it comes to setting up great-looking websites.

Working with Absolute Positioning
Begin by considering the default layout mechanism. Figure 4-1 shows a
page with two paragraphs on it.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Figure 4-1: These two paragraphs have a set height and width, but default positioning.

I used CSS to give each paragraph a different color (to aid in discussion
later) and to set a specific height and width. The positioning is left to the
default layout manager, which positions the second (black) paragraph
directly below the first (blue) one.

Setting up the HTML
The code is unsurprising:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>boxes.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

 <p id = "blackBox"></p>
 </body>
</html>

If you provide no further guidance, paragraphs (like other block-level
elements) tend to provide carriage returns before and after themselves,
stacking on top of each other. The default layout techniques ensure that
nothing ever overlaps.

Adding position guidelines
Figure 4-2 shows something new: The paragraphs are overlapping!

Figure 4-2: Now the paragraphs overlap each other.

This feat is accomplished through some new CSS attributes:
<!DOCTYPE html>
 <html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>absPosition.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;

******ebook converter DEMO Watermarks*******

 top: 0px;
 margin: 0px;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 50px;
 top: 50px;
 margin: 0px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>
 <p id = "blackBox"></p>
 </body>
 </html>

 So, why do I care if the boxes overlap? Well, you might not care,
but the interesting part is this: You can have much more precise control
over where elements live and what size they are. You can even override
the browser's normal tendency to keep elements from overlapping,
which gives you some interesting options.

Making absolute positioning work
A few new parts of CSS allow this more direct control of the size and
position of these elements. Here's the CSS for one of the boxes:

 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 }

1. Set the position attribute to absolute.

Absolute positioning can be used to determine exactly (more or less)

******ebook converter DEMO Watermarks*******

where the element will be placed on the screen:

position: absolute;

2. Specify a left position in the CSS.

After you determine that an element will have absolute position, it's
removed from the normal flow, so you're obligated to fix its position.
The left attribute determines where the left edge of the element will
go. This can be specified with any of the measurement units, but it's
typically measured in pixels:

left: 0px;

3. Specify a top position with CSS.

The top attribute indicates where the top of the element will go. Again,
this is usually specified in pixels:

top: 0px;

4. Use the height and width attributes to determine the size.

Normally, when you specify a position, you also want to determine the
size:

width: 100px;
 height: 100px;

5. Set the margins to 0.

When you're using absolute positioning, you're exercising quite a bit of
control. Because browsers don't treat margins identically, you're better
off setting margins to 0 and controlling the spacing between elements
manually:

margin: 0px;

******ebook converter DEMO Watermarks*******

 Generally, you use absolute positioning only on named elements,
rather than classes or general element types. For example, you won't
want all the paragraphs on a page to have the same size and position, or
you couldn't see them all. Absolute positioning works on only one
element at a time.

Managing z-index
When you use absolute positioning, you can determine exactly where
things are placed, so it's possible for them to overlap. By default, elements
described later in HTML are positioned on top of elements described
earlier. This is why the black box appears over the top of the blue box in
Figure 4-2.

Handling depth
You can use a special CSS attribute called z-index to change this default
behavior. The z-axis refers to how close an element appears to be to the
viewer. Figure 4-3 demonstrates how this works.

Figure 4-3: The z-index allows you to change which elements appear closer to the user.

The z-index attribute requires a numeric value. Higher numbers mean
******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

the element is closer to the user (or on top). Any value for z-index
places the element higher than elements with the default z-index. This
can be very useful when you have elements that you want to appear over
the top of other elements (for example, menus that temporarily appear on
top of other text).
Here's the code illustrating the z-index effect:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>zindex.html</title>
 <style type = "text/css">
 #blueBox {
 background-color: blue;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 0px;
 top: 0px;
 margin: 0px;
 z-index: 1;
 }
 #blackBox {
 background-color: black;
 width: 100px;
 height: 100px;
 position: absolute;
 left: 50px;
 top: 50px;
 margin: 0px;
 }
 </style>
 </head>
 <body>
 <p id = "blueBox"></p>
 <p id = "blackBox"></p>
 </body>
</html>

Working with z-index
The only change in this code is the addition of the z-index property. The
higher a z-index value is, the closer that object appears to be to the user.
Here are a couple things to keep in mind when using z-index:

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Typewritten Text
I gave z-index = 0 to the #blackbox above.My file is 084_Positioning.html which combined the last three examples.

One element can totally conceal another. When you start positioning
things absolutely, one element can seem to disappear because it's
completely covered by another. The z-index attribute is a good way
to check for this situation.
Negative z-index can be problematic. The value for z-index
should be positive. Although negative values are supported, some
browsers (notably older versions of Firefox) do not handle them well
and may cause your element to disappear.
It may be best to give all values a z-index. If you define the z-
index for some elements and leave the z-index undefined for
others, you have no guarantee exactly what will happen. If in doubt,
just give every value its own z-index, and you'll know exactly what
should overlap what.
Don't give two elements the same z-index. The point of the z-
index is to clearly define which element should appear closer. Don't
defeat this purpose by assigning the same z-index value to two
different elements on the same page.

Building a Page Layout with
Absolute Positioning

You can use absolute positioning to create a page layout. This process
involves some trade-offs. You tend to get better control of your page with
absolute positioning (compared to floating techniques), but absolute layout
requires more planning and more attention to detail. Figure 4-4 shows a
page layout created with absolute positioning techniques.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Figure 4-4: This layout was created with absolute positioning.

The technique for creating an absolutely positioned layout is similar to the
floating technique (in the general sense).

Overview of absolute layout
Before you begin putting your page together with absolute positioning, it's
good to plan the entire process. Here's an example of how the process
should go:

1. Plan the site.

Having a drawing that specifies how your site layout will look is really
important. In absolute positioning, your planning is even more
important than the floating designs because you'll need to specify the
size and position of every element.

2. Specify an overall size.

This particular type of layout has a fixed size. Create an all div
housing all the other elements and specify the size of this div (in a
fixed unit for now, usually px or em).

3. Create the HTML.

******ebook converter DEMO Watermarks*******

The HTML page should have a named div for each part of the page (so
if you have headers, columns, and footers, you need a div for each).

4. Build a CSS style sheet.

The CSS styles can be internal or linked, but because absolute
positioning tends to require a little more markup than floating, external
styles are preferred.

5. Identify each element.

It's easier to see what's going on if you assign a different colored
border to each element.

6. Make each element absolutely positioned.

Set position: absolute in the CSS for each element in the
layout.

7. Specify the size of each element.

Set the height and width of each element according to your
diagram. (You did make a diagram, right?)

8. Determine the position of each element.

Use the left and top attributes to determine where each element
goes in the layout.

9. Tune-up your layout.

You'll probably want to adjust margins and borders. You may need to
do some adjustments to make it all work. For example, the menu is
150px wide, but I added padding-left and padding-right of
5px each. This means the width of the menu needs to be adjusted to
140px to make everything still fit.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

Owner
Highlight

Owner
Highlight

Writing the HTML
The HTML code is pretty straightforward:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>absLayout.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "absLayout.css" />
 </head>
 <body>
 <div id = "all">
 <div id = "head">
 <h1>Layout with Absolute Positioning</h1>
 </div>

<div id = "menu">
 </div>

<div id = "content">
 </div>

</div>
 </body>
</html>

(As typical with layout examples, I have removed the lorem text from this
code listing for clarity.)
The HTML file calls an external style sheet called absLayout.css.

Adding the CSS
The CSS code is a bit lengthy but not too difficult:

/* absLayout.css */
#all {
 border: 1px solid black;
 width: 800px;
 height: 600px;
 position: absolute;
 left: 0px;
 top: 0px;

******ebook converter DEMO Watermarks*******

}

#head {
 border: 1px solid green;
 position: absolute;
 width: 800px;
 height: 100px;
 top: 0px;
 left: 0px;
 text-align: center;
}

#menu {
 border: 1px solid red;
 position: absolute;
 width: 140px;
 height: 500px;
 top: 100px;
 left: 0px;
 padding-left: 5px;
 padding-right: 5px;
}

#content{
 border: 1px solid blue;
 position: absolute;
 width: 645px;
 height: 500px;
 top: 100px;
 left: 150px;
 padding-left: 5px;
}

A static layout created with absolute positioning has a few important
features to keep in mind:

You're committed to position everything. After you start using
absolute positioning, you need to use it throughout your site. All the
main page elements require absolute positioning because the normal
flow mechanism is no longer in place.

 You can still use floating layout inside an element with
absolute position, but all your main elements (heading, columns, and
footing) need to have absolute position if one of them does.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

You should specify size and position. With a floating layout, you're
still encouraging a certain amount of fluidity. Absolute positioning
means you're taking the responsibility for both the shape and size of
each element in the layout.
Absolute positioning is less adaptable. With this technique, you're
pretty much bound to a specific screen width and height. You'll have
trouble adapting to tablets and cellphones. (A more flexible alternative
is shown in the next section.)
All the widths and the heights have to add up. When you determine
the size of your display, all the heights, widths, margins, padding, and
borders have to add up, or you'll get some strange results. When you
use absolute positioning, you're also likely to spend some quality time
with your calculator, figuring out all the widths and the heights.

Creating a More Flexible Layout
You can build a layout with absolute positioning and some flexibility.
Figure 4-5 illustrates such a design.

Figure 4-5: This page uses absolute layout, but it doesn't have a fixed size.

The size of this layout is attached to the size of the browser screen. It
attempts to adjust to the browser while it's resized. You can see this effect

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

in Figure 4-6.

Figure 4-6: The layout resizes in proportion to the browser window.

The page simply takes up a fixed percentage of the browser screen. The
proportions are all maintained, no matter what the screen size is.

 Having the page resize with the browser works, but it's not a
complete solution. When the browser window is small enough, the text
will no longer fit without some ugly bleed-over effects. You can fix this
with the overflow attribute, but then you will have scrollbars in your
smaller elements.

Designing with percentages
This absolute but flexible trick is achieved by using percentage
measurements. The position is still set to absolute, but rather than
defining size and position with pixels, use percentages instead. Here's the

******ebook converter DEMO Watermarks*******

Owner
Highlight

CSS:
/* absPercent.css */

#all {
 border: 1px black solid;
 position: absolute;
 left: 5%;
 top: 5%;
 width: 90%;
 height: 90%;
 }

#head {
 border: 1px black solid;
 position: absolute;
 left: 0%;
 top: 0%;
 width: 100%;
 height: 10%;
 text-align: center;
 }

#head h1 {
 margin-top: 1%;
 }

#menu {
 border: 1px green solid;
 position: absolute;
 left: 0%;
 top: 10%;
 width: 18%;
 height: 90%;
 padding-left: 1%;
 padding-right: 1%;
 overflow: auto;
 }

#content {
 border: 1px black solid;
 position: absolute;
 left: 20%;
 top: 10%;
 width: 78%;
 height: 90%;
 padding-left: 1%;

******ebook converter DEMO Watermarks*******

 padding-right: 1%;
 overflow: auto;
 }

The key to any absolute positioning (even this flexible kind) is math. When
you just look at the code, it isn't clear where all those numbers come from.
Look at the diagram for the page in Figure 4-7 to see how all the values are
derived.

Figure 4-7: The diagram is the key to a successful layout.

Building the layout
Here's how the layout works:

1. Create an all container by building a div with the all ID.

The all container will hold all the contents of the page. It isn't
absolutely necessary in this type of layout, but it does allow for a
centering effect.

2. Specify the size and position of all.

I want the content of the page to be centered in the browser window, so
I set its height and width to 90 percent, and its margin-left and
margin-top to 5 percent. In effect, this sets the margin-right
and margin-bottom to 5 percent also. These percentages refer to
the all div's container element, which is the body, with the same size

******ebook converter DEMO Watermarks*******

as the browser window.

3. Other percentages are in relationship to the all container.

Because all the other elements are placed inside all, the percentage
values are no longer referring to the entire browser window. The
widths and heights for the menu and content areas are calculated as
percentages of their container, which is all.

4. Determine the heights.

Height is usually pretty straightforward because you don't usually have
to change the margins. Remember, though, that the head accounts for
10 percent of the page space, so the height of both the menu and
content needs to be 90 percent.

5. Figure the general widths.

In principle, the width of the menu column is 20 percent, and the
content column is 80 percent. This isn't entirely accurate, though.

6. Compensate for margins.

You probably want some margins, or the text looks cramped. If you
want 1 percent margin-left and 1 percent margin-right on the
menu column, you have to set the menu's width to 18 percent to
compensate for the margins. Likewise, set the content width to 78
percent to compensate for margins.

 As if this weren't complex enough, remember that Internet
Explorer 6 (IE6) and earlier browsers calculate margins differently! In
these browsers, the margin happens inside the content, so you don't
have to compensate for them (but you have to remember that they make
the useable content area smaller). You'll probably have to make a
conditional comment style sheet to handle IE6 if you use absolute
positioning.

******ebook converter DEMO Watermarks*******

Exploring Other Types of Positioning
If you use the position attribute, you're most likely to use absolute.
However, here are other positioning techniques that can be handy in certain
circumstances:

Relative: Set position: relative when you want to move an
element from its default position. For example, if you set position to
relative and top: -10px, the element would be placed 10 pixels
higher on the screen than normal.
Fixed: Use fixed position when you want an element to stay in the
same place, even when the page is scrolled. This is sometimes used to
keep a menu on the screen when the contents are longer than the screen
width. If you use fixed positioning, be sure you're not overwriting
something already on the screen.

The real trick is to use appropriate combinations of positioning schemes to
solve interesting problems.

Creating a fixed menu system
Figure 4-8 illustrates a very common type of web page — one with a menu
on the left and a number of stories or topics in the main area.

******ebook converter DEMO Watermarks*******

Figure 4-8: At first glance, this is yet another two-column layout.

Something is interesting about this particular design. The button list on the
left refers to specific segments of the page. When you click one of these
buttons (say, the Gamma button), the appropriate part of the page is called
up, as shown in Figure 4-9.

Figure 4-9: The page scrolls to the Gamma content, but the menu stays put.

Normally, when you scroll down the page, things on the top of the page
(like the menu) disappear. In this case, the menu stays on the screen, even
though the part of the page where it was originally placed is now off the
screen.

 Gamma isn't necessarily moved to the top of the page. Linking to
an element ensures that it's visible but doesn't guarantee where it will
appear.

You can achieve this effect using a combination of positioning techniques.

Setting up the HTML
The HTML for the fixed menu page is simple (as you'd expect by now):

<!DOCTYPE html>
<html lang = "en-US">

******ebook converter DEMO Watermarks*******

<head>
 <meta charset = "UTF-8">
 <title>fixedRelative.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "fixedRelative.css" />
 </head>
 <body>
 <h1>Fixed Position</h1>
 <div id = "menu">
 <h2>Menu</h2>

 Alpha
 Beta
 Gamma
 Delta

 </div>

<div class = "content"
 id = "alpha">
 <h2>Alpha</h2>
 </div>

<div class = "content"
 id = "beta">
 <h2>Beta</h2>
 </div>

<div class = "content"
 id = "gamma">
 <h2>Gamma</h2>
 </div>

<div class = "content"
 id = "delta">
 <h2>Delta</h2>
 </div>
 </body>
</html>

The HTML has only a few noteworthy characteristics:

It has a menu. The div named menu contains a list of links (like most
menus).
The menu has internal links. A menu can contain links to external
documents or (like this one) links inside the current document. The Alpha code means create a link to the

******ebook converter DEMO Watermarks*******

element in this page with the ID alpha.
The page has a series of content divs. Most of the page's content
appears in one of the several divs with the content class. This class
indicates all these divs will share some formatting.
The content divs have separate IDs. Although all the content
divs are part of the same class, each has its own ID. This allows the
menu to select individual items (and would also allow individual
styling, if desired).

 As normal for this type of code, I left out the filler paragraphs
from the code listing.

Setting the CSS values
The interesting work happens in CSS. Here's an overview of the code:

/* fixedRelative.css */

body {
 background-color: #fff9bf;
}

h1 {
 text-align: center;
}

#menu {
 position: fixed;
 width: 18%;
}

#menu li {
 list-style-type: none;
 margin-left: -2em;
 text-align: center;
}

#menu a{
 display: block;
 border: 2px gray outset;
 text-decoration: none;
 color: black;
}

******ebook converter DEMO Watermarks*******

#menu a:hover{
 color: white;
 background-color: black;
 border: 2px gray inset;
}

#menu h2 {
 text-align: center;
}

.content {
 position: relative;
 left: 20%;
 width: 80%;
}

.content h2 {
 border-top: 3px black double;
}

Most of the CSS is familiar if you've looked over the other chapters in this
minibook. I changed the menu list to make it look like a set of buttons, and
I added some basic formatting to the headings and borders. The interesting
thing here is how I positioned various elements.
Here's how you build a fixed menu:

1. Set the menu position to fixed by setting the position attribute
to fixed.

The menu div should stay on the same spot, even while the rest of the
page scrolls. Fixed positioning causes the menu to stay put, no matter
what else happens on the page.

2. Give the menu a width with the width attribute.

It's important that the width of the menu be predictable, both for
aesthetic reasons and to make sure the content isn't overwritten by the
menu. In this example, I set the menu width to 18 percent of the page
width (20 percent minus some margin space).

3. Consider the menu position by explicitly setting the top and left
attributes.

******ebook converter DEMO Watermarks*******

When you specify a fixed position, you can determine where the
element is placed on the screen with the left and top attributes. I
felt that the default position was fine, so I didn't change it.

4. Set content position to relative.

By default, all members of the content class will fill out the entire page
width. Because the menu needs the leftmost 20 percent of the page, set
the content class position to relative.

5. Change content's left attribute to 20 percent.

Because content has relative positioning, setting the left to 20
percent will add 20 percent of the parent element to each content's
left value. This will ensure that there's room for the menu to the left
of all the content panes.

6. Give content a width property.

If you don't define the width, content panels may bleed off the right
side of the page. Use the width property to ensure this doesn't
happen.

 In reality, I rarely use absolute positioning for page layout. It's
just too difficult to get working and too inflexible for the range of
modern browsers. However, it is still used in certain specialty situations
like web game development where the programmer is deliberately
subverting normal layout schemes for more control of the visual
interface.

Flexible Box Layout Model
Page layout has been a constant concern in web development. There have
been many different approaches to page layout, and all have weaknesses.
The current standard is the floating mechanism. While this works quite

******ebook converter DEMO Watermarks*******

well, it has two major weaknesses.

It can be hard to understand: The various parts of the float
specification can be difficult to follow, and the behavior is not
intuitive. The relationship between width, clear, and float
attributes can be difficult to follow.
The page order matters: One goal of semantic layout is to completely
divorce the way the page is created from how it is displayed. With the
floating layout, the order in which various elements are written in the
HTML document influences how they are placed. An ideal layout
solution would allow any kind of placement through CSS, even after
the HTML is finished.

Absolute positioning seems great at first, but it has its own problems:

It's a lot more detail-oriented: Absolute positioning is a commitment.
You often end up having to directly control the size and position of
every element on the screen, which is tedious and difficult.
It's not as flexible: With responsive design (creating a page that can
adapt to the many different devices available) all the rage today, the
absolute position scheme simply doesn't deliver the flexibility needed
in modern web development.

There are some other layout mechanisms (tables and frames) that have
already been rejected as viable layout options, which seems to leave web
programmers without an ideal solution.

Creating a flexible box layout
CSS3 proposes a new layout mechanism which aims to solve a lot of the
layout problems that have plagued web development. The flexible box
layout scheme (sometimes called flexbox) shows a lot of promise. Here's
essentially how it works (I'm deliberately leaving out details here for
clarity. Read on for specific implementation):

1. Designate a page segment as a box.

The display attribute of most elements can be set to various types.

******ebook converter DEMO Watermarks*******

CSS3 introduces a new display type: box. Setting the display of an
element to box makes it capable of holding other elements with the
flexible box mechanism.

2. Determine the orientation of child elements.

Use a new attribute called box-orient to determine if the child
elements of the current element will be placed vertically or horizontally
inside the main element.

3. Specify the weight of child elements.

Each child element can be given a numeric weight. The weight
determines how much space that element takes up. If the weight is
zero, the element takes as little space as possible. If the weight of all
the elements is one, they all take up the same amount of space. If one
element has a weight of two and the others all have a weight of one, the
larger element has twice the size of the others, and so on. Weight is
determined through the box-flex attribute.

4. Nest another box inside the first.

You can nest flexboxes inside each other. Simply apply the box
display type to inner elements that will show the display.

5. Modify the order in which elements appear.

Normally elements appear in the order in which they were placed on
the page, but you can use the box-ordinal-group attribute to
adjust the placement order.

Viewing a flexible box layout
As an example, take a look at the following HTML code:

<div id = "a">
 <div id = "b">b</div>
 <div id = "c">c</div>
 <div id = "d">
 <div id = "e">e</div>

******ebook converter DEMO Watermarks*******

 <div id = "f">f</div>
 </div>
 </div>

Although this is a clearly made-up example, it shows a complex structure
that could be difficult to style using standard layout techniques. Figure 4-
10 illustrates a complex nested style that would be difficult to achieve
through traditional layout techniques:

Figure 4-10: This structure would not be easy to build with CSS2.

The following style sheet is used to apply a flex grid style to this page:
div {

 border: 1px solid black;
 }

#a {
 width: 300px;
 height: 200px;

display: box;
 box-orient: horizontal;
 }

#b {
 box-flex: 1;
 }

******ebook converter DEMO Watermarks*******

#c {
 box-flex: 1;
 }

#d {
 display: box;
 box-orient: vertical;
 box-flex: 2;
 }

#e {
 box-flex: 1;
 box-ordinal-group: 2;
 }

#f {
 box-flex: 1;
 }

The CSS looks complex, but there are only four new CSS elements. Here's
how this specific example works:

1. Set up a to be the primary container.

The a div is the primary container, so give it a height and width. It will
contain flex boxes, so set the display attribute to box. Determine
how you want the children of this box to be lined up by setting the
box-orient attribute to vertical or horizontal.

2. Specify the weights of b, c, and d.

In my example, I want elements b and c to take up half the space, and
d to fill up the remainder of the space. To get this behavior, set the
box-flex value of b and c to 1, and the box-flex value of d to 2.

3. Set up d as another container.

The d element will contain e and f. Use display: box to make d a
flex container, and box-orient to vertical to make the elements
line up vertically. (Normally nested elements will switch between
horizontal and vertical.)

******ebook converter DEMO Watermarks*******

4. Elements e and f should each take half of d.

Use the box-flex attribute to give these elements equal weight.

5. Change the ordinal group of e so it appears after f.

The box-ordinal-group attribute indicates the order in which an
element will be displayed inside its group. Normally, all items have a
default value of 1, so they appear in the order they are written. You can
demote an element by setting its box-ordinal-group value to a
higher number, causing that element to be displayed later than normal.
I set e to ordinal group 2, so it is displayed after element f.

… And now for a little reality
The flexbox system seems perfect. It's much more sensible than the
Byzantine layout techniques that are currently in use. However, the flexible
box system is not ready for common use yet. Right now, not a single
browser implements the flexbox attributes directly. However, there are
special vendor-specific versions available. WebKit-based browsers
(primarily Safari and Chrome) use variations that begin with -webkit-
and Gecko-based browsers (Firefox and Mozilla) use the -moz- prefix.
Microsoft finally supports flexbox, but it requires the -ms-. To make the
example in this chapter work in modern browsers, you need to include -
ms-, -webkit- and -moz- versions of all the attributes, like this:

#a {
 width: 300px;
 height: 200px;

box-orient: horizontal;
 display: box;

-moz-box-orient: horizontal;
 display: -moz-box;

-webkit-box-orient: horizontal;
 display: -webkit-box;

-ms-box-orient: horizontal;
 display: -ms-box;

******ebook converter DEMO Watermarks*******

 }

#b {
 box-flex: 1;
 -moz-box-flex: 1;
 -webkit-box-flex: 1;
 -ms-box-flex: 1;
 }

None of the browsers currently support the vanilla version, but I put it in
anyway because hopefully in the near future only that version will be
necessary. This technique is worth learning about because it may well
become the preferred layout technique in the future.
For a complete example, take a look at Figure 4-11, which shows a
standard two-column page.

Figure 4-11: This standard layout uses flexbox.

Though you can't tell from the screen shot, this page uses HTML5
throughout, including the new semantic tags (See the sidebar for a
discussion of semantic tags) and a flexbox layout model.
Although the CSS code may look complex, it's actually quite simple, but
repeated four times to handle all the various browser prefixes:

<!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>flexTwoCol.html</title>

******ebook converter DEMO Watermarks*******

 <meta charset = "UTF-8" />
 <style type = "text/css">
 #all {
 display: box;
 display: -moz-box;
 display: -wekbit-box;
 display: -ms-box;

box-orient: vertical;
 -moz-box-orient: vertical;
 -webkit-box-orient: vertical;
 -ms-box-orient: vertical;

height: 400px;
 width: 600px;
 margin-right: auto;
 margin-left: auto;
 }

#main {
 display: box;
 display: -moz-box;
 display: -webkit-box;
 display: -ms-box;

box-orient: horizontal;
 -moz-box-orient: horizontal;
 -webkit-box-orient: horizontal;
 -ms-box-orient: horizontal;
 }

#nav {
 box-flex: 1;
 -moz-box-flex: 1;
 -webkit-box-flex: 1;
 -ms-box-flex: 1;
 }

#article {
 box-flex: 6;
 -moz-box-flex: 6;
 -webkit-box-flex: 6;
 -ms-box-flex: 6;
 }

******ebook converter DEMO Watermarks*******

header, footer {
 display:block;
 text-align: center;
 }
 </style>
 </head>

<body>
 <div id = "all">
 <header>
 <hgroup>
 <h1>Two Column Demo</h1>
 <h2>Using flexbox layout</h2>
 </hgroup>
 </header>

<div id = "main">

<div id = "nav">
 <h2>Navigation List</h2>

 one
 two
 three
 four
 five

 </div>

<div id = "article">
 <h2>Main content</h2>
 </div>
 </div>

<footer>
 <h2>Andy Harris</h2>

 http://www.aharrisbooks.net
 </footer>
 </div>
 </body>
 </html>

The flexbox approach is really promising. When you get used to it, flexbox
is less mysterious than the float approach, and far more flexible than
absolute positioning. Essentially, my page uses a fixed width div and

******ebook converter DEMO Watermarks*******

places a flexbox inside it. There's no need to worry about float,
clear, or any specific measurements except the one for the all div. The
only downside is the need to code the CSS for all the browser prefixes. For
now, I fix that with macros in my text editor.

Introducing Semantic Layout Tags
Web developers have embraced the idea of semantic markup, which is all about labeling
things based on their meaning. Soon enough, nearly every page had a number of divs with
the same name: div id = “header”, div id = “navigation”, div id = “footer”, and so on.

HTML5 finally released a set of semantic markup elements to describe the standard page
elements. Here's a list of the most important ones:

<header> - describes the header area of your page

<nav> - navigation element, often contains some sort of menu system

<section> - contains a section of content

<article> - contains an article – typically generated from an external source

<footer> - contains the footer elements

The semantic elements are useful because they simplify markup. Unfortunately, all the
browsers do not yet recognize these elements. They will render just fine, but it may be a
while before CSS can be used with these elements with any confidence.

Determining Your Layout Scheme
All these layout options might just make your head spin. What's the right
strategy? Well, that depends.
The most important thing is to find a technique you're comfortable with
that gives you all the flexibility you need.
Floating layouts are generally your best bet, but it's good to know how
absolute positioning works. Every once in a while, you find a situation
where absolute positioning is a good idea, but generally it's more difficult
to pull off than the floating mechanism.
Absolute positioning seems very attractive at first because it promises so
much control. The truth is, it's pretty complicated to pull off well, it isn't
quite as flexible as the floating layout techniques, and it's hard to make it
work right in older browsers.

******ebook converter DEMO Watermarks*******

Sometimes, fixed and relative positioning schemes are handy, as in the
example introduced in the fixed menu example described in this chapter.
The flexbox approach seems very promising, but it's currently tedious to
write as you'll need to repeat your code for all the browser prefixes. When
it can be used without prefixes, it will probably become the dominant
scheme.
Sometimes, you'll find it's best to combine schemes. (It's difficult to
combine absolute positioning with another scheme, but you can safely
combine floating, fixed, and relative positioning techniques most of the
time.)
The main point is to understand the various options available to you so you
can make a good choice for whatever project you're currently working on.

******ebook converter DEMO Watermarks*******

Book IV
Client-Side Programming with

JavaScript

 Visit www.dummies.com/extras/html5css3aio for
more on JavaScript Libraries.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: Getting Started with JavaScript
Chapter 2: Talking to the Page
Chapter 3: Decisions and Debugging
Chapter 4: Functions, Arrays, and Objects
Chapter 5: Getting Valid Input
Chapter 6: Drawing on the Canvas
Chapter 7: Animation with the Canvas

******ebook converter DEMO Watermarks*******

Chapter 1
Getting Started with JavaScript

In This Chapter
 Adding JavaScript code to your pages
 Setting up your environment for JavaScript
 Creating variables
 Inputting and outputting with modal dialogs
 Using concatenation to build text data
 Understanding data types
 Using string methods and properties
 Using conversion functions

Web pages are defined by the HTML code and fleshed out by CSS. But to
make them move and breathe, sing, and dance, you need to add a
programming language or two. If you thought building web pages was
cool, you're going to love what you can do with a little programming.
Programming is what makes pages interact with the user. Interactivity is
the “new” in “new media” (if you ask me, anyway). Learn to program, and
your pages come alive.
Sometimes people are nervous about programming. It seems difficult and
mysterious, and only super-geeks do it. That's a bunch of nonsense.
Programming is no more difficult than HTML and CSS. It's a natural
extension, and you're going to like it.
In this chapter, you discover how to add code to your web pages. You use a
language called JavaScript, which is already built into most web browsers.
You don't need to buy any special software, compilers, or special tools
because you build JavaScript just like HTML and CSS — in an ordinary
text editor or a specialty editor such as Aptana.

Working in JavaScript
******ebook converter DEMO Watermarks*******

JavaScript is a programming language first developed by Netscape
Communications. It is now standard on nearly every browser. You should
know a few things about JavaScript right away:

It's a real programming language. Don't let anybody tell you
otherwise. Sure, JavaScript doesn't have all the same features as a
monster, such as C++ or VB.NET, but it still has all the hallmarks of a
complete programming language.
It's not Java. Sun Microsystems developed a language called Java,
which is also sometimes used in web programming. Despite the similar
names, Java and JavaScript are completely different languages. The
original plan was for JavaScript to be a simpler language for
controlling more complex Java applets, but that never really panned
out.

 Don't go telling people you're programming in Java. Java
people love to act all superior and condescending when JavaScript
programmers make this mistake. If you're not sure, ask a question on
my web page. I can help you with either language.

It's a scripting language. As programming languages go, JavaScript's
pretty friendly. It's not quite as strict or wordy as some other languages.
It also doesn't require any special steps (such as compilation), so it's
pretty easy to use. These things make JavaScript a great first language.

Choosing a JavaScript editor
Even though JavaScript is a programming language, it is still basically text.
Because it's normally embedded in a web page, you can work in the same
text editor you're using for HTML and CSS. I'm a big fan of Komodo
because the same general features you've been enjoying in HTML and CSS
are even more important when you're writing code in a more formal
programming language:

Syntax highlighting: Like it does with HTML and CSS, Komodo
******ebook converter DEMO Watermarks*******

Owner
Highlight

automatically adjusts code colors to help you see what's going on in
your program. As you see in the later sidebar “Concatenation and your
editor,” this adjustment can be a big benefit when things get
complicated.
Code completion: When you type the name of an object, Komodo
provides you with a list of possible completions. This shortcut can be
really helpful because you don't have to memorize all the details of the
various functions and commands.
Pop-up help: As you enter a function that Komodo recognizes, it
automatically pops up a help menu explaining what the function does
and what parameters could be placed there.

Picking your test browser
In addition to your editor, you should think again about your browser when
you're testing JavaScript code. All the major browsers support JavaScript,
and the support for JavaScript is relatively similar across the browsers (at
least for the stuff in this chapter). However, browsers aren't equal when it
comes to testing your code.
Things will go wrong when you write JavaScript code, and the browser is
responsible for telling you what went wrong. Chrome is by far the favorite
browser for JavaScript programmers today because it has extremely
powerful editing tools. The Firebug plug-in adds many of the same features
to other browsers, but it's probably best to start with Chrome because
everything you need is already built-in. See Chapter 3 of this mini-book for
much more on debugging JavaScript code.

Writing Your First JavaScript
Program

The foundation of any JavaScript program is a standard web page like the
ones featured in the first three minibooks.
To create your first JavaScript program, you need to add JavaScript code to
your pages. Figure 1-1 shows the classic first program in any language.

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text

Owner
Typewritten Text
I installed Komodo Edit on Thu 12/06/18 23:11 MST

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text

Owner
Typewritten Text
I installed Komodo Edit on Thu 12/06/18 23:12 MST. The cost of the IDE version is $147 for freelancers. My first impression of Komodo is not very good.

Figure 1-1: A JavaScript program caused this little dialog box to pop up!

This page has a very simple JavaScript program in it that pops up the
phrase “Hello, World!” in a special element called a dialog box. It's pretty
cool.

Hello World?
There's a long tradition in programming languages that your first program in any language
should simply say, “Hello, World!” and do nothing else. There's actually a very good
practical reason for this habit. Hello World is the simplest possible program you can write
that you can prove works. Hello World programs are used to help you figure out the
mechanics of the programming environment — how the program is written, what special
steps you have to do to make the code run, and how it works. There's no point in making a
more complicated program until you know you can get code to pop up and say hi.

Here's an overview of the code:
<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>HelloWorld.html</title>
 <script type = "text/javascript">
 // Hello, world!
 alert("Hello, World!");
 </script>
 </head>
 <body>
 </body>
</html>

As you can see, this page contains nothing in the HTML body. You can
incorporate JavaScript with HTML content. For now, though, you can
simply place JavaScript code in the head area in a special tag and make it

******ebook converter DEMO Watermarks*******

work.

Embedding your JavaScript code
JavaScript code is placed in your web page via the <script> tag.
JavaScript code is placed inside the <script></script> pair. The
<script> tag has one required attribute, type, which will usually be
text/javascript. (Other types are possible, but they're rarely used.)

Creating comments
Just like HTML and CSS, comments are important. Because programming
code can be more difficult to decipher than HTML or CSS, it's even more
important to comment your code in JavaScript than it is in these
environments. The comment character in JavaScript is two slashes
(//).The browser ignores everything from the two slashes to the end of the
line. You can also use a multi-line comment (/* */) just like the one in
CSS.

Using the alert() method for output
You can output data in JavaScript in a number of ways. In this chapter, I
focus on the simplest to implement and understand — the alert().
This technique pops up a small dialog box containing text for the user to
read. The alert box is an example of a modal dialog. Modal dialogs
interrupt the flow of the program until the user pays attention to them.
Nothing else will happen in the program until the user acknowledges the
dialog by clicking the OK button. The user can't interact with the page until
he clicks the button.

 Modal dialogs may seem a bit rude. In fact, you probably won't
use them much after you discover other input and output techniques.
The fact that the dialog box demands attention makes it a very easy tool
to use when you start programming. I use it (and one of its cousins)
throughout this chapter because it's easy to understand and use. Also,
note that the dialog will be slightly different from browser to browser
and between operating systems. There isn't really a way to control more

******ebook converter DEMO Watermarks*******

precisely how dialogs work, but they're easy. You'll learn much more
sophisticated means of interacting with the user in the next few
chapters.

Adding the semicolon
Each command in JavaScript ends with a semicolon (;) character. The
semicolon in most computer languages acts like the period in English. It
indicates the end of a logical thought. Usually, each line of code is also one
line in the editor.

 To tell the truth, JavaScript will usually work fine if you leave
out the semicolons. However, you should add them anyway because
they help clarify your meaning. Besides, many other languages,
including PHP (see Book V), require semicolons. You may as well start
a good habit now.

Introducing Variables
Computer programs get their power by working with information.
Figure 1-2 shows a program that gets user data from the user to include in a
customized greeting.

Figure 1-2: First, the program asks the user for a name.

This program introduces a new kind of dialog that allows the user to enter
some data. The information is stored in the program for later use. After the
user enters her name, she gets a greeting, as shown in Figure 1-3.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Figure 1-3: The beginning of the greeting. Press the button for the rest.

The rest of the greeting happens in a second dialog box, shown in Figure 1-
4. It incorporates the username supplied in the first dialog box.

 Your browser might or might not have the ‘prevent this page
from creating additional dialogs’ checkbox. This is actually a nice
debugging feature in Chrome. It will be possible to create programs that
get out of control. Chrome noticed two dialogs popping up in a row and
thinks we might be in one of those dangerous situations, called an
endless loop. (More on loops, endless and otherwise, in Chapter 3 of
this mini-book.) For now, just press the OK button because this
program is acting as intended. Soon enough, we'll stop using dialogs
because they're just too annoying.

Figure 1-4: Now the greeting is complete.

The output may not seem that incredible, but take a look at the source code
to see what's happening:

<!DOCTYPE html>
<html lang = "en-US">

******ebook converter DEMO Watermarks*******

 <head>
 <meta charset = "UTF-8">
 <title>prompt.html</title>
 <script type = "text/javascript">
 // from prompt.html
 var person = "";
 person = prompt("What is your name?");
 alert("Hi");
 alert(person);
 </script>
 </head>
 <body>
 </body>
</html>

Creating a variable for data storage
This program is interesting because it allows user interaction. The user can
enter a name, which is stored in the computer and then returned in a
greeting. The key to this program is a special element called a variable.
Variables are simply places in memory for holding data. Any time you
want a computer program to “remember” something, you can create a
variable and store your information in it.
Variables typically have the following characteristics:

The var statement: You can indicate that you're creating a variable
with the var command.
A name: When you create a variable, you're required to give it a name.
An initial value: It's useful to give each variable a value immediately.
A data type: JavaScript automatically determines the type of data in a
variable (more on this in the upcoming “Understanding Variable
Types” section), but you should still be clear in your mind what type of
data you expect a variable to contain.

Asking the user for information
The prompt statement does several interesting things:

Pops up a dialog box. This modal dialog box is much like the one the
alert() method creates.

******ebook converter DEMO Watermarks*******

Owner
Typewritten Text
This script does not display both alerts at the same time. One has to click on OK again.

Asks a question. The prompt() command expects you to ask the
user a question.
Provides space for a response. The dialog box contains a space for
the user to type a response and buttons for the user to click when he's
finished or wants to cancel the operation.
Passes the information to a variable. The purpose of a prompt()
command is to get data from the user, so prompts are nearly always
connected to a variable. When the code is finished, the variable
contains the indicated value.

Responding to the user
This program uses the alert() statement to begin a greeting to the user.
The first alert works just like the one from the helloWorld program,
described earlier in this chapter in the “Writing Your First JavaScript
Program” section:

alert("Hi");

The content of the parentheses is the text you want the user to see. In this
case, you want the user to see the literal value “Hi”.
The second alert() statement is a little bit different:

alert(person);

This alert() statement has a parameter with no quotes. Because the
parameter has no quotes, JavaScript understands that you don't really want
to say the text person. Instead, it looks for a variable named person and
returns the value of that variable.
The variable can take any name, store it, and return a customized greeting.

Using Concatenation to Build Better
Greetings

To have a greeting and a person's name on two different dialogs seems a
little awkward. Figure 1-5 shows a better solution.

******ebook converter DEMO Watermarks*******

Figure 1-5: Once again, I ask the user for a name.

The program asks for a name again and stores it in a variable. This time,
the greeting is combined into one alert (see Figure 1-6), which looks a lot
better.

Figure 1-6: Now the user's name is integrated into the greeting.

The secret to Figure 1-6 is one of those wonderful gems of the computing
world: a really simple idea with a really complicated name. The term
concatenation is a delightfully complicated word for a basic process. Look
at the following code, and you see that combining variables with text is not
all that complicated:

<script type = "text/javascript">
 //from concat.html
 var person = "";
 person = prompt("What is your name?");
 alert("Hi there, " + person + "!");
 </script>

 For the sake of brevity, I include only the script tag and its
contents throughout this chapter. The rest of this page is a standard

******ebook converter DEMO Watermarks*******

blank HTML page. You can see the complete document on the website.
I do include a comment in each JavaScript snippet that indicates where
you can get the entire file on the companion website.

Comparing literals and variables
The program concat.html contains two kinds of text. "Hi there, " is a
literal text value. That is, you really mean to say “Hi there, " (including the
comma and the space). person is a variable. (For more on variables, see
the section “Introducing Variables,” earlier in this chapter.)
You can combine literal values and variables in one phrase if you want:

alert("Hi there, " + person + "!");

The secret to this code is to follow the quotes. "Hi there, " is a literal
value because it is in quotes. On the other hand, person is a variable
name because it is not in quotes; "!" is a literal value. You can combine
any number of text snippets together with the plus sign.
Using the plus sign to combine text is called concatenation. (I told you it
was a complicated word for a simple idea.)

Concatenation and your editor
The hard part about concatenation is figuring out which part of your text is a literal value
and which part is a string. It won't take long before you go cross-eyed trying to understand
where the quotes go.

Modern text editors (like Komodo) have a wonderful feature that can help you here. They
color different kinds of text. By default, Komodo makes JavaScript keywords purple, text
blue, and variables black. This can be really helpful, especially when you do something
goofy like forget to close a quote.

If these color differences are too subtle for you, most editors that have syntax highlighting
allow you to change settings to fit your needs. Don't be afraid to use these tools to help you
program better.

Including spaces in your concatenated
phrases
You may be curious about the extra space between the comma and the

******ebook converter DEMO Watermarks*******

Owner
Highlight

quote in the output line:
alert("Hi there, " + person + "!");

This extra space is important because you want the output to look like a
normal sentence. If you don't have the space, the computer doesn't add one,
and the output looks like this:
Hi there,Rachael!

 You need to construct the output as it should look, including
spaces and punctuation.

Understanding the String Object
The person variable used in the previous program is designed to hold
text. Programmers (being programmers) devised their own mysterious term
to refer to text. In programming, text is referred to as string data.

 The term string comes from the way text is stored in computer
memory. Each character is stored in its own cell in memory, and all the
characters in a word or phrase reminded the early programmers of
beads on a string. Surprisingly poetic for a bunch of geeks, huh?

Introducing object-based programming
(and cows)
JavaScript (and many other modern programming languages) uses a
powerful model called object-oriented programming (OOP). This style of
programming has a number of advantages. Most important for beginners, it
allows you access to some very powerful objects that do interesting things
out of the box.
Objects are used to describe complicated things that can have a lot of
characteristics — like a cow. You can't really put an adequate description
of a cow in an integer variable.

******ebook converter DEMO Watermarks*******

In many object-oriented environments, objects can have the following
characteristics. (Imagine a cow object for the examples.)

Properties: Characteristics about the object, such as breed and age
Methods: Things the objects can do, such as moo() and
giveMilk()

Events: Stimuli the object responds to, such as onTip

I describe each of these ideas throughout this minibook because not all
objects support all these characteristics.
If you have a variable of type cow, it describes a pretty complicated thing.
This thing might have properties, methods, and events, all of which can be
used together to build a good representation of a cow. (Believe it or not,
I've built cow programming constructs more than once in my life — and
you thought programming was dull!)
Most variable types in Java are actually objects, and most JavaScript
objects have a full complement of properties and methods; many even have
event handlers. Master how these things work and you've got a powerful
and compelling programming environment.

 Okay, before you send me any angry e-mails, I know debate
abounds about whether JavaScript is a truly object-oriented language.
I'm not going to get into the (frankly boring and not terribly important)
details in this beginner book. We're going to call JavaScript object-
oriented for now because it's close enough for beginners. If that bothers
you, you can refer to JavaScript as an object-based language. Nearly
everyone agrees with that. You can find out more information on this
topic throughout this minibook while you discover how to make your
own objects in Chapter 4 and use HTML elements as objects in Chapter
2.

Investigating the length of a string
When you assign text to a variable, JavaScript automatically treats the
variable as a string object. The object instantly takes on the characteristics

******ebook converter DEMO Watermarks*******

Owner
Highlight

of a string object. Strings have a couple of properties and a bunch of
methods. The one interesting property (at least for beginners) is length.
Look at the example in Figure 1-7 to see the length property in action.

Figure 1-7: This program reports the length of any text.

That's kind of cool how the program can figure out the length of a phrase.
The cooler part is the way it works. As soon as you assign a text value to a
variable, JavaScript treats that variable as a string, and because it's a string,
it now has a length property. This property returns the length of the
string in characters. Here's how it's done in the code.

<script type = "text/javascript">
 //from nameLength.html

 var person = prompt("Please enter your name.");
 var length = person.length;

 alert("Hi, " + person + "!");
 alert("The name " + person + " is " + length + "
characters long.");
 </script>

A property is used like a special subvariable. For example, person is a
variable in the previous example. person.length is the length
property of the person variable. In JavaScript, an object and a variable
are connected by a period (with no spaces).

 The string object in JavaScript has only two other properties
(constructor and prototype). Both of these properties are
needed only for advanced programming, so I skip them for now.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Using string methods to manipulate text
The length property is kind of cool, but the string object has a lot more
up its sleeve. Objects also have methods (things the object can do). Strings
in JavaScript have all kinds of methods. Here are a few of my favorites:

toUpperCase() makes an entirely uppercase copy of the string.
toLowerCase() makes an entirely lowercase copy of the string.
substring() returns a specific part of the string.
indexOf() determines whether one string occurs within another.

 The string object has many other methods, but I'm highlighting
the preceding because they're useful for beginners. Many string
methods, such as big() and fontColor(), simply add HTML code
to text. They aren't used very often because they produce HTML code
that won't validate, and they don't really save a lot of effort anyway.
Some other methods, such as search(), replace(), and
slice(), use advanced constructs like arrays and regular expressions
that aren't necessary for beginners. (To find out more about working
with arrays, see Chapter 4 of this minibook. You can find out more
about regular expressions in Chapter 5.)

 Don't take my word for it. Look up the JavaScript string object
(in one of the many online JavaScript references) and see what
properties and methods it has.

Like properties, methods are attached to an object by the period. Methods
are distinguished by a pair of parentheses, which sometimes contain special
information called parameters.
The best way to see how methods work is to look at some in action. Look
at the code for stringMethods.html:

<script type = "text/javascript">

******ebook converter DEMO Watermarks*******

 //from stringMethods.html

var text = new String;
 text = prompt("Please enter some text.");

alert("I'll shout it out:");
 alert(text.toUpperCase());

alert("Now in lowercase...");
 alert(text.toLowerCase());

alert("The first 'a' is at letter...");
 alert(text.indexOf("a"));

alert("The first three letters are ...");
 alert(text.substring(0, 3));

</script>

Figure 1-8 displays the output produced by this program.

******ebook converter DEMO Watermarks*******

Figure 1-8: String methods can be fun.

In this example, I explicitly defined text as a string variable by saying
var text = new String;

JavaScript does not require you to explicitly determine the type of a
variable, but you can do so, and this is sometimes helpful.

 Here's another cool thing about Komodo Edit. When you type
text, Komodo understands that you're talking about a string variable
and automatically pops up a list of all the possible properties and
methods of the string object. I wish I had that when I started doing this
stuff!

You can see from the preceding code that methods are pretty easy to use.
When you have a string variable, you can invoke the variable name
followed by a period and the method name. Some methods require more
information to do their job. Here are the specifics:

toUpperCase() and toLowerCase() take the value of the
variable and convert it entirely to the given case. This method is often
used when you aren't concerned about the capitalization of a variable.
indexOf(substring) returns the character position of the
substring within the variable. If the variable doesn't contain the
substring, it returns the value –1.
substring(begin, end) returns the substring of the variable
from the beginning character value to the end.

Why are the first three characters (0, 3)?
The character locations for JavaScript (and most programming languages) will seem
somewhat strange to you until you know the secret. You may expect
text.substring(1,3) to return the first three characters of the variable text, yet I
used text.substring(0,3). Here's why: The indices don't refer to the character
numbers but can be thought of as the indices between characters.

 |a|b|c|d|

******ebook converter DEMO Watermarks*******

0 1 2 3 4

So, if I want the first three characters of the string abcd, I use substring(0,3). If I want
the cd part, it's substring(2,4).

Understanding Variable Types
JavaScript isn't too fussy about whether a variable contains text or a
number, but the distinction is still important because it can cause some
surprising problems. To illustrate, take a look at a program that adds two
numbers together, and then see what happens when you try to get numbers
from the user to add.

Adding numbers
First, take a look at the following program:

<script type = "text/javascript">
 //from addNumbers.html

var x = 5;
 var y = 3;
 var sum = x + y;

alert(x + " plus " + y + " equals " + sum);
 </script>

(As usual for this chapter, I'm only showing the script part because the rest
of the page is blank.)
This program features three variables. I've assigned the value 5 to x and 3
to y. I then add x + y and assign the result to a third variable, sum. The last
line prints the results, which are also shown in Figure 1-9.

Figure 1-9: This program (correctly) adds two numbers together.

******ebook converter DEMO Watermarks*******

Note a few important things from this example:

You can assign values to variables. It's best to read the equal sign as
“gets” so that the first assignment is read as “variable x gets the value
5.”

var x = 5;

Numeric values aren't enclosed in quotes. When you refer to a text
literal value, it's always enclosed in quotes. Numeric data, such as the
value 5, isn't placed in quotes.
You can add numeric values. Because x and y both contain numeric
values, you can add them together.
You can replace the results of an operation in a variable. The result
of the calculation x + y is placed in a variable called sum.
Everything works as expected. The behavior of this program works
as expected. That's important because it's not always true. (You can see
an example of this behavior in the next section — I love writing code
that blows up on purpose!)

Adding the user's numbers
The natural extension of the addNumbers.html program is a feature that
allows the user to input two values and then returns the sum. This program
can be the basis for a simple adding machine. Here's the JavaScript code:

<script type = "text/javascript">
 //from addInputWrong.html

var x = prompt("first number:");
 var y = prompt("second number:");
 var sum = x + y;

alert(x + " plus " + y + " equals " + sum);
 </script>

This code seems reasonable enough. It asks for each value and stores them
in variables. It then adds the variables and returns the results, right? Well,
look at Figure 1-10 to see a surprise.

******ebook converter DEMO Watermarks*******

Figure 1-10: Wait a minute… 3 + 5 = 35?

Something's obviously not right here. To understand the problem, you need
to see how JavaScript makes guesses about data types (see the next
section).

The trouble with dynamic data
Ultimately, all the information stored in a computer, from music videos to
e-mails, is stored as a bunch of ones and zeroes. The same value 01000001
can mean all kinds of things: It may mean the number 65 or the character
A. (In fact, it does mean both those things in the right context.) The same
binary value may mean something entirely different if it's interpreted as a
real number, a color, or a part of a sound file.
The theory isn't critical here, but one point is really important: Somehow
the computer has to know what kind of data is stored in a specific variable.
Many languages, such as C and Java, have all kinds of rules about defining
data. If you create a variable in one of these languages, you have to define
exactly what kind of data will go in the variable, and you can't change it.
JavaScript is much more easygoing about variable types. When you make a
variable, you can put any kind of data in it that you want. In fact, the data
type can change. A variable can contain an integer at one point, and the
same variable may contain text in another part of the program.
JavaScript uses the context to determine how to interpret the data in a
particular variable. When you assign a value to a variable, JavaScript puts
the data in one of the following categories:

Integers are whole numbers (no decimal part). They can be positive or
negative values.

******ebook converter DEMO Watermarks*******

A floating point number has a decimal point — for example, 3.14. You
can also express floating point values in scientific notation, such as
6.02e23 (Avogadro's number –6.02 times 10 to the 23rd). Floating
point numbers can also be negative.
A Boolean value can only be true or false.
Text is usually referred to as string data in programming languages.
String values are usually enclosed in quotes.
Arrays and objects are more complex data types that you can ignore for
now.

Most of the time, when you make a variable, JavaScript guesses right, and
you have no problems. But sometimes, JavaScript makes some faulty
assumptions, and things go wrong.

The pesky plus sign
I use the plus sign in two ways throughout this chapter. The following code
uses the plus sign in one way (concatenating two string values):

var x = "Hi, ";
var y = "there!";

result = x + y;
alert(result);

In this code, x and y are text variables. The result = x + y line is
interpreted as “concatenate x and y,” and the result is "Hi, there!"

Here's the strange thing: The following code is almost identical.
var x = 3;
var y = 5;

result = x + y;
alert(result);

Strangely, the behavior of the plus sign is different here, even though the
statement result = x + y is identical in the two code snippets.

In this second case, x and y are numbers. The plus operator has two
entirely different jobs. If it's surrounded by numbers, it adds. If it's
surrounded by text, it concatenates.

******ebook converter DEMO Watermarks*******

That's what happened to the first adding machine program. When the user
enters data in prompt dialogs, JavaScript assumes that the data is text.
When I try to add x and y, it “helpfully” concatenates instead.

 There's a fancy computer science word for this phenomenon (an
operator doing different things in different circumstances). Those Who
Care about Such Things call this mechanism an overloaded operator.
Smart people sometimes have bitter arguments about whether
overloaded operators are a good idea because they can cause problems
like this one, but they can also make things easier in other contexts. I'm
not going to enter into that debate here. It's not really a big deal, as long
as you can see the problem and fix it.

Changing Variables to the Desired
Type

If JavaScript is having a hard time figuring out what type of data is in a
variable, you can give it a friendly push in the right direction with some
handy conversion functions, as shown in Table 1-1.

******ebook converter DEMO Watermarks*******

Using variable conversion tools
The conversion functions are incredibly powerful, but you only need them
if the automatic conversion causes you problems. Here's how they work:

parseInt() is used to convert text to an integer. If you put a text
value inside the parentheses, the function returns an integer value. If
the string has a floating-point representation (“4.3” for example), an
integer value (4) is returned.
parseFloat() converts text to a floating-point value.
toString() takes any variable type and creates a string
representation. Usually, using this function isn't necessary to use
because it's invoked automatically when needed.
eval() is a special method that accepts a string as input. It then
attempts to evaluate the string as JavaScript code and return the output.
You can use this method for variable conversion or as a simple
calculator — eval(“5 + 3”) returns the integer 8.
Math.ceil() is one of several methods of converting a floating-
point number to an integer. This technique always rounds upward, so
Math.ceil(1.2) is 2, and Math.ceil(1.8) is also 2.
Math.floor() is similar to Math.ceil(), except it always
rounds downward, so Math.floor(1.2) and
Math.floor(1.8) will both evaluate to 1.
Math.round() works like the standard rounding technique used in
grade school. Any fractional value less than .5 rounds down, and
greater than or equal to .5 rounds up, so Math.round(1.2) is 1,
and Math.round(1.8) is 2.

Fixing the addInput code
With all this conversion knowledge in place, it's pretty easy to fix up the
addInput program so that it works correctly. Just use parseFloat()
to force both inputs into floating-point values before adding them. You
don't have to explicitly convert the result to a string. That's automatically
done when you invoke the alert() method.

******ebook converter DEMO Watermarks*******

// from addInput.html

 var x = prompt("first number:");
 var y = prompt("second number:");
 var sum = parseFloat(x) + parseFloat(y);

alert(x + " plus " + y + " equals " + sum);

You can see the program works correctly in Figure 1-11.

Figure 1-11: Now the program asks for input and correctly returns the sum.

Conversion methods allow you to ensure that the data is in exactly the
format you want.

******ebook converter DEMO Watermarks*******

Chapter 2
Talking to the Page

In This Chapter
 Introducing the Document Object Model
 Responding to form events
 Connecting a button to a function
 Retrieving data from text fields
 Changing text in text fields
 Sending data to the page
 Working with other text-related form elements

JavaScript is fun and all, but it lives in web browsers for a reason: to let
you change web pages. The best thing about JavaScript is how it
helps you control the page. You can use JavaScript to read useful
information from the user and to change the page on the fly.

Understanding the Document Object
Model

JavaScript programs usually live in the context of a web page. The contents
of the page are available to the JavaScript programs through a mechanism
called the Document Object Model (DOM).
The DOM is a special set of complex variables that encapsulates the entire
contents of the web page. You can use JavaScript to read from the DOM
and determine the status of an element. You can also modify a DOM
variable and change the page from within JavaScript code.

Previewing the DOM
The easiest way to get a feel for the DOM is to load a page in Chrome and
play around in the console. Follow these steps to get a feel for the DOM:

******ebook converter DEMO Watermarks*******

1. Use the Chrome browser.

Most browsers have something like the web developer console used in
this example, but Chrome's is very easy to use and comes built-in, so
you should begin with that one.

2. Load any page you want.

It's probably easiest to start with a page that's relatively simple, so you
can get a sense of what's happening.

3. Turn on the web developer toolbar.

Use the F12 key, View ⇒ Developer ⇒ Developer Tools or Tools ⇒
Developer Tools from the menu. (It may vary based on your version of
Chrome or your operating system.)

4. Go to the Console tab.

The Developer Tools window has many tabs, but the console tab is the
one we need for now (and it will continue to be useful as you get more
advanced).

5. Type document.

Don't forget the period at the end. When you type a period, Chrome's
auto-complete describes all the various elements related to the
document. document is a very fancy variable (called an object) that
contains a ton of sub-variables. You can scroll through this list to see
all the things related to document.

6. Change the page's background color.

Try typing this in the console:

document.body.style.backgroundColor = “green”

You can use this trick to (temporarily) change all kinds of features.

******ebook converter DEMO Watermarks*******

7. Play around with the document tree a bit more.

It's fine if you don't know exactly what's going on yet, but use this
technique to get a general feel for the complexity of the page and all
the interesting things you can do with it.

Figure 2-1 illustrates a simple web page being dynamically modified
through the console tab.

Figure 2-1: Even a very simple page has a complex DOM.

 The Console tab is far more involved and powerful than I'm
letting on here. Chapter 3 of this mini-book goes into all kinds of
details about how to use this powerful tool to figure out what's going on
in your page.

When you look over the DOM of a simple page, you can easily get
overwhelmed. You'll see a lot of variables listed. Technically, these
variables are all elements of a special object called window. The window
object has a huge number of subobjects, all listed in the DOM view.
Table 1 describes a few important window variables.

Table 2-1 Primary DOM Objects
******ebook converter DEMO Watermarks*******

Variable Description Notes

document Represents HTML page Most commonly scripted element

location Describes current URL Change location.href to move to a new page

history A list of recently visited pages Access this to view previous pages

status The browser status bar Change this to set a message in the status bar

Getting the blues, JavaScript-style
It all gets fun when you start to write JavaScript code to access the DOM.
Take a look at blue.html in Figure 2-2.

Figure 2-2: This page is blue. But where's the CSS?

The page has white text on a blue background, but there's no CSS! Instead,
it has a small script that changes the DOM directly, controlling the page
colors through code.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>blue.html</title>
 </head>
 <body>
 <h1>I've got the JavaScript Blues</h1>
 <script type = "text/javascript">
 // use javascript to set the colors

******ebook converter DEMO Watermarks*******

 document.body.style.color = "white";
 document.body.style.backgroundColor = "blue";
 </script>
 </body>
</html>

Writing JavaScript code to change colors
The page shown in Figure 2-3 is pretty simple, but it has a few unique
features.

Figure 2-3: The page is white. It has two buttons on it. I've gotta click Blue.

It has no CSS. A form of CSS is dynamically created through the
code.
The script is in the body. I can't place this particular script in the
header because it refers to the body.

 When the browser first sees the script, there must be a body
for the text to change. If I put the script in the head, no body exists
when the browser reads the code, so it gets confused. If I place the
script in the body, there is a body, so the script can change it. (It's
really okay if you don't get this discussion. This example is probably

******ebook converter DEMO Watermarks*******

the only time you'll see this trick because I show a better way in the
next example.)

Use a DOM reference to change the style colors. That long “trail of
breadcrumbs” syntax (document.body.style.color) takes you
all the way from the document through the body to the style and finally
the color. It's tedious but thorough.
Set the foreground color to white. You can change the color property
to any valid CSS color value (a color name or a hex value). It's just like
CSS because you are affecting the CSS.
Set the background color to blue. Again, this adjustment is just like
setting CSS.

Shouldn't it be background-color?
If you've dug through the DOM style elements, you'll notice some interesting things. Many
of the element names are familiar but not quite identical. background-color becomes
backgroundColor and font-weight becomes fontWeight. CSS uses dashes to
indicate word breaks, and the DOM combines words and uses capitalization for clarity.
You'll find all your old favorite CSS elements, but the names change according to this very
predictable formula. Still, if you're ever confused, just use the console to look over various
style elements.

Managing Button Events
Of course, there's no good reason to write code like blue.html. You will
find that it's just as easy to build CSS as it is to write JavaScript. The
advantage comes when you use the DOM dynamically to change the page's
behavior after it has finished loading.
Figure 2-3 shows a page called backgroundColors.html.
The page is set up with the default white background color. It has two
buttons on it, which should change the body's background color. Click the
Blue button, and you see that it works, as verified in Figure 2-4.

******ebook converter DEMO Watermarks*******

Figure 2-4: It turned blue! Joy!

Some really exciting things just happened.

The page has a form. For more information on form elements, refer to
Book I, Chapter 7.
The buttons do something. Plain-old HTML forms don't really do
anything. You've got to write some kind of programming code to
accomplish a task. This program does it. Twice. All for free.
Each button has a special attribute called onclick: The onclick
attribute is an event handler. This is special because it allows you to
apply some sort of action to the button press. The action (a single line
of JavaScript code) assigned to onclick will happen each time the
button is clicked.
Each button changes the background to a different color: The Blue
button makes the background blue and the White one — well, you get
it. I simply used the code from the console example to change the
background colors.
The code is integrated directly into the buttons: You can attach one
line of JavaScript code to a button's onclick event. I use that line to
change the background colors.

Here's the code:

******ebook converter DEMO Watermarks*******

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>backgroundColors</title>
 </head>
 <body>
 <h1>Click a button to change the color</h1>
 <form action = "">
 <fieldset>
 <input type = "button"
 value = "blue"
 onclick = "document.body.style.backgroundColor =
'blue'"/>
 <input type = "button"
 value = "white"
 onclick = "document.body.style.backgroundColor =
'white'" />
 </fieldset>
 </form>
 </body>
</html>

Adding a function for more … functionality
The buttons work, but the program seems quite inefficient. First, buttons
can only have one line of code attached to the onclick event handler.
Secondly, the code is almost exactly the same in both buttons. There must
be a more efficient way. Most of the time, JavaScript code is not done one
line at a time. Instead, it is packaged into a special element called a
function. Functions are simply a collection of code lines with a name.
Functions can also be sent an optional parameter, and they can return
output. You learn much more about functions in Chapter 4 of this
minibook, but look at this basic version for now.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>backgroundColors</title>
 <script type = "text/javascript">
 // from backgroundColors
 function makeBlue(){
 document.body.style.backgroundColor = "blue";
 } // end changeColor

******ebook converter DEMO Watermarks*******

function makeWhite(){
 document.body.style.backgroundColor = "white";
 }
 </script>
 </head>
 <body>
 <h1>Click a button to change the color</h1>
 <form action = "">
 <fieldset>
 <input type = "button"
 value = "blue"
 onclick = "makeBlue()"/>
 <input type = "button"
 value = "white"
 onclick = "makeWhite()" />
 </fieldset>
 </form>
 </body>
</html>

This program looks and acts exactly like the program in Figures 2-3 and 2-
4, so I don't provide a screenshot here. The important thing is how I've
improved the code underneath the visible part of the page.
Something interesting is happening here. Take a look at how this program
has changed from the first one.

1. There's a function called makeBlue()in the script area.

The function keyword allows you to collect one or more commands
and give them a name. In this case, I'm giving that nasty
document.body.style nonsense a much more sensible name —
makeBlue().

2. The parentheses are necessary.

Whenever you define a function, you have to include parentheses, but
sometimes (as in this simple example), they're empty. You see how to
add something to the parentheses in the next example.

3. One or more lines of code go inside the function.

******ebook converter DEMO Watermarks*******

Mark a function with squiggle braces ({}). This example has only one
line of code in the function, but you can have as many code lines as
you want.

4. The function name describes what the function does.

Functions are used to simplify code, so it's really important that a
function name describes what the function does.

5. Another function makes the background white.

One button makes the background blue, and the other makes it white,
so I'll make a function to go with each button.

6. Attach the functions to the buttons.

Now the buttons each call a function rather than doing the work
directly.

 You might wonder if all this business of making a function is
worth the effort — after all, these programs seem exactly the same —
but the new one is a bit more work. In this very simple example, the
functions are a little more work but clarify the code a smidge. As your
programs get more complex, there's no doubt that functions improve
things, especially as you learn more about how functions work.

Making a more flexible function
The version of the code that uses functions doesn't seem a lot easier than
adding the code directly, and it isn't. But functions are much more powerful
than simply renaming a line of code. If you think about the two functions
in that example, you quickly realize they're almost exactly the same. It
would be awesome if you could write one simple function and have it
change the background to any color you want. That's exactly what happens
in the next example (backgroundColorFunction.html). Here's the code:

<!DOCTYPE html>

******ebook converter DEMO Watermarks*******

<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>backgroundColors</title>
 <script type = "text/javascript">
 // from backgroundColors
 function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor
 </script>
 </head>
 <body>
 <h1>Click a button to change the color</h1>
 <form action = "">
 <fieldset>
 <input type = "button"
 value = "blue"
 onclick = "changeColor('blue')"/>
 <input type = "button"
 value = "white"
 onclick = "changeColor('white')" />
 </fieldset>
 </form>
 </body>
</html>

Once again, this program will seem to the casual user to be exactly like the
programs in Figures 2-3 and 2-4, so I'm not including a screen shot. This is
an important part of computer programming. Often the most important
changes are not visible to the user. If you've ever hired a programmer,
you're no doubt aware of this issue.

The page has a single changeColor()function. The page has only
one function called changeColor() defined in the header.
The changeColor()function includes a color parameter. This
time, there's a value inside the parentheses:

function changeColor(color){

The term color inside the parentheses is called a parameter. A
parameter is a value sent to a function. Inside the function, color is
available as a variable. When you call a function, you can send a value
to it, like this:

******ebook converter DEMO Watermarks*******

changeColor('white');

This sends the text value ‘white’ to the function, where it becomes
the value of the color variable.

 You'll sometimes see the terms argument and parameter used
interchangeably to reference the stuff passed to a function, but these
terms are not exactly the same. Technically, the parameter is the
variable name (color) and the argument is the value of that variable
(‘white’).

You can design a function with as many parameters as you wish, but
you need to name each one. After a function is designed with
parameters, you must supply an argument for each parameter when you
call the function.

Both buttons pass information to changeColor: Both of the
buttons call the changeColor() function, but they each pass a
different color value. This is one of the most useful characteristics of
functions. They allow you to repeat code that's similar but not
identical. That makes it possible to build very powerful functions that
can be reused easily.

Embedding quotes within quotes
Take a careful look at the onclick lines in the code in the preceding
section. You may not have noticed one important issue:
onclick is an HTML parameter, and its value must be encased in quotes.
The parameter happens to be a function call, which sends a string value.
String values must also be in quotes. This setup can become confusing if
you use double quotes everywhere because the browser has no way to
know the quotes are nested. Look at this incorrect line of code:

onclick = "changeColor("white")" />

HTML thinks the onclick parameter contains the value
******ebook converter DEMO Watermarks*******

"changeColor(" and it will have no idea what white")" is.

Fortunately, JavaScript has an easy fix for this problem. If you want to
embed a quote inside another quote, just switch to single quotes. The line is
written with the parameter inside single quotes:

onclick = "changeColor('white')" />

Writing the changeColor function
The changeColor() function is pretty easy to write.

<script type = "text/javascript">
 // from backgroundColors

function changeColor(color){
 document.body.style.backgroundColor = color;
 } // end changeColor
 //
</script>

It goes in the header area as normal. It's simply a function accepting one
parameter called color. The body's backgroundColor property is set
to color.

 I can write JavaScript in the header that refers to the body
because the header code is all in a function. The function is read before
the body is in place, but it isn't activated until the user clicks the button.
By the time the user activates the code by clicking on the button, there
is a body, and there's no problem.

Managing Text Input and Output
Perhaps the most intriguing application of the DOM is the ability to let the
user communicate with the program through the web page, without all
those annoying dialog boxes. Figure 2-5 shows a page with a web form
containing two textboxes and a button.

******ebook converter DEMO Watermarks*******

Figure 2-5: I've typed a name into the top textbox.

When you click the button, something exciting happens, demonstrated by
Figure 2-6.

Figure 2-6: I got a greeting! With no alert box!

Clearly, form-based input and output is preferable to the constant
interruption of dialog boxes.

Introducing event-driven programming
******ebook converter DEMO Watermarks*******

Graphic user interfaces usually use a technique called event-driven
programming. The idea is simple.

1. Create a user interface.

In web pages, the user interface is usually built of HTML and CSS.

2. Identify events the program should respond to.

If you have a button, users will click it. (If you want to guarantee they
click it, put the text “Launch the Missiles” on the button. I don't know
why, but it always works.) Buttons almost always have events. Some
other elements do, too.

3. Write a function to respond to each event.

For each event you want to test, write a function that does whatever
needs to happen.

4. Get information from form elements.

Now you're accessing the contents of form elements to get information
from the user. You need a mechanism for getting information from a
text field and other form elements.

5. Use form elements for output.

For this simple example, I also use form elements for output. The
output goes in a second textbox, even though I don't intend the user to
type any text there.

Creating the HTML form
The first step in building a program that can manage text input and output
is to create the HTML framework. Here's the HTML code:

<!DOCTYPE html>
<html lang = "en-US">

<head>

******ebook converter DEMO Watermarks*******

 <meta charset = "UTF-8">
 <title>textBoxes.html</title>
 <script type = "text/javascript">
 // from textBoxes.html
 function sayHi(){
 var txtName = document.getElementById("txtName");
 var txtOutput = document.getElementById("txtOutput");
 var name = txtName.value;
 txtOutput.value = "Hi there, " + name + "!"
 } // end sayHi
 </script>
 <link rel = "stylesheet"
 type = "text/css"
 href = "textBoxes.css" />
 </head>
 <body>
 <h1>Text Box Input and Output</h1>
 <form action = "">
 <fieldset>
 <label>Type your name: </label>
 <input type = "text"
 id = "txtName" />
 <input type = "button"
 value = "click me"
 onclick = "sayHi()"/>
 <input type = "text"
 id = "txtOutput" />
 </fieldset>
 </form>
 </body>
</html>

As you look over the code, note a few important ideas:

The page uses external CSS. The CSS style is nice, but it's not
important in the discussion here. It stays safely encapsulated in its own
file. Of course, you're welcome to look it over or change it.
Most of the page is a form. All form elements must be inside a form.
A fieldset is used to contain form elements. input elements
need to be inside some sort of block-level element, and a fieldset
is a natural choice.
There's a text field named txtName. This text field contains the
name. I begin with the phrase txt to remind myself that this field is a
textbox.

******ebook converter DEMO Watermarks*******

The second element is a button. You don't need to give the button an
ID (as it won't be referred to in code), but it does have an onclick()
event.
The button's onclick event refers to a (yet undefined) function.
In this example, it's named “sayHi()”.
A second textbox contains the greeting. This second textbox is called
txtOutput because it's the text field meant for output.

After you set up the HTML page, the function becomes pretty easy to write
because you've already identified all the major constructs. You know you
need a function called sayHi(), and this function reads text from the
txtName field and writes to the txtOutput field.

Using getElementById to get access to the
page
HTML is one thing, and JavaScript is another. You need some way to turn
an HTML form element into something JavaScript can read. The magical
getElementById() method does exactly that. First, look at the first
two lines of the sayHi() function (defined in the header as usual).

function sayHi(){
 var txtName = document.getElementById("txtName");
 var txtOutput = document.getElementById("txtOutput");

You can extract every element created in your web page by digging
through the DOM. In the old days, this approach is how we used to access
form elements. It was ugly and tedious. Modern browsers have the
wonderful getElementById() function instead. This beauty searches
through the DOM and returns a reference to an object with the requested
ID.
A reference is simply an indicator where the specified object is in memory.
You can store a reference in a variable. Manipulating this variable
manipulates the object it represents. If you want, you can think of it as
making the textbox into a variable.
Note that I call the variable txtName, just like the original textbox. This
variable refers to the text field from the form, not the value of that text

******ebook converter DEMO Watermarks*******

field. After I have a reference to the text field object, I can use its methods
and properties to extract data from it and send new values to it.

Manipulating the text fields
After you have access to the text fields, you can manipulate the values of
these fields with the value property:

var name = txtName.value;
 txtOutput.value = "Hi there, " + name + "!"

Text fields (and, in fact, all input fields) have a value property. You can
read this value as an ordinary string variable. You can also write to this
property, and the text field will be updated on the fly.
This code handles the data input and output:

1. Create a variable for the name.

This is an ordinary string variable.

2. Copy the value of the textbox into the variable.

Now that you have a variable representing the textbox, you can access
its value property to get the value typed in by the user.

3. Create a message for the user.

Use ordinary string concatenation.

4. Send the message to the output textbox.

You can also write text to the value property, which changes the
contents of the text field on the screen.

 Text fields always return string values (like prompts do). If you
want to pull a numeric value from a text field, you may have to convert
it with the parseInt() or parseFloat() functions.

******ebook converter DEMO Watermarks*******

Writing to the Document
Form elements are great for getting input from the user, but they're not
ideal for output. Placing the output in an editable field really doesn't make
much sense. Changing the web document is a much better approach.
The DOM supports exactly such a technique. Most HTML elements
feature an innerHTML property. This property describes the HTML code
inside the element. In most cases, it can be read from and written to.

 So what are the exceptions? Single-element tags (like and
<input>) don't contain any HTML, so obviously reading or changing
their inner HTML doesn't make sense. Table elements can often be read
from but not changed directly.

Figure 2-7 shows a program with a basic form.

Figure 2-7: Wait, there's no output text field!

This form doesn't have a form element for the output. Enter a name and
click the button, and you see the results in Figure 2-8.

******ebook converter DEMO Watermarks*******

Figure 2-8: The page has changed itself.

Amazingly enough, this page can make changes to itself dynamically. It
isn't simply changing the values of form fields, but changing the HTML.

Preparing the HTML framework
To see how the page changes itself dynamically, begin by looking at the
HTML body for innerHTML.html:

<body>
 <h1>Inner HTML Demo</h1>
 <form action = "">
 <fieldset>
 <label>Please type your name</label><p>
 <input type = "text"
 id = "txtName" />
 <button type = "button"
 onclick = "sayHi()">
 Click Me
 </button>
 </fieldset>
 </form>

<div id = "divOutput">
 Watch this space.
 </div>
 </body>

The code body has a couple of interesting features:

******ebook converter DEMO Watermarks*******

The program has a form. The form is pretty standard. It has a text
field for input and a button, but no output elements.
The button will call a sayHi()function. The page requires a
function with this name. Presumably, it says hi somehow.
There's a div for output. A div element in the main body is
designated for output.
The div has an ID. The id attribute is often used for CSS styling, but
the DOM can also use it. Any HTML elements that will be
dynamically scripted should have an id field.

Writing the JavaScript
The JavaScript code for modifying innerHTML isn't very hard:

<script type = "text/javascript">
 //from innerHTML.html

function sayHi(){
 txtName = document.getElementById("txtName");
 divOutput = document.getElementById("divOutput");

name = txtName.value;

 divOutput.innerHTML = "" + name + "";
 divOutput.innerHTML += " is a very nice name.";
 }
 </script>

The first step (as usual with web forms) is to extract data from the input
elements. Note that I can create a variable representation of any DOM
element, not just form elements. The divOutput variable is a JavaScript
representation of the DOM div.

Finding your innerHTML
Like form elements, divs have other interesting properties you can modify.
The innerHTML property allows you to change the HTML code
displayed by the div. You can put any valid HTML code you want inside
the innerHTML property, even HTML tags. Be sure that you still follow

******ebook converter DEMO Watermarks*******

the HTML rules so that your code will be valid.

Working with Other Text Elements
When you know how to work with text fields, you've mastered about half
of the form elements. Several other form elements work exactly like text
fields, including these:

Password fields obscure the user's input with asterisks, but preserve
the text.
Hidden fields allow you to store information in a page without
revealing it to the user. (They're used a little bit in client-side coding,
but almost never in JavaScript.)
Text areas are a special variation of textboxes designed to handle
multiple lines of input.

Figure 2-9 is a page with all these elements available on the same form.

Figure 2-9: Passwords, hidden fields, and text areas all look the same to JavaScript.

When the user clicks the button, the contents of all the fields (even the
password and hidden fields) appear on the bottom of the page, as shown in
Figure 2-10.

******ebook converter DEMO Watermarks*******

Figure 2-10: Now you can see what was in everything.

Building the form
Here's the HTML (otherText.html) that generates the form shown in
Figures 2-9 and 2-10:

<body>
 <h1>Text Input Devices</h1>
 <form action = "">
 <fieldset>
 <label>Normal Text field</label>
 <input type = "text"
 id = "txtNormal" />
 <label>Password field</label>
 <input type = "password"
 id = "pwd" />
 <label>Hidden</label>
 <input type = "hidden"
 id = "hidden"
 value = "I can't tell you" />
 <textarea id = "txtArea"
 rows = "10"
 cols = "40">
This is a big text area.
It can hold a lot of text.
 </textarea>
 <button type = "button"
 onclick = "processForm()">
 Click Me
 </button>

******ebook converter DEMO Watermarks*******

 </fieldset>
 </form>

<div id = "output">

</div>
 </body>

The code may be familiar to you if you read about form elements in Book
I, Chapter 7. A few things are worth noting for this example:

An ordinary text field appears, just for comparison purposes. It has
an id so that it can be identified in the JavaScript.
The next field is a password field. Passwords display asterisks, but
store the actual text that was entered. This password has an id of pwd.
The hidden field is a bit strange. You can use hidden fields to store
information on the page without displaying that information to the user.
Unlike the other kinds of text fields, the user can't modify a hidden
field. (She usually doesn't even know it's there.) This hidden field has
an id of secret and a value (“I can't tell you”).
The text area has a different format. The input elements are all
single-tag elements, but the textarea is designed to contain a large
amount of text, so it has beginning and end tags. The text area's id is
txtArea.
A button starts all the fun. As usual, most of the elements just sit
there gathering data, but the button has an onclick event associated
with it, which calls a function.
External CSS gussies it all up. The page has some minimal CSS to
clean it up. The CSS isn't central to this discussion, so I don't reproduce
it. Note that the page will potentially have a dl on it, so I have a CSS
style for it, even though it doesn't appear by default.

 The password and hidden fields seem secure, but they aren't.
Anybody who views the page source will be able to read the value of a

******ebook converter DEMO Watermarks*******

hidden field, and passwords transmit their information in the clear. You
really shouldn't be using web technology (especially this kind) to
transport nuclear launch codes or the secret to your special sauce.
(Hmmm, maybe the secret sauce recipe is the launch code — sounds
like a bad spy movie.)

 When I create a text field, I often suspend my rules on
indentation because the text field preserves everything inside it,
including any indentation.

Writing the function
After you build the form, all you need is a function. Here's the good news:
JavaScript treats all these elements in exactly the same way! The way you
handle a password, hidden field, or text area is identical to the technique
for a regular text field (described under “Managing Text Input and
Output,” earlier in this chapter). Here's the code:

// from otherText.html
 function processForm(){
 //grab input from form
 var txtNormal = document.getElementById("txtNormal");
 var pwd = document.getElementById("pwd");
 var hidden = document.getElementById("hidden");
 var txtArea = document.getElementById("txtArea");

var normal = txtNormal.value;
 var password = pwd.value;
 var secret = hidden.value;
 var bigText = txtArea.value;

//create output
 var result = ""
 result += "<dl> \n";
 result += " <dt>normal</dt> \n";
 result += " <dd>" + normal + "</dd> \n";
 result += " \n";
 result += " <dt>password</dt> \n";
 result += " <dd>" + password + "</dd> \n";
 result += " \n";
 result += " <dt>secret</dt> \n";
 result += " <dd>" + secret + "</dt> \n";

******ebook converter DEMO Watermarks*******

 result += " \n";
 result += " <dt>big text</dt> \n";
 result += " <dd>" + bigText + "</dt> \n";
 result += "</dl> \n";

var output = document.getElementById("output");
 output.innerHTML = result;

} // end function

The function is a bit longer than the others in this chapter, but it follows
exactly the same pattern: It extracts data from the fields, constructs a string
for output, and writes that output to the innerHTML attribute of a div in
the page.
The code has nothing new, but it still has a few features you should
consider:

Create a variable for each form element. Use the
document.getElementById mechanism.
Create a string variable containing the contents of each element.
Don't forget: The getElementById trick returns an object. You
need to extract the value property to see what's inside the object.
Make a big string variable to manage the output. When output gets
long and messy like this one, concatenate a big variable and then just
output it in one swoop.
HTML is your friend. This output is a bit complex, but innerHTML
is HTML, so you can use any HTML styles you want to format your
code. The return string is actually a complete definition list.
Whatever is inside the textbox is (in this case) reproduced as HTML
text, so if I want carriage returns or formatting, I have to add them with
code.
Newline characters (\n) clean up the output. If I were writing an
ordinary definition list in HTML, I'd put each line on a new line. I try
to make my programs write code just like I do, so I add newline
characters everywhere I'd add a carriage return if I were writing the
HTML by hand.

******ebook converter DEMO Watermarks*******

Understanding generated source
When you run the program in the preceding section, your JavaScript code
actually changes the page it lives on. The code that doesn't come from your
server (but is created by your program) is sometimes called generated
source. The generated code technique is powerful, but it can have a
significant problem. Try this experiment to see what I mean:

1. Reload the page.

You want to view it without the form contents showing so that you can
view the source. Everything will be as expected; the source code shows
exactly what you wrote.

2. Click the Click Me button.

Your function runs, and the page changes. You clearly added HTML to
the output div because you can see the output right on the screen.

3. View the source again.

You'll be amazed. The output div is empty, even though you can
clearly see that it has changed.

4. Check generated code.

Using the HTML validator extension or the W3 validator (described in
Book I, Chapter 2) doesn't check for errors in your generated code.
You have to check it yourself, but it's hard to see the code!

Figure 2-11 illustrates this problem.

******ebook converter DEMO Watermarks*******

Figure 2-11: The ordinary view source command isn't showing the contents of the div!

Here's what's going on: The view source command (on most browsers)
doesn't actually view the source of the page as it currently stands. It goes
back to the server and retrieves the page, but displays it as source rather
than rendered output. As a result, the view source command isn't
useful for telling you how the page has changed dynamically. Likewise, the
page validators check the page as it occurs on the server without taking into
account things that may have happened dynamically.
When you build regular web pages, this approach isn't a problem because
regular web pages don't change. Dynamically generated pages can change
on the fly, and the view source tool doesn't expect that. If you made a
mistake in the dynamically-generated HTML, you can't simply view the
source to see what you did wrong. Fortunately, Chrome gives you a pretty
easy solution.
The Chrome developer tools (available with the F12 or Cmd+shift+I on
Mac — have I mentioned how awesome this tool is?) can show you exactly
what the browser is currently displaying.
Here's how you can use it:

1. Run the page and put it through its paces.

Click the buttons and do what the page does to modify itself.

******ebook converter DEMO Watermarks*******

2. Inspect the page.

Right-click anywhere on the page and choose inspect element
from the popup menu. The developer tools will pop up and you'll be in
a special outline view.

3. Select the code to see the corresponding page element.

Select a piece of code in the elements view and the corresponding
part of the page is highlighted.

4. Select an element to see its code.

When you're in inspect mode, you can click on any visible element of
the page and the corresponding code will be highlighted.

5. The displayed code is what's currently being displayed.

Unlike the view source results, the element inspector shows what's
currently on the screen rather than what's on the server.

6. You can even change the content here.

You can double-click on content in the Elements tab and change it, and
the page changes alongside it. (Hmm … does this mean you could
change the headlines of an online newspaper and make it look totally
real? That seems mischievous. I hope nobody ever does that.) Don't
worry. None of the changes are permanent.

7. The “trail of breadcrumbs” shows where you are.

You can see exactly what tags are active by looking at the bottom of
the developer screen.

8. You can also see which CSS files are currently active.

As described in Book II, you can also modify the CSS on this screen to
see how the page will look if the CSS is changed. This is an ideal way
to experiment with the page.

******ebook converter DEMO Watermarks*******

These tools keep you sane when you're trying to figure out why your
generated code isn't acting right. (I wish I'd had them years ago….)
Figure 2-12 shows the Chrome developer tools with the dynamically
generated contents showing.

Figure 2-12: Chrome shows the current status of dynamically-modified pages

What if you're not in Chrome?
If you're using another browser, the Firebug extension does most of the
same things as the Chrome developer tools. Firebug performs best on
Firefox, but there is a light version which works on any browser.
If none of these tools is available, there's another cool trick you can do.
Type the following into the address bar:

javascript:alert(document.body.innerHTML)

This very sneaky trick uses JavaScript to generate the source code of the
page as it currently stands:

1. Begin with the javascript: identifier.

When you begin an address with javascript, the browser
immediately renders the rest of the address as a JavaScript instruction
rather than an address. Cool, huh? (Try javascript:

******ebook converter DEMO Watermarks*******

alert(2+5) to turn your browser into a calculator. Whoa.)

2. Use alert to produce quick output.

You want to look at the source of whatever page is currently loaded, so
use the alert mechanism to print the code in a pop-up and leave the
original page in place.

3. Print the current page's source code.

The document.body.innerHTML trick returns all the HTML code
inside the body tag. This doesn't show your header or doctype
information, but it does display the page as it currently sits in memory,
even if it has been changed dynamically through code. That's usually
enough to figure out what's going wrong in a pinch.

******ebook converter DEMO Watermarks*******

Chapter 3
Decisions and Debugging

In This Chapter
 Making decisions with conditions
 Working with nested if statements and switch
 Repeating with for loops
 Repeating with while loops
 Understanding the difference between bugs and crashes
 Using the debugger console
 Debugging your programs

Computer programs are complex. They involve information. Variables
(described in Chapter 1 of this mini-book) are the foundation of
information (although you'll learn about some more complex and
interesting data types in later chapters). The other key component of
programming is control — that is, managing the instructions needed to
solve interesting complex problems. In this chapter, you learn the key
control structures — if statements and looping structures. With increased
control comes increased opportunity for error, so you also learn how to
manage problems in your code.

Making Choices with if
Sometimes you'll need your code to make decisions. For example, if
somebody famous typed their name in your website, you might want to
create a custom greeting for them. (I know this is a goofy example, but stay
with me.) Take a look at the ifElse.html site in Figures 3-1 and 3-2.

******ebook converter DEMO Watermarks*******

Figure 3-1: Tim Berners-Lee gets a special greeting.

Figure 3-2: Apparently, this guy isn't famous enough.

This program (and the next few) uses a basic HTML set up to take
information from a text field, respond to a button click, and print output in
a designated area. Here's the HTML part of the code:

<body>
 <h1>If Demo</h1>

<form action = "">

******ebook converter DEMO Watermarks*******

 <fieldset>
 <label id = "lblOutput">Please enter your name</label>
 <input type = "text"
 id = "txtInput"
 value = "Tim Berners-Lee" />
 <button type = "button"
 onclick = "checkName()">
 click me
 </button>
 </fieldset>
 </form>
</body>
</html>

As you can see, the program looks at the input in the text box and changes
behavior based on the value of the text field. Here's the checkName()
function called in ifElse.html:

function checkName(){
 // from ifElse.html
 lblOutput = document.getElementById("lblOutput");
 txtInput = document.getElementById("txtInput");

userName = txtInput.value;
 if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML!";
 } else {
 lblOutput.innerHTML = "Do I know you?";
 } // end if
 } // end function

Changing the greeting with if
This code uses an important idea called a condition inside a construct
called an if statement. Here's how to do it:

1. Set up the web page as usual.

The HTML code has elements called lblOutput and txtInput. It
also has a button that calls checkName() when it is clicked.

2. Create variables for important page elements.

You're getting data from txtInput and changing the HTML code in
lblOutput, so create variables for these two elements.

******ebook converter DEMO Watermarks*******

3. Get userName from txtInput.

Use the txtInput.value trick to get the value of the input element
called txtInput and place it in the variable userName.

4. Set up a condition.

The key to this program is a special element called a condition — an
expression that can be evaluated as true or false. Conditions are often
(as in this case) comparisons. Note that the double equals sign (==) is
used to represent equality. In this example, I'm asking whether the
userName variable equals the value “Tim Berners-Lee”.

5. Place the condition in an if structure.

The if statement is one of a number of programming constructs which
use conditions. It contains the keyword if followed by a condition (in
parentheses). If the condition is true, all of the code in the following set
of braces is executed.

6. Write code to execute if the condition is true.

Create a set of squiggly braces after the condition. Any code inside
these braces will execute if the condition is true. Be sure to indent your
code, and use the right squiggle brace (}) to end the block of code. In
this example, I give a special greeting to Tim Berners-Lee (because he
is just that awesome).

7. Build an else clause.

You can build an if statement with a single code block, but often you
want the code to do something else if the condition was false. Use
the else construct to indicate you will have a second code block that
will execute only if the condition is false.

8. Write the code to happen when the condition is false.

The code block following the else clause will execute only if the
******ebook converter DEMO Watermarks*******

condition is false. In this particular example, I have a greeting for
everyone except Berners-Lee.

The different flavors of if
If statements are extremely powerful, and there are a number of variations.
You can actually have one, two, or any number of branches. You can write
code like this:

if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML"
} // end if

With this structure, the greeting will occur if userName is “Tim
Berners-Lee” and nothing will happen if the userName is anything
else. You can also use the if-else structure (this is the form used in the
actual code):

if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML!";
} else {
 lblOutput.innerHTML = "Do I know you?";
} // end if

One more alternative lets you compare as many results as you wish by
adding new conditions:

if (userName == "Tim Berners-Lee"){
 lblOutput.innerHTML = "Thanks for inventing HTML!";
} else if (userName == "Al Gore") {
 lblOutput.innerHTML = "Thanks for inventing the Internet";
} else if (userName == "Hakon Wium Lie") {
 lblOutput.innerHTML = "Thanks for inventing CSS";
} else {
 lblOutput.innerHTML = "Do I know you?";
} // end if

 I don't repeat all the HTML code for these examples to save
space. Please look on the book's website to see the appropriate HTML
code that uses these examples. (Find out how to access this book's
website in the Introduction.) You'll find if.html, ifElse.html, and
ifElseIf.html available on the site. Be sure to view the source to see

******ebook converter DEMO Watermarks*******

how the HTML and the JavaScript code interact. Also, review Chapter
2 of this mini-book if you want to remember how to have JavaScript
code interact directly with the web page.

Conditional operators
The == operator checks to see if two values are identical, but JavaScript
supports a number of other operators as well:
Operator Meaning

a == b a is equal to b

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

a != b a is not equal to b

 If you're coming from another programming language like Java,
C++, or PHP you might wonder how string comparisons work because
they require different operators in these languages. JavaScript uses
exactly the same comparison operators for types of data, so there's no
need to learn different operators. Yeah, JavaScript!

Nesting your if statements
There are a few other variations of the if structure you'll sometimes run
across. One variation is the nested if statement. This simply means you
can put if statements inside each other for more complex options. For
example, look at the following code:

function checkTemp(){
 //from nestedIf.html
 var temp = prompt("What temperature is it outside?");
 temp = parseInt(temp);

if (temp < 60){
 //less than 60
 if (temp < 32){

******ebook converter DEMO Watermarks*******

 //less than 32
 alert("It's freezing!");
 } else {
 //between 32 and 60
 alert("It's cold.");
 } // end 'freezing if'
 } else {
 //We're over 60
 if (temp < 75){
 //between 60 and 75
 alert("It's cool.");
 } else {
 //temp is higher than 75
 if (temp > 90){
 //over 90
 alert("It's really hot.");
 } else {
 //between 75 and 90
 alert("It's warm.");
 } // end 'over 90' if
 } // end 'over 75' if
 } // end 'over 60' if
 } // end function

This code looks complicated, but it really isn't. It simply takes in a
temperature and looks for a range of values. Here's what's happening:

1. Get a temperature value from the user.

Ask the user for a temperature. I'm using the simple prompt statement
here, but you could also grab the value from a form field. See Chapter
2 of this mini-book if you need help on that process.

2. Convert the temperature to a numeric type.

Recall that computers are fussy about data types, and sometimes you
need to nudge a variable to the right type. The parseInt() function
forces any value into an integer, which is perfect for our needs.

3. Use an if statement to chop the possibilities in half.

The outer (most encompassing) if statement separates all the cooler
temperatures from the warmer ones.

******ebook converter DEMO Watermarks*******

4. Use an inner if statement to clarify more if needed.

Within the cool (less than 60 degree) temperatures, you might want to
know if it's cold or below freezing, so place a second condition to
determine the temperatures.

5. The upper bound is determined by the outer if statement.

The first else clause in the code is triggered when the temperature is
between 32 and 60 degrees because it's inside two if statements: temp
< 60 is true, and temp < 32 is false, so the temperature is between
32 and 60 degrees.

6. Indentation and comments are not optional.

As the code becomes more complex, indentation and comment
characters become more critical. Make sure your indentation accurately
reflects the beginning and end of each if statement, and the code is
clearly commented so you know what will happen (or what you expect
will happen — the truth may be different).

7. You can nest as deeply as you wish.

As you can see in this structure, there are three different possibilities
for temperatures higher than 60 degrees. Simply add more if statements
to get the behavior you wish.

8. Test your code.

When you build this kind of structure, you need to run your program
several times to ensure it does what you expect.

Making decisions with switch
JavaScript, like a number of languages, supports another decision-making
structure called switch. This is a useful alternative when you have a
number of discrete values you want to compare against a single variable.
Take a look at this variation of the name program from earlier in this

******ebook converter DEMO Watermarks*******

chapter:
function checkName(){
 //from switch.html
 var name = prompt("What is your name?");

switch(name){
 case "Bill Gates":
 alert("Thanks for MS Bob!");
 break;
 case "Steve Jobs":
 alert("The Newton is awesome!");
 break;
 default:
 alert("do I know you?");
 } // end
} // end checkName

The switch code is similar to an if-elseif structure in its behavior,
but it uses a different syntax:

1. Indicate a variable in the switch statement.

In the switch statement's parentheses, place a variable or other
expression. The switch statement is followed by a code block
encased in squiggly braces ({}).

2. Use the case statement to indicate a case.

The case statement is followed by a potential value of the variable,
followed by a colon. It's up to the programmer to ensure the value type
matches the variable type.

3. End each case with the break statement.

End each case with the break statement. This indicates that you're
done thinking about cases, and it's time to pop out of this data
structure. If you don't explicitly include the break statement, you'll
get strange behavior (all the subsequent cases will evaluate true as
well).

4. Define a default case to catch other behavior.

******ebook converter DEMO Watermarks*******

Just like you normally add a default else to an if–elseif structure
to catch any unanticipated values, the default keyword traps for any
values of the variable that were not explicitly caught.

Useful as the switch structure seems to be, I'm personally not a big fan
of it, for the following reasons:

There are better options: The switch behavior can be built with the
if-else structure, and can often be improved by using arrays or
functions. (Arrays and functions are both described in chapter 4 of this
mini-book.)
Switches are not good with inequalities: The switch structure
works fine when there are discrete values to compare (like names) but
are much more awkward when you're comparing a range of values
(like temperatures).
The syntax is anachronistic: The syntax of the switch statement
harkens back to the C language, developed in the early days of
programming. The colons and break statements combine awkwardly
with the braces used elsewhere to contain code fragments.
Use of the break keyword is discouraged: Normally the break
keyword indicates you want to break the normal flow of your program.
This is often used as a shortcut by sloppy programmers who can't come
up with a more elegant way to write code. Because use of the break
keyword is discouraged elsewhere in programming, it's weird to have a
structure that requires its use.
Modern languages don't even have it: A number of the newer
languages (like Python) don't support switch at all, so at some point
you're likely to be in a language that cannot do switch. You might as
well learn alternatives now.

For these reasons, I rarely use switch in my own programming.

Managing Repetition with for Loops
Computers are well-known for repetitive behavior. It's pretty easy to get a
computer to do something many times. The main way to get this behavior

******ebook converter DEMO Watermarks*******

is to use a mechanism called a loop. The for loop is a standard kind of
loop that is used when you know how often something will happen.
Figure 3-3 shows the most basic form of the for loop:

Figure 3-3: This program counts from one to ten.

Setting up the web page
The same web page is used to demonstrate three different kinds of for
loops. As usual, the HTML code sets everything up. Here's the HTML
code that creates the basic framework:

<body onload = "init()">
 <h1>For loops</h1>
 <form action = "">
 <fieldset>
 <button type = "button"
 onclick = "count()">
 count to ten
 </button>

<button type = "button"
 onclick = "back()">
 count backwards
 </button>

<button type = "button"
 onclick = "byFive()">

******ebook converter DEMO Watermarks*******

 count by fives
 </button>

</fieldset>
 </form>

<div id = "output">Click a button to see some counting...</div>
</body>

While the HTML is pretty straightforward, it does have some important
features:

1. The body calls an initialization function.

Often you'll want some code to happen when the page first loads. One
common way to do this is to attach a function call to the onload
attribute of the body element. In this example, I call the init()
function as soon as the body is finished loading. The contents of the
init() function will be described in the next section.

2. The page is mostly an HTML form.

The most important part of this page is the form with three buttons on
it. Each button calls a different JavaScript function.

3. A special div is created for output.

It's a good idea to put some default text in the div so you can see where
the output should go and so you can ensure the div is actually changing
when it's supposed to.

From this example, it's easy to see why it's a good idea to write the HTML
first. The HTML code gives me a solid base for the program, and it also
provides a good outline of what JavaScript code I'll need. Clearly this page
calls for four JavaScript functions, init(), count(), back(), and
byFive(). The names of all the functions are pretty self-explanatory, so
it's pretty easy to see what each one is supposed to do. It's also clear that
the div named output is intended as an output area. When you design the
HTML page well, the JavaScript code becomes very easy to start.

******ebook converter DEMO Watermarks*******

Initializing the output
This program illustrates a situation that frequently comes up in JavaScript
programming: All three of the main functions will refer to the same output
area. It seems a waste to create a variable for output three different
times. Instead, I make a single global output variable available to all
functions, and attach the variable to that element once when the page loads.
In order to understand why this is necessary, it's important to discuss an
idea called variable scope. Generally, variables are created inside
functions. As long as the function is running, the variable still exists.
However, when a function is done running, all the variables created inside
that function are instantly destroyed. This prevents functions from
accidentally changing the variables in other functions. Practically, it means
you can think of each function as a separate program.
However, sometimes you want a variable to live in more than one function.
The output variable in the forLoop.html page is a great example because
all of the functions will need it. One solution is to create the variable
outside any functions. Then all the functions will have access to it.
You can create the output variable without being in a function, but you
can't attach it to the actual div in the web page until the web page has
finished forming. The init() function is called when the body loads.
Inside that function, I assign a value to the global output variable. Here's
how the main JavaScript and the init() method code looks:

var output;

function init(){
 output = document.getElementById("output");
 } // end init

This code creates output as a global variable, and then attaches it to the
output div after the page has finished loading.

Creating the basic for loop
The standard for loop counts the values between 1 and 10. The “count to
ten” button triggers the count() function. Here's the code for count():

function count(){
 output.innerHTML = "";

******ebook converter DEMO Watermarks*******

 for (i = 1; i <= 10; i++){
 output.innerHTML += i + "
";
 } // end for loop
 } // end count

Although the count() function clearly prints ten lines, it only has one
line that modifies the output div. The main code repeats many times to
create the long output.

1. You can use the output var immediately.

Because output is a global variable and it has already been created,
you can use it instantly. There's no need to initialize it in the function.

2. Clear the output.

Set output.value to the empty string (“”) to clear the output. This
will destroy whatever text is currently in the div.

3. Start a for loop.

The for loop is a special loop used to repeat something a certain
number of times. For loops have three components: initialization,
comparison, and update.

4. Initialize your counting variable.

A for loop works by changing the value of an integer many times.
The first part of a for loop initializes this variable (often called i) to a
starting value (usually 0 or 1).

5. Specify a condition for staying in the loop.

The second part of a for statement is a condition. As long as the
condition is true, the loop will continue. As soon as the condition is
evaluated as false, the loop will exit.

6. Change the variable.

The third part of a for statement somehow changes the counting
******ebook converter DEMO Watermarks*******

variable. The most common way to change the variable is to add one to
it. The i++ syntax is a shortcut for “add one to i.”

7. Build a code block for repeated code.

Use braces and indentation to indicate which code repeats. All code
inside the braces repeats.

8. Inside the loop, write to the output.

On each iteration of the loop, add the current value of i to the output
div's innerHTML. Also add a break (
) to make the output
look better. When you add to an innerHTML property, you're writing
HTML code, so if you want the output to occur on different lines, you
need to write the HTML to make this happen. (See the section
“Introducing shortcut operators” in this chapter for an explanation of
the += statement.)

9. Close the loop.

Don't forget to end the loop, or your program will not run correctly.

Introducing shortcut operators
You might have noticed a couple of new operators in the code for
forLoops.html. These are some shortcut tools that allow you to express
common ideas more compactly. For example, consider the following code:

i = i + 1;

This means, “Add one to i, and store the result back in i.” It's a pretty
standard statement, even if it does drive algebra teachers bananas. The
statement is so common that it is often abbreviated, like this:

i += 1;

This statement means exactly the same as the last one; add one to i. You
can use this to add any amount to the variable i.Because the + sign is used
to concatenate (combine) strings, you can use the += shortcut with string
manipulation, so consider this variation:

******ebook converter DEMO Watermarks*******

var userName = "Andy";
userName += ", Benevolent Dictator for Life";

The second statement appends my official (I wish) title to the end of my
name.

 You can also use the -= operator to subtract from a variable. It's
even possible to use *= and /=, but they are not commonly used.

Moving back to numbers — because adding one is extremely common,
there's another shortcut that's even more brief:

i++;

This statement also means, “Add one to i.” In the standard for loop, I use
that variation because it's very easy.

 When programmers decided to make a new variation of C, they
called the new language C++. Get it? It's one better than C! Those guys
are a hoot!

Counting backwards
After you understand basic for loops, it's not difficult to make a loop that
counts backwards. Here's the back() function (called by the Count
Backwards button):

function back(){
 output.innerHTML = "";
 for (i = 10; i > 0; i--){
 output.innerHTML += i + "
";
 } // end for loop
 } // end back

When the user activates this function, she gets the result shown in Figure 3-
4.

******ebook converter DEMO Watermarks*******

Figure 3-4: Now the page counts backwards.

This code is almost exactly like the first loop, but look carefully at how the
loop is created:

1. Initialize i to a high value.

This time I want to count backwards from 10 to 1, so start i with the
value 10.

2. Keep going as long as i is greater than 0.

It's important to note that the logic changes here. If i is greater than 0,
the loop should continue. If i becomes 0 or less, the loop exits.

3. Subtract 1 from i on each pass.

The -- operator works much like ++, but it subtracts 1 from the
variable.

Counting by fives
Counting by fives (or any other value) is pretty trivial after you know how
for loops work. Here's the byFive() code called by the Count by Five

******ebook converter DEMO Watermarks*******

button:
function byFive(){

 output.innerHTML = "";
 for (i = 5; i <= 25; i += 5){
 output.innerHTML += i + "
";
 } // end for loop
 } // end byFive

It is remarkably similar to the other looping code you've seen.

1. Initialize i to 5.

The first value I want is 5, so that is the initial value for i.

2. Continue as long as i is less than or equal to 25.

Because I want the value 25 to appear, I set the condition to be less
than or equal to 25.

3. Add 5 to i on each pass.

Each time through the loop, I add 5 to i using the += operator.

The Count by Five code is shown in action in Figure 3-5.

Figure 3-5: Now the page counts by fives.

******ebook converter DEMO Watermarks*******

Understanding the Zen of for loops
For loops might seem complex, but they really aren't. The key to making a
good for loop is understanding that the for statement has three parts. All
three parts of the statement refer to the same variable. Sometimes the
variable used in a loop is called a sentry variable. If you don't have a better
name for the sentry variable, it's traditional to use i. To make a good loop,
you need to know three things about the sentry variable:

How does it start? The first part of the for loop indicates the starting
value of the sentry variable. If you're counting up, you'll usually begin
the sentry variable at 0 or 1. If you're counting down, you'll usually
begin the sentry value with a larger number. Regardless, you have to
indicate some starting value.
How does it end? The middle part of the for loop indicates a
condition. As long as the condition remains true, the loop continues.
As soon as the condition is evaluated as false, the loop ends.
How does it change? There must be some mechanism for moving the
sentry from its starting position to the final position. In a for loop, this
is normally some kind of addition or subtraction. Whatever you do
here, you need to ensure that it's possible for the sentry to move from
the starting position to the ending position, or the loop will never end.

Building while Loops
For loops are useful when you know how often a loop will continue, but
sometimes you need a more flexible type of loop. The while loop is
based on a simple idea. It contains a condition. When the condition is
true, the loop continues; if the condition is evaluated as false, the loop
exits.

Making a basic while loop
Figure 3-6 shows a dialog box asking for a password. The program keeps
asking for a password until the user enters the correct password.

******ebook converter DEMO Watermarks*******

Figure 3-6: This program keeps asking for the password until the user gets it right.

Here's the HTML code used for two different while examples:
<body>
 <h1>While Loop Demo</h1>
 <p>The password is 'HTML5'</p>
 <form action = "">
 <fieldset>
 <button type = "button"
 onclick = "getPassword()">
 guess the password
 </button>

<button type = "button"
 onclick = "threeTries()">
 guess the password in three tries
 </button>
 </fieldset>
 </form>
</body>

The version shown in Figure 3-6 keeps popping up a dialog box until the
user gets the answer correct.

function getPassword(){
 //from while.html
 var correct = "HTML5";
 var guess = "";
 while (guess != correct){
 guess = prompt("Password?");
 } // end while
 alert("You may proceed");
 } // end getPassword

A while loop for passwords is not hard to build:

1. Store the correct password in a variable.

******ebook converter DEMO Watermarks*******

Variable names are important because they can make your code easier
to follow. I use the names correct and guess to differentiate the
two types of password. Beginners often call one of these variables
password, but that can be confusing because there are actually two
passwords (the correct password and the guessed password) in play
here. The best way to design variable names is to anticipate the
conditions they will be used in. This function is based on the condition
guess == correct. This is a really nice condition because it's
really easy to determine what we're trying to figure out (whether the
guess is correct). It takes some practice to anticipate variable names
well, but it's a habit well worth forming.

2. Initialize the guess to an empty value.

The key variable for this loop is guess. It starts as an empty string.
It's critical to initialize the key variable before the loop begins.

3. Set up the while statement.

The while statement has extremely simple syntax: the keyword
while followed by a condition, followed by a block of code.

4. Build the condition.

The condition is the heart of a while loop. The condition must be
constructed so the loop happens at least once (ensure this by comparing
the condition to the variable initialization). When the condition is true,
the loop continues. When the condition is evaluated to false, the loop
will exit. This condition compares guess to correct. If guess is
not equal to correct, the code will continue.

5. Write the code block.

Use braces and indentation to indicate the block of code that will be
repeated in the loop. The only code in this particular loop asks the user
for a password.

6. Add code to change the key variable inside the loop.
******ebook converter DEMO Watermarks*******

Somewhere inside the loop, you need code that changes the value of
the key variable. In this example, the prompt statement changes the
password. As long as the user eventually gets the right password, the
loop ends.

Getting your loops to behave

 While loops can be dangerous. It's quite easy to write a while
loop that works incorrectly, and these can be an exceptionally difficult
kind of bug to find and fix. If a while loop is incorrectly designed, it
can refuse to ever run or run forever. These endless loops are especially
troubling in JavaScript because they can crash the entire browser. If a
JavaScript program gets into an endless loop, often the only solution is
to use the operating system task manager (Ctrl+Alt+Delete on
Windows) to shut down the entire browser.

The easy way to make sure your loop works is to remember that while
loops need all the same features as for loops. (These ideas are built into
the structure of a for loop. You're responsible for them yourself in a
while loop.) If your loop doesn't work, check that you've followed these
steps:

Identify a key variable: A while loop is normally based on a
condition, which is usually a comparison (although it might also be a
variable or function that returns a Boolean value). In a for loop, the
key variable is almost always an integer. While loops can be based on
any type of variable.
Initialize the variable before the loop: Before the loop begins, set up
the initial value of the key variable to ensure the loop happens at least
once. (How does the variable start?)
Identify the condition for the loop: A while loop is based on a
condition. Define the condition so the loop continues while the
condition is true, and exits when the condition is evaluated to
false. (How does the variable end?)

******ebook converter DEMO Watermarks*******

Change the condition inside the loop: Somewhere inside the loop
code, you need to have statements that will eventually make the
condition false. If you forget this part, your loop will never end.
(How does the variable change?)

 This example is a good example of a while loop, but a terrible
way to handle security. The password is shown in the clear, and
anybody could view the source code to see the correct password. There
are far better ways to handle security, but this is the cleanest example of
a while loop I could think of.

Managing more complex loops
It won't take long before you find situations where the standard for or
while loops do not seem adequate. For example, consider the password
example again. This time, you want to ask for a password until the user
gets the password correct or guesses incorrectly three times. Think about
how you would build that code. There are a number of ways to do it, but
here's the cleanest approach:

function threeTries(){
 //continues until user is correct or has three
 //incorrect guesses
 //from while.html

var correct = "HTML5";
 var guess = "";
 var keepGoing = true;
 var tries = 0;

while (keepGoing){
 guess = prompt("Password?");
 if (guess == correct){
 alert("You may proceed");
 keepGoing = false;
 } else {
 tries++;
 if (tries >= 3){
 alert("Too many tries. Launching missiles...");
 keepGoing = false;

******ebook converter DEMO Watermarks*******

 } // end if
 } // end if
 } // end while
 } // end threetries

This code is a little more complex, but it uses a nice technique to greatly
simplify loops:

1. Initialize correct and guess.

As in the previous example, initialize the correct and guess
passwords.

2. Build a counter to indicate the number of tries.

The tries variable will count how many attempts have been made.

3. Build a Boolean sentry variable.

The keepGoing variable is special. Its entire job is to indicate
whether the loop should continue or not. It is a Boolean variable,
meaning it will only contain the values true or false.

4. Use keepGoing as the condition.

A condition doesn't have to be a comparison. It just has to be true or
false. Use the Boolean variable as the condition! As long as
keepGoing has the value true, the loop will continue. Any time
you want to exit the loop, set keepGoing to false.

5. Ask for the password.

You still need the password, so get this information from the user.

6. Check to see if the password is correct.

Use an if statement to see if the password is correct.

7. If the password is correct, provide feedback to the user and set
keepGoing to false.

******ebook converter DEMO Watermarks*******

The next time the while statement is executed, the loop ends.
(Remember, you want the loop to end when the password is correct.)

8. If the password is incorrect, if the (guess ==
correct)condition is false, that means the user did not get the
password right.

In this case, add one to the number of tries.

9. Check the number of tries.

Build another if statement to check the number of tries.

10. If it's been three turns, provide feedback (threatening global
annihilation is always fun) and set keepGoing to false.

The basic idea of this strategy is quite straightforward: Create a special
Boolean variable with the singular job of indicating whether the loop
continues. Any time you want the loop to exit, change the value of that
variable.

 If you change most of your while loops to this format (using a
Boolean variable as the condition), you'll generally eliminate most
while loop issues. When your code gets complicated, it gets tempting
to use and (&&) and or (||) operators to make more complex
conditions. These Boolean operators are very confusing for beginners
and are generally not necessary. (My rule of thumb is this: If you can
explain DeMorgan's law, you can use Boolean operators in your
conditions.) Most beginners (like me, and I've been doing this for thirty
years) make their loops way too complicated. Using a Boolean variable
in your loop can eliminate the need for Boolean operators and solve a
lot of logic problems.

Managing Errors with a Debugger
By the time you're writing loops and conditions, things can go pretty badly

******ebook converter DEMO Watermarks*******

in your code. Sometimes it's very hard to tell what exactly is going on.
Fortunately, modern browsers have some nice tools that help you look at
your code more carefully.
A debugger is a special tool that allows you to run a program in “slow
motion,” moving one line at a time so you can see exactly what is
happening. Google Chrome has a built-in debugger, so I begin with that
one.
To see how a debugger works, follow these steps.

1. Load a page into Chrome.

You can add a debugger to most browsers, but Chrome has one built in,
so start with that one. I'm loading the forLoops.html page because
loops are a common source of bugs.

2. Open the Developer Tools window.

If you right-click anywhere on the page and choose Inspect Element (or
press the F12 key), you'll get a wonderful debugging tool that looks
like Figure 3-7.

3. Inspect the page with the Elements tab.

The default tab shows you the page in an outline view, letting you see
the structure of your page. If you click any element in the outline, you
can see what styles are associated with that element. The actual
element is also highlighted on the main page so you can see exactly
where everything is. This can be very useful for checking your HTML
and CSS.

4. Move to the Sources tab.

The Developer Tools window has a separate tab for working with
JavaScript code. Select the Sources tab to see your entire code at once.
There's a small menu button that lets you select from all the source
pages your program uses. If your page pulls in external JavaScript files,
you'll be able to select them here as well. (Note some older versions of

******ebook converter DEMO Watermarks*******

Owner
Highlight

Chrome called this the Scripts tab.)

5. Set a breakpoint.

Typically you let the program begin at normal speed and slow down
right before you get to a trouble spot. In this case, I'm interested in the
count() function, so click on the first line (16) of that function in the
code window. (It's more reliable to click on the first line of the function
than the line that declares it, so use line 16 instead of line 15.) Click the
line number of the line you want to pause, and the line number will
highlight, indicating it is now a break point.

6. Refresh the page.

In the main browser, use the refresh button or F5 key to refresh the
page. The page may initially be blank. That's fine — it means the
program has paused when it encountered the function.

7. Your page is now running.

If you look back over the main page, you should see it is now up and
running. Nothing is happening yet because you haven't activated any of
the buttons.

8. Click the Count button.

The Count button should activate the code in the count function.
Click this button to see if that happens.

9. Code should now be paused on line 17.

Back in the code window, line 17 is now highlighted. That means the
browser is paused, and when you activate the step button, the
highlighted code will happen.

10. Step into the next line.

In the Developer Tool window is a series of buttons on top of the right

******ebook converter DEMO Watermarks*******

column. Step into the next line looks like a down arrow
with a dot under it. You can also use the F11 key to activate the
command.

11. Step a few times.

Use the F11 key or the step button to step forward a few times. Watch
how the highlight moves around so you can actually see the loop
happening. This is very useful when your code is not behaving
properly because it allows you to see exactly how the processor is
moving through your code.

12. Hover over the variable i in your code.

When you are in debug mode, you can hover the mouse over any
variable in the code window and you'll see what the current value of
that variable is. Often when your code is performing badly, it's because
a variable isn't doing what you think it is.

13. Add a watch expression to simplify looking at variables.

If you think the loop is not behaving, you can add a watch expression
to make debugging easier. Right under the step buttons you'll see a tab
called Watch Expressions. Click the plus sign to add a new expression.
Type in i and enter.

14. Continue stepping through the code.

Now you can continue to step through the code and see what is
happening to the variable. This is incredibly useful when your code is
not performing like you want it to.

******ebook converter DEMO Watermarks*******

Figure 3-7: The Chrome debugger makes it easy to figure out what's happening.

 I personally think the debugger built into Chrome is one of the
best out there, but it's not the only choice. If you're using Firefox, the
excellent Firebug extension adds the same functionality to Firefox
(http://getfirebug.com/). Safari has a similar Web Inspector
tool built in, and even IE finally has a decent debugger called F12. All
work in roughly the same way. Usually, however, a JavaScript error
will crash on all browsers, so pick one you like for initial testing, and
then use other browser-specific tools only when necessary.

Debugging with the interactive console
The Developer Tools window has another really wonderful tool called the
console. I introduced it briefly in Chapter 2 of this mini-book, but there's
much more you can do with this wonderful tool. Try this exercise to see
some of the great ways you can use the console:

1. Begin with the forLoops.html page.

You can debug any page, but forLoops.html is especially helpful for
debugging.

******ebook converter DEMO Watermarks*******

http://getfirebug.com/

2. Place a breakpoint.

For this demonstration, put a breakpoint in the count() function (line
16 if you're using my version of the code).

3. Step through a few lines.

Use the step button or F11 key to step through a few lines of code.

4. Switch to the console tab.

The Console tab switches to console mode. This is particularly
interesting when the program is paused, as you can investigate and
change the nature of the page in real time.

5. Change a style.

Try typing document.body.style.backgroundColor =
lightGreen in the console. This modifies the background color of
the page in real time. This is fun but not seriously useful.

6. Examine the document.body.

Type document.body in the console and press Enter. You'll see
plenty of information about the body. Document.body is actually a
JavaScript variable containing the current document body. It's very
powerful and allows you to understand a lot about what's going on.

7. Examine the body's innerHTML.

Like any HTML element, document.body has an innerHTML
property. You can examine this in the console:
document.body.innerHTML.

8. Look at the variable i.

You can examine the current value of any variable as long as that
variable currently has a meaning. Type i (then press enter) to see the

******ebook converter DEMO Watermarks*******

current value of the variable i. If the count() function isn't currently
running, you may get a strange value here.

9. Check the type of i.

As you may recall from Chapter 2 of this minibook, all variables have
a specific type defined by JavaScript, and sometimes that data type is
not what you expected. You can ask the browser what type of data any
variable contains: typeof(i) returns “number.” You may also see
“string” or “object.”

10. See if your output variable is defined correctly.

Like many interactive programs, this page has a div called div that
contains the output. If this is not defined correctly, it won't work. Try
output in the console to see if the output variable is correctly
defined and in scope. You can view the contents of output with
output.innerHTML, or you can even change the value of output
like this: output.innerHTML = “Hi Mom!”.

11. Check your functions.

You can check to see if the functions are what you think they are in the
console. Try typing count (with no parentheses) to see the contents of
count.

12. Print to the console from your programs.

You can even have your programs print information to the console.
Use the code console.log(“hi there”) anywhere in your code
to have the code print a value to the console. Normally you'll do this
only when your code is not functioning properly to see what's going
on. You might use something like this: console.log(“current
value of i” + i). The user typically doesn't know there is a
console, so she won't see any results of console.log(). You
should remove all calls to console.log() before releasing the final
version of your code.

******ebook converter DEMO Watermarks*******

The console was not available in earlier browser versions, so it isn't always
taught as a part of JavaScript programming. Now that it's a commonly
available tool, you should definitely consider using it.

Debugging strategies
It's a fact of life — when you write code, you will have bugs. Every
programmer needs to know how to diagnose and fix code when it goes
wrong.
The first thing to understand is that crashes and bugs are not the same. A
crash is a problem with your code that prevents the program from running
at all. These sound bad, but they're actually easier to resolve than bugs,
which are caused by technically correct code doing the wrong thing.

Resolving syntax errors
The most common type of error is a crash or syntax error, usually meaning
you misspelled a command or used a function incorrectly. From the user's
point of view, browsers don't usually tell you directly when a syntax error
occurs, but simply sit there and pout. The best way to discover what's
going wrong is to call up the debugging console. As soon as you discover a
page not acting correctly, go to the debugging console and look at the
Console tab. You'll see error messages there, and you can often click on an
error message to see the problem. As an example, take a look at the
following code from syntaxError.html:

function getPassword(){
 var correct "HTML5";
 var guess = "";
 while (guess != correct){
 guess = prompt("Password?");
 } // end while
 alert("You may proceed");
 } // end getPassword

This code might look just like the getPassword() function from
while.html, but I introduced a subtle error that's difficult to find with
the naked eye. Run the program in your browser, click the Guess the
Password button, and the browser will seem to do nothing but glare at you
insolently. However, if you activate the Debugging console, you'll realize
it's telling you what it thinks is wrong. Figure 3-8 illustrates the Debugging

******ebook converter DEMO Watermarks*******

console trying to help.

Figure 3-8: The debugging console has useful information here!

It would be great if the debugger told you exactly what is wrong, but
normally there's a bit of detective work involved in deciphering error
messages. It appears in this case that there are two errors, but they're really
the same thing. Click the link to the right of the first error and you'll be
taken to the Sources view with the offending line highlighted, as you see in
Figure 3-9.

******ebook converter DEMO Watermarks*******

Figure 3-9: Here's where the browser thinks something went wrong.

The error messages aren't always as clear as they could be, but they are
usually helpful in their own way. The error message here is “unexpected
string.” That means the browser encountered a string value when it
expected something else. That's somewhat helpful, but the real strategy is
to know that something is probably wrong with this line, and you need to
look it over carefully. At some point, you'll probably realize that line 10
should have a single equals sign. Rather than var correct “HTML5”,
it should read var correct = “HTML5”. This was (as are most
syntax errors) a problem caused by sloppy typing. Like most syntax errors,
it's kind of difficult to find (but much easier with the debugger). After you
find the error, it's usually pretty easy to fix. Change the code in your editor
and reload in the browser (with the F5 key) to see if your change fixes
things.
Note that fixing the “unexpected string” error automatically resolves the
“function not defined” error. This is pretty common because often one
error cascades and causes other error messages. Generally you only need to
worry about the topmost error on the list because resolving it may solve the
other errors with no further work. (Of course, resolving one error may
unmask other heretofore hidden errors, but this is less common.)

Squashing logic bugs
Syntax errors seem bad because they cause the whole program to crash, but
they're actually pretty easy to resolve. There's another type of problem
called logic errors that are much more troublesome. In fact, they're nearly
impossible to resolve without some sort of debugging tool. However, like a
syntax error, when you can find a logic error, it's usually quite easy to
repair. Take a look at logicError.html to see a typical logic problem in the
getPassword() function:

function getPassword(){
 var correct = "HTML5";
 var guess = "";
 while (guess == correct){
 guess = prompt("Password?");
 } // end while
 alert("You may proceed");
 } // end getPassword

******ebook converter DEMO Watermarks*******

Just looking at the code, it's very difficult to see the problem. Worse, when
you run the program in your browser, it won't report an error. It won't work
correctly, but the code is all technically correct. Rather than telling it to do
something illegal (which would result in a syntax error), I have told the
program to do something that's completely legal but not logical. Logic
errors are called bugs, and they're much more interesting (but subtle) to
resolve than syntax errors (normally called crashes).
To resolve a logic error, there's a few steps:

1. Understand what you're trying to accomplish.

Whenever you write a program, be sure you review what you're trying
to accomplish before you run the program. If you don't know what you
expect, you won't know if your program got there. It's often good to
write down what you expect so you'll know if you got there.
(Professional programmers are usually required to list expectations
before they write a single line of code.) For this example, when the
user clicks the Guess the Password button, the user should get a prompt
allowing them to guess the password.

2. Understand what your code did.

Run the logicError.html page yourself to see what actually happens.
With a logic error, the behavior is unpredictable. A loop may never
happen, it may never end, or it might sometimes work right and
sometimes not. The key to finding logic errors is to predict why the
code is doing what it's doing and why it's not doing what you want. In
this example, when I press the Guess the Password button, the You
May Proceed dialog box immediately appears, never giving me the
chance to guess a password.

3. Form a hypothesis or two before looking at code.

Think about what is wrong before you look over the code. Try to
describe in plain English (not technical jargon) what is going wrong. In
this case, I think something is preventing the prompt from appearing.
Maybe the statement causing the prompt is written incorrectly, or

******ebook converter DEMO Watermarks*******

maybe the code is never getting there. Those are the two most likely
possibilities, so they're what I'll look for. Decide this before you look at
code because the moment you see code, you'll start worrying about
details rather than thinking about the big picture. Logic errors are
almost always about logic, and no amount of staring at code will show
you logic errors, nor will a debugger spot them for you.

4. Resolve syntax errors.

Go to the console and see if there are any syntax errors. If so, resolve
them. Logic errors will not appear until you've resolved all syntax
errors. If your code shows no syntax errors but still doesn't work
correctly, you've got a logic error.

5. Start the debugger.

Interactive debugging is incredibly helpful with logic errors. Begin
with your English definitions of what you think should happen and
what you know is happening. Find the function you think is the
problem and set a breakpoint at that function.

6. Identify key variables or conditions.

Most logic errors are centered around a condition that's not working
right, and conditions are usually based on variables. Begin by taking a
careful look at the conditions that control the behavior you're worried
about. In this case, I've got a loop that doesn't seem to be happening —
ever. This means I should take a careful look at that loop statement and
any variables used in that statement.

7. Step to your suspicious code.

If you're worried about a condition (which is very common), use the
debugger tools to step to that condition, but don't run it yet. (In most
debuggers, a highlighted line is about to be run.)

8. Look at the relevant variables.

******ebook converter DEMO Watermarks*******

Before running the condition line, think about what you think any
variables used in that condition should contain. Use the Watch tools or
hover over the variable names to ensure you know the current values
and they're what you think they should be. In this example, I'm
concerned about line 12 (while guess == correct), so I want
to see what those variables contain.

9. Predict what the suspicious line should do.

If you're worried about a condition, you're generally expecting it to do
something it isn't doing. In this case, the condition should trigger the
prompt command on line 13 when the function is called, but it appears
that we're never getting to line 13 (or we are getting there and line 13
isn't doing what we think it's doing). The goal of debugging is to
identify which possible problems could be happening and isolate which
of these problems are actually occurring. Make sure you know what
you're looking for before you start looking for it.

10. Compare your expectations with reality.

As you step through the getPassword() function in the debugger
(with the step into button or F11 key), you might see the problem.
The while loop begun in line 12 never executes, meaning line 13
never happens, but it should always happen on the first pass. Now you
know exactly what the program is doing, but you don't know why yet.

11. Think about your logic.

Logic errors aren't about getting the commands right (those are syntax
errors). Logic errors are about telling the computer to do the wrong
thing. Think hard about the logic you've applied here. In this case, it
appears my condition is backwards. You told the computer to continue
looping as long as the guess is correct. You probably meant to continue
as long as the guess is incorrect. The guess starts out incorrect because
of the way you (appropriately) initialized both variables. Thus the
condition is automatically skipped and the prompt never happens.

12. Fix it.
******ebook converter DEMO Watermarks*******

Fixing code is easy when you know what's wrong. In this case, my
condition was legal but illogical. Replace guess == correct with
guess != correct and your code will work correctly.

Don't worry if you find debugging difficult. Programming is both an art
and a science, and debugging logic errors falls much more along the art
side of the equation. It does get much easier with practice and experience.

Couldn't we make this automatic?
If a debugger can find syntax errors, wouldn't it be awesome if debuggers could find logic
errors too? This issue turns out to be one of the big unsolved problems of computer
science. Researchers are still trying to discover a technique for mathematically determining
whether a program is logically correct without having to run it, and such efforts are called
proofs of program correctness. If you study formal computer science, you'll encounter
these problems as part of a programming languages class. Who knows? You might be the
person who solves this problem, and makes programming easier for everybody!

******ebook converter DEMO Watermarks*******

Chapter 4
Functions, Arrays, and Objects

In This Chapter
 Passing parameters into functions
 Returning values from functions
 Functions and variable scope
 Producing basic arrays
 Retrieving data from arrays
 Building a multidimensional array
 Creating objects
 Building object constructors
 Introducing JSON notation

It doesn't take long for your code to become complex. Soon enough, you
find yourself wanting to write more sophisticated programs. When things
get larger, you need new kinds of organizational structures to handle the
added complexity.
You can bundle several lines of code into one container and give this new
chunk of code a name: a function. You can also take a whole bunch of
variables, put them into a container, and give it a name. That's called an
array. If you combine functions and data, you get another interesting
structure called an object.
You may have encountered variables and functions in their simplest forms
elsewhere in this book (variables were first introduced in Chapter 1 of this
minibook, and functions made their appearance in Chapter 2). This chapter
is about how to work with more code and more data without going crazy.

Breaking Code into Functions
Functions come in handy when you're making complex code easier to

******ebook converter DEMO Watermarks*******

handle — a useful tool for controlling complexity. You can take a large,
complicated program and break it into several smaller pieces. Each piece
stands alone and solves a specific part of the overall problem.
You can think of each function as a miniature program. You can define
variables in functions, put loops and branches in there, and do anything
else you can do with a program. A program using functions is basically a
program full of subprograms.

 After you define your functions, they're just like new JavaScript
commands. In a sense, when you add functions, you're adding to
JavaScript.

To explain functions better, think back to an old campfire song, “The Ants
Go Marching.” Figure 4-1 re-creates this classic song for you in JavaScript
format. (You may want to roast a marshmallow while you view this
program.)

Figure 4-1: Nothing reminds me of functions like a classic campfire song.

If you're unfamiliar with this song, it simply recounts the story of a bunch
of ants. The littlest one apparently has some sort of attention issues. During
each verse, the little one gets distracted by something that rhymes with the
verse number. The song typically has ten verses, but I'm just doing two for

******ebook converter DEMO Watermarks*******

the demo.

Thinking about structure
Before you look at the code, think about the structure of the song, “The
Ants Go Marching.” Like many songs, it has two parts. The chorus is a
phrase repeated many times throughout the song. The song has several
verses, which are similar to each other, but not quite identical.
Think about the song sheet passed around the campfire. (I'm getting hungry
for a s'more.) The chorus is usually listed only one time, and each verse is
listed. Sometimes, you have a section somewhere on the song sheet that
looks like the following:

Verse 1
Chorus
Verse 2
Chorus

Musicians call this a road map, and that's a great name for it. A road map is
a high-level view of how you progress through the song. In the road map,
you don't worry about the details of the particular verse or chorus. The road
map shows the big picture, and you can look at each verse or chorus for the
details.

Building the antsFunction.html program
Take a look at the code for antsFunction.html and see how it reminds you
of the song sheet for “The Ants Go Marching”:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>antsFunction.html</title>
 <script type = "text/javascript">
 //from antsFunction.html

var output;

 function chorus() {
 var text = "...and they all go marching down
";
 text += "to the ground
";

******ebook converter DEMO Watermarks*******

 text += "to get out
";
 text += "of the rain.
";
 text += "
";
 text += "boom boom boom boom boom boom boom boom

";
 output.innerHTML += text;
 } // end chorus

function verse1(){
 var text = "The ants go marching 1 by 1 hurrah, hurrah

";
 text += "The ants go marching 1 by 1 hurrah, hurrah
";
 text += "The ants go marching 1 by 1
";
 text += " The little one stops to suck his thumb

";
 output.innerHTML += text;
 } // end verse1

function verse2(){
 var text = "The ants go marching 2 by 2 hurrah, hurrah

";
 text += "The ants go marching 2 by 2 hurrah, hurrah
";
 text += "The ants go marching 2 by 2
";
 text += " The little one stops to tie his shoe

";
 output.innerHTML += text;
 } // end verse2

function makeSong(){
 output = document.getElementById("output");
 output.innerHTML = "";
 verse1();
 chorus();
 verse2();
 chorus();
 } // end makeSong

</script>

</head>
 <body>
 <h1>Using Basic Functions</h1>
 <form action = "">
 <fieldset>

******ebook converter DEMO Watermarks*******

 <button type = "button"
 onclick = "makeSong()">
 make song
 </button>
 </fieldset>
 </form>

<div id = "output">
 The song will appear here...
 </div>

</body>
</html>

The program code breaks the parts of the song into the same pieces a song
sheet does. Here are some interesting features of antsFunction.html:

I created a function called chorus(). Functions are simply
collections of code lines with a name.
All the code for the chorus goes into this function. Anything I want
as part of printing the chorus goes into the chorus() function. Later,
when I want to print the chorus, I can just call the chorus() function
and it will perform the code I stored there.
Each verse has a function, too. I broke the code for each verse into its
own function.
The makeSong function is a road map. When all the details are
delegated to the functions, the main part of the code just controls the
order in which the functions are called. In this case, the makeSong()
function is called by the button press, which runs all the other
functions.
Details are hidden in the functions. The makeSong code handles the
big picture. The details (how to print the chorus or verses) are hidden
inside the functions.
I'm using standard form-based output. Each of the functions creates
its own part of the song and adds it to the output as needed.

******ebook converter DEMO Watermarks*******

Passing Data to and from Functions
Functions are logically separated from each other. This separation is a good
thing because it prevents certain kinds of errors. However, sometimes you
want to send information to a function. You may also want a function to
return some type of value. The antsParam.html page rewrites the “The Ants
Go Marching” song in a way that takes advantage of function input and
output.

<!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>param.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 </style>
 <script type = "text/javascript">
 //Ants to marching in using functions with parameters

function makeSong(){
 //create output variable
 var output = document.getElementById("output");

output.innerHTML = "";

output.innerHTML += verse(1);
 output.innerHTML += chorus();
 output.innerHTML += verse(2);
 output.innerHTML += chorus();
 } // end makeSong

function chorus(){
 var result = "-and they all go marching down,
";
 result += "to the ground, to get out, of the rain.
";
 result += "boom boom boom boom
";
 result += "boom boom boom boom
";
 result += "
";
 return result;
 } // end chorus

function verse(verseNumber){
 var distraction = "";

******ebook converter DEMO Watermarks*******

 if (verseNumber == 1){
 distraction = "suck his thumb";
 } else if (verseNumber == 2){
 distraction = "tie his shoe";
 } else {
 distraction = "there's a problem here...";
 } // end if

var result = "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + "
";
 result += "The little one stops to ";
 result += distraction + "

 ";

return result;
 } // end verse

</script>

 I don't provide a figure of this program because it looks just like
antsFunction.html to the user. One advantage of functions is that I can
improve the underlying behavior of a program without imposing a
change in the user's experience.

This code incorporates a couple of important new ideas. (The following list
is just the overview; the specifics are coming in the following sections.)

These functions return a value. The functions no longer do their own
alerts. Instead, they create a value and return it to the main
program.
Only one verse function exists. Because the verses are all pretty
similar, using only one verse function makes sense. This improved
function needs to know what verse it's working on to handle the
differences.

******ebook converter DEMO Watermarks*******

Examining the makeSong code
The makeSong code has been changed in one significant way. In the last
program, the makeSong code called the functions, which did all the work.
This time, the functions don't actually output anything themselves. Instead,
they collect information and pass it back to the main program. Inside the
makeSong code, each function is treated like a variable.

You've seen this behavior before. The prompt() method returns a value.
Now the chorus() and verse() methods return values. You can do
anything you want to this value, including storing it to a variable, printing
it, or comparing it to some other value.

 If you have one function that controls all the action, often that
function is called main(). Some languages require you to have a
function called main(), but JavaScript isn't that picky. For this
example, I went with makeSong() because that name is more
descriptive than main(). Still, the makeSong() function is a main
function because it controls the rest of the program.

 Separating the creation of data from its use as I've done here is a
good idea. That way, you have more flexibility. After a function creates
some information, you can print it to the screen, store it on a web page,
put it in a database, or whatever.

Looking at the chorus
The chorus of “The Ants Go Marching” song program has been changed to
return a value. Take another look at the chorus() function to see what I
mean.

function chorus(){
 var result = "-and they all came marching down,
";
 result += "to the ground, to get out, of the rain.
";
 result += "boom boom boom boom
";

******ebook converter DEMO Watermarks*******

 result += "boom boom boom boom
";
 result += "
";
 return result;
 } // end chorus

Here's what changed:

The purpose of the function has changed. The function is no longer
designed to output some value to the screen. Instead, it now provides
text to the main program, which can do whatever it wants with the
results.
There's a variable called text. This variable contains all the text to
be sent to the main program. (It contained all the text in the last
program, but it's even more important now.)
The text variable is concatenated over several lines. I used string
concatenation to build a complex value. Note the use of break tags
(
) to force carriage returns in the HTML output.
The return statement sends text to the main program. When
you want a function to return some value, simply use return
followed by a value or variable. Note that return should be the last
line of the function.

Handling the verses
The verse() function is quite interesting:

It can print more than one verse.
It takes input to determine which verse to print.
It modifies the verse based on the input.
It returns a value, just like chorus().

To make the verse so versatile (get it? verse-atile!), it must take input from
the primary program and return output.

Passing data to the verse() function
The verse() function is always called with a value inside the
parentheses. For example, the main program sets verse(1) to call the

******ebook converter DEMO Watermarks*******

first verse, and verse(2) to invoke the second. The value inside the
parentheses is called an argument.
The verse function must be designed to accept an argument (because I call
it using values inside the parentheses). Look at the first line to see how.

function verse(verseNumber){

In the function definition, I include a variable name. Inside the function,
this variable is known as a parameter. (Don't get hung up on the
terminology. People often use the terms parameter and argument
interchangeably.) The important idea is that whenever the verse()
function is called, it automatically has a variable called verseNumber.
Whatever argument you send to the verse() function from the main
program will become the value of the variable verseNumber inside the
function.
You can define a function with as many parameters as you want. Each
parameter gives you the opportunity to send a piece of information to the
function.

Determining the distraction
If you know the verse number, you can determine what distracts “the little
one” in the song. You can determine the distraction in a couple ways, but a
simple if-elseif structure is sufficient for this example.

var distraction = "";
 if (verseNumber == 1){
 distraction = "suck his thumb.";
 } else if (verseNumber == 2){
 distraction = "tie his shoe.";
 } else {
 distraction = "I have no idea.";
 }

I initialized the variable distraction to be empty. If verseNum is 1,
set distraction to "suck his thumb". If verseNumber is 2,
distraction should be "tie his shoe". Any other value for
verseNumber is treated as an error by the else clause.

 If you're an experienced coder, you may be yelling at this code. It
******ebook converter DEMO Watermarks*******

still isn't optimal. Fortunately, in the section “Building a Basic Array”
later in this chapter, I show an even better solution for handling this
particular situation with arrays.

By the time this code segment is complete, verseNumber and
distraction both contain a legitimate value.

Creating the text
When you know these variables, it's pretty easy to construct the output text:

var result = "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + "
";
 result += "The little one stops to ";
 result += distraction + "

 ";

return result;
 } // end verse

A whole lotta concatenating is going on, but it's essentially the same code
as the original verse() function. This one's just a lot more flexible
because it can handle any verse. (Well, if the function has been preloaded
to understand how to handle the verseNumber.)

Managing Scope
A function is much like an independent mini-program. Any variable you
create inside a function has meaning only inside that function. When the
function is finished executing, its variables disappear! This setup is actually
a really good thing. A major program will have hundreds of variables, and
they can be difficult to keep track of. You can reuse a variable name
without knowing it or have a value changed inadvertently. When you break
your code into functions, each function has its own independent set of
variables. You don't have to worry about whether the variables will cause
problems elsewhere.

******ebook converter DEMO Watermarks*******

Introducing local and global variables
You can also define variables at the main (script) level. These variables are
global variables. A global variable is available at the main level and inside
each function. A local variable (one defined inside a function) has meaning
only inside the function. The concept of local versus global functions is
sometimes referred to as scope.
Local variables are kind of like local police. Local police have a limited
geographical jurisdiction, but they're very useful within that space. They
know the neighborhood. Sometimes, you encounter situations that cross
local jurisdictions. This situation is the kind that requires a state trooper or
the FBI. Local variables are local cops, and global variables are the FBI.

 Generally, try to make as many of your variables local as
possible. The only time you really need a global variable is when you
want some information to be used in multiple functions.

Examining variable scope
To understand the implications of variable scope, take a look at scope.html:

<script type = "text/javascript">
 //from scope.html
 var globalVar = "I'm global!";

function myFunction(){
 var localVar = "I'm local";
 console.log(localVar);
 }

myFunction();
 </script>

This program defines two variables. In the main code, globalVar is
defined, and localVar is defined inside a function. If you run the
program in debug mode while watching the variables, you can see how
they behave. Figure 4-2 shows what the program looks like early in the
run.

******ebook converter DEMO Watermarks*******

Figure 4-2: globalVar is defined, but localVar is not.

localVar doesn't have meaning until the function is called, so it remains
undefined until the computer gets to that part of the code. Step ahead a few
lines, and you see that localVar has a value, as shown in Figure 4-3.

Figure 4-3: localVar has a value because I'm inside the function.

 Be sure to use Step Into (down arrow) rather than Step Over (up
******ebook converter DEMO Watermarks*******

arrow) on the “remote control” toolbar for this example. When Step
Over encounters a function, it runs the entire function as one line rather
than looking at the function code line by line. If you want to look into
the function and see what's happening inside it (as you do here), use
Step Into. Use Step Over when you know a function is working fine
and you want to treat it as a single instruction. If in doubt, always use
Step Into to see exactly what's happening in your code. (I added watch
expressions to clarify the content of the variables.)

globalVar still has a value (it's an FBI agent), and so does localVar
because it's inside the function.
If you move a few more steps, localVar no longer has a value when the
function ends (see Figure 4-4).

Figure 4-4: Once again, localVar has no meaning.

Variable scope is a good thing because it means you have to keep track of
only global variables and the variables defined inside your current function.
The other advantage of scope is the ability to reuse a variable name. You
can have ten different functions all using the same variable name, and they
won't interfere with each other because they're entirely different variables.

Building a Basic Array
******ebook converter DEMO Watermarks*******

If functions are groups of code lines with a name, arrays are groups of
variables with a name. Arrays are similar to functions because they're used
to manage complexity. An array is a special kind of variable. Use an array
whenever you want to work with a list of similar data types.
The following code shows a basic demonstration of arrays:

<script type = "text/javascript">
 //from genres.html

//creating an empty array
 var genre = new Array(5);

//storing data in the array
 genre[0] = "flight simulation";
 genre[1] = "first-person shooters";
 genre[2] = "driving";
 genre[3] = "action";
 genre[4] = "strategy";

//returning data from the array
 alert ("I like " + genre[4] + " games.");
 //]]
 </script>

The variable genre is a special variable because it contains many values.
Essentially, it's a list of genres. The new Array(5) construct creates
space in memory for five variables, all named genre.

Accessing array data
After you specify an array, you can work with the individual elements
using square-bracket syntax. An integer identifies each element of the
array. The index usually begins with.

genre[0] = "flight simulation";

The preceding code assigns the text value “flight simulation” to
the genre array variable at position 0.

 Most languages require all array elements to be the same type.
JavaScript is very forgiving. You can combine all kinds of stuff in a

******ebook converter DEMO Watermarks*******

Owner
Highlight

Owner
Highlight

JavaScript array. This flexibility can sometimes be useful, but be aware
that this trick doesn't work in all languages. Generally, I try to keep all
the members of an array the same type.

After you store the data in the array, you can use the same square-bracket
syntax to read the information.
The line

alert ("I like " + genre[4] + " games.");

finds element 4 of the genre array and includes it in an output message.

Figure 4-5 shows a run of genres.html.

Figure 4-5: This data came from an array.

Using arrays with for loops
The main reason to use arrays is convenience. When you have a lot of
information in an array, you can write code to work with the data quickly.
Whenever you have an array of data, you commonly want to do something
with each element in the array. Take a look at games.html to see how
you can do so:

<script type = "text/javascript">
 //from games.html

//pre-loading an array
 var gameList = new Array("Flight Gear", "Sauerbraten",
"Future Pinball",
 "Racer", "TORCS", "Orbiter", "Step Mania", "NetHack",
 "Marathon", "Crimson Fields");

var text = "";
 for (i = 0; i < gameList.length; i++){
 text += "I love " + gameList[i] + "\n";
 } // end for loop

******ebook converter DEMO Watermarks*******

 alert(text);
 </script>

Notice several things in this code:

The array called gameList. This array contains the names of some of
my favorite freeware games.
The array is preloaded with values. If you provide a list of values
when creating an array, JavaScript simply preloads the array with the
values you indicate. You don't need to specify the size of the array if
you preload it.
A for loop steps through the array. Arrays and for loops are
natural companions. The for loop steps through each element of the
array.
The array's length is used in the for loop condition. Rather than
specifying the value 10, I used the array's length property in my for
loop. This practice is good because the loop automatically adjusts to
the size of the array when I add or remove elements.
Do something with each element. Because i goes from 0 to 9 (the
array indices), I can easily print each value of the array. In this
example, I simply add to an output string.
Note the newline characters. The \n combination is a special
character that tells JavaScript to add a carriage return, such as you get
by pressing the Enter key. Figure 4-6 shows a run of games.html.

******ebook converter DEMO Watermarks*******

Owner
Highlight

Figure 4-6: Now I have a list of games. Arrays and loops are fun!

 If you want to completely ruin your productivity, Google some of
these game names. They're absolutely incredible, and every one of
them is free. It's hard to beat that. See, even if you don't learn how to
program in this book, you get something good from it!

Revisiting the ants song
If you read the earlier sections, you probably just got that marching ant
song out of your head. Sorry. Take a look at the following variation, which
uses arrays and loops to simplify the code even more.

<script type = "text/javascript">
 //This old man using functions and arrays

var distractionList = Array("", "suck his thumb", "tie his
shoe",
 "climb a tree", "shut the door");

function makeSong(){
 //create output variable
 var output = document.getElementById("output");

output.innerHTML = "";

******ebook converter DEMO Watermarks*******

 for (verseNumber = 1; verseNumber <
distractionList.length; verseNumber++){
 output.innerHTML += verse(verseNumber);
 output.innerHTML += chorus();
 } // end for loop

} // end makeSong

function chorus(){
 var result = "-and they all came marching down,
";
 result += "to the ground, to get out, of the rain.
";
 result += "boom boom boom boom
";
 result += "boom boom boom boom
";
 result += "
";
 return result;
 } // end chorus

function verse(verseNumber){
 var distraction = distractionList[verseNumber];

var result = "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + ", ";
 result += "hurrah, hurrah
";
 result += "The ants go marching ";
 result += verseNumber + " by " + verseNumber + "
";
 result += "The little one stops to ";
 result += distraction + "

 ";

return result;
 } // end verse

</script>

This code is just a little different from the antsParam program shown in the
section of this chapter called “Passing Data to and from Functions.”

It has an array called distractionList. This array is (despite
the misleading name) a list of distractions. I made the first one

******ebook converter DEMO Watermarks*******

(element zero) blank so that the verse numbers would line up properly.
(Remember, computers normally count beginning with zero.)
The verse()function looks up a distraction. Because distractions
are now in an array, you can use the verseNumber as an index to
loop up a particular distraction. Compare this function to the verse()
function in antsParam. This program can be found in the section
“Passing data to and from Functions.” Although arrays require a little
more planning than code structures, they can highly improve the
readability of your code.
The makeSong() function is a loop. I step through each element of
the distractionList array, printing the appropriate verse and
chorus.
The chorus()function remains unchanged. You don't need to
change chorus().

Working with Two-Dimension Arrays
Arrays are useful when working with lists of data. Sometimes, you
encounter data that's best imagined in a table. For example, what if you
want to build a distance calculator that determines the distance between
two cities? The original data might look like Table 4-1.

Think about how you would use Table 4-1 to figure out a distance. If you
wanted to travel from New York to London, for example, you'd pick the
New York row and the London column and figure out where they intersect.

******ebook converter DEMO Watermarks*******

The data in that cell is the distance (3,470 miles).

When you look up information in any kind of a table, you're actually
working with a two-dimensional data structure — a fancy term, but it just
means table. If you want to look something up in a table, you need two
indices, one to determine the row and another to determine the column.
If this concept is difficult to grasp, think of the old game Battleship. The
playing field is a grid of squares. You announce I-5, meaning column I,
row 5, and the opponent looks in that grid to discover that you've sunk his
battleship. In programming, you typically use integers for both indices, but
otherwise, it's exactly the same as Battleship. Any time you have two-
dimensional data, you access it with two indices.
Often, we call the indices row and column to help you think of the structure
as a table. Sometimes, other names more clearly describe how the behavior
works. Take a look at Figure 4-7, and you see that the distance.html
program asks for two cities and returns a distance according to the data
table.

******ebook converter DEMO Watermarks*******

Figure 4-7: It's a Tale of Two Cities. You even get the distance between them!

******ebook converter DEMO Watermarks*******

 Yep, you can have three, four, or more dimension arrays in
programming, but don't worry about that yet. (It may make your head
explode.) Most of the time, one or two dimensions are all you need.

This program is a touch longer than some of the others, so I break it into
parts in the following sections for easy digestion. Be sure to look at the
program in its entirety on the website.

Setting up the arrays
The key to this program is the data organization. The first step is to set up
two arrays.

<script type = "text/javascript">
 //from distance.html

//cityName has the names of the cities
 cityName = new Array("Indianapolis", "New York", "Tokyo",
"London");

//create a 2-dimension array of distances
 distance = new Array (
 new Array (0, 648, 6476, 4000),
 new Array (648, 0, 6760, 3470),
 new Array (6476, 6760, 0, 5956),
 new Array (4000, 3470, 5956, 0)
);

The first array is an ordinary single-dimension array of city names. I've
been careful to always keep the cities in the same order, so whenever I
refer to city 0, I'm talking about Indianapolis (my hometown), New York is
always going to be at position 1, and so on.

 You have to be careful in your data design that you always keep
things in the same order. Be sure to organize your data on paper before
you type it into the computer, so you'll understand what value goes
where.

******ebook converter DEMO Watermarks*******

The cityNames array has two jobs. First, it reminds me what order all
the cities will be in, and, second, it gives me an easy way to get a city name
when I know an index. For example, I know that cityName[2] will
always be “Tokyo”.

The distance array is very interesting. If you squint at it a little bit, it
looks a lot like Table 4-1, shown earlier in this chapter. That's because it is
Table 4-1, just in a slightly different format.
distance is an array. JavaScript arrays can hold just about everything,
including other arrays! That's what distance does. It holds an array of
rows. Each element of the distance array is another (unnamed) array
holding all the data for that row. If you want to extract information from
the array, you need two pieces of information. First, you need the row.
Then because the row is an array, you need the column number within that
array. So, distance[1][3] means go to row 1 (“New York”) of
distance. Within that row go to element 3 (“London”) and return the
resulting value (3470). Cool, huh?

 A beginning programmer would typically solve this problem with
a huge number of if statements. That solution will work, but it
becomes unwieldy in a hurry. With four cities, you'll have four
conditions to determine which city you're coming from, and each of
these will need three conditions to determine where we're going. That's
doable, but by the time you have ten cities, you'll have somewhere near
one hundred conditions, and with one hundred cities, you'll have
roughly ten thousand conditions. When you use an array like I'm
demonstrating here, the code doesn't get more complex when the
number of elements increases. For computer science majors out there,
this problem has a complexity of Big O(n2), meaning as the number of
elements increases, the complexity increases by the square. Using an
array tames that complexity and makes the program much more
efficient and extensible. Experienced programmers tend to aim for
simpler code structure by using more complex data structures.

Getting a city
******ebook converter DEMO Watermarks*******

The program requires that you ask for two cities. You want the user to
enter a city number, not a name, and you want to ask this question twice.
Sounds like a good time for a function.

function getCity(){
 // presents a list of cities and gets a number
corresponding to
 // the city name
 var theCity = ""; //will hold the city number

var cityMenu = "Please choose a city by typing a number:
\n";
 cityMenu += "0) Indianapolis \n";
 cityMenu += "1) New York \n";
 cityMenu += "2) Tokyo \n";
 cityMenu += "3) London \n";

theCity = prompt(cityMenu);
 return theCity;
 } // end getCity

The getCity() function prints a little menu of city choices and asks for
some input. It then returns that input.

 You can improve getCity() in all kinds of ways. For one
thing, maybe it should repeat until you get a valid number so that users
can't type the city name or do something else crazy. I'll leave it simple
for now. If you want to find out how user interface elements help the
user submit only valid input, skip ahead to Chapter 5 of this minibook.

Creating a main() function
The main() function handles most of the code for the program.

function main(){
 var output = "";
 var from = getCity();
 var to = getCity();
 var result = distance[from][to];
 output = "The distance from " + cityName[from];
 output += " to " + cityName[to];
 output += " is " + result + " miles.";
 alert(output);

******ebook converter DEMO Watermarks*******

 } // end main

main();

The main() function controls traffic. Here's what you do:

1. Create an output variable.

The point of this function is to create some text output describing the
distance. I begin by creating a variable called output and setting its
initial value to empty.

2. Get the city of origin.

Fortunately, you have a great function called getCity() that handles
all the details of getting a city in the right format. Call this function and
assign its value to the new variable from.

3. Get the destination city.

That getCity() function sure is handy. Use it again to get the city
number you'll call to.

4. Get the distance.

Because you know two indices, and you know they're in the right
format, you can simply look them up in the table. Look up
distance[from][to] and store it in the variable result.

5. Output the response.

Use concatenation to build a suitable response string and send it to the
user.

6. Get city names from the cityNames array.

The program uses numeric indices for the cities, but they don't mean
anything to the user. Use the cityNames array to retrieve the two
city names for the output.

******ebook converter DEMO Watermarks*******

7. Run the main()function.

Only one line of code doesn't appear in a function. That line calls the
main() function and starts the whole thing.

 I didn't actually write the program in the order I showed it to you
in the preceding steps. Sometimes it makes more sense to go “inside
out.” I actually created the data structure first (as an ordinary table on
paper) and then constructed the main() function. This approach made
it obvious that I needed a getCity() function and gave me some
clues about how getCity should work. (In other words, it should
present a list of cities and prompt for a numerical input.)

Creating Your Own Objects
So far you've used a lot of wonderful objects in JavaScript, like the
document object and the array object. However, that's just the
beginning. It turns out you can build your own objects too, and these
objects can be very powerful and flexible. Objects typically have two
important components: properties and methods. A property is like a
variable associated with an object. The properties taken together describe
the object. A method is like a function associated with an object. The
methods describe things the object can do. If functions allow you to put
code segments together and arrays allow you to put variables together,
objects allow you to put both code segments and variables (and functions
and arrays) in the same large construct.

Building a basic object
JavaScript makes it trivially easy to build an object. Because a variable can
contain any value, you can simply start treating a variable like an object
and it becomes one.
Figure 4-8 shows a critter that has a property.

******ebook converter DEMO Watermarks*******

Figure 4-8: This alert box is actually using an object.

Take a look at the following code:
//from basicObject.html

 //create the critter
 var critter = new Object();

//add some properties
 critter.name = "Milo";
 critter.age = 5;

//view property values
 alert("the critter's name is " + critter.name);

The way it works is not difficult to follow:

1. Create a new Object.

JavaScript has a built-in object called Object. Make a variable with
the new Object() syntax, and you'll build yourself a shiny, new
standard object.

2. Add properties to the object.

A property is a subvariable. It's nothing more than a variable attached
to a specific object. When you assign a value to critter.name, for
example, you're specifying that critter has a property called name
and you're also giving it a starting value.

3. An object can have any number of properties.

Just keep adding properties. This allows you to group a number of
variables into one larger object.

4. Each property can contain any type of data.
******ebook converter DEMO Watermarks*******

Unlike arrays where it's common for all the elements to contain exactly
the same type of data, each property can have a different type.

5. Use the dot syntax to view or change a property.

If the critter object has a name property, you can use
critter.name as a variable. Like other variables, you can change
the value by assigning a new value to critter.name or you can
read the content of the property.

 If you're used to a stricter object-oriented language, such as Java,
you'll find JavaScript's easy-going attitude quite strange and maybe a
bit sloppy. Other languages do have a lot more rules about how objects
are made and used, but JavaScript's approach has its charms. Don't get
too tied up in the differences. The way JavaScript handles objects is
powerful and refreshing.

Adding methods to an object
Objects have other characteristics besides properties. They can also have
methods. A method is simply a function attached to an object. To see what
I'm talking about, take a look at this example:

//create the critter
 //from addingMethods.html
 var critter = new Object();

//add some properties
 critter.name = "Milo";
 critter.age = 5;

//create a method
 critter.talk = function(){
 msg = "Hi! My name is " + this.name;
 msg += " and I'm " + this.age;
 alert(msg);
 } // end method

// call the talk method
 critter.talk();

******ebook converter DEMO Watermarks*******

This example extends the critter object described in the last section. In
addition to properties, the new critter has a talk() method. If a property
describes a characteristic of an object, a method describes something the
object can do. Figure 4-9 illustrates the critter showing off its talk()
method:

Figure 4-9: Now the critter can talk!

Here's how it works:

1. Build an object with whatever properties you need.

Begin by building an object and giving it some properties.

2. Define a method much like a property.

In fact, methods are properties in JavaScript, but don't worry too much
about that; it'll make your head explode.

3. You can assign a prebuilt function to a method.

If you created a function that you want to use as a method, you can
simply assign it.

4. You can also create an anonymous function.

More often, you'll want to create your method right there as you define
the object. You can create a function immediately with the
function(){ syntax.

5. The this keyword refers to the current object.

Inside the function, you may want to access the properties of the

******ebook converter DEMO Watermarks*******

object. this.name refers to the name property of the current object.

6. You can then refer to the method directly.

After you define an object with a method, you can invoke it. For
example, if the critter object has a talk method, use
critter.talk() to invoke this method.

Building a reusable object
These objects are nice, but what if you want to build several objects with
the same definition? JavaScript supports an idea called a constructor,
which allows you to define an object pattern and reuse it.
Here's an example:

//building a constructor
//from constructor.html
function Critter(lName, lAge){
 this.name = lName;
 this.age = lAge;
 this.talk = function(){
 msg = "Hi! My name is " + this.name;
 msg += " and I'm " + this.age;
 alert(msg);
 } // end talk method
} // end Critter class def

function main(){
 //build two critters
 critterA = new Critter("Alpha", 1);

critterB = new Critter("Beta", 2);
 critterB.name = "Charlie";
 critterB.age = 3;

//have 'em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

******ebook converter DEMO Watermarks*******

This example involves creating a class (a pattern for generating objects)
and reusing that definition to build two different critters. First, look over
how the class definition works:

Build an ordinary function: JavaScript classes are defined as
extensions of a function. The function name will also be the class
name. Note that the name of a class function normally begins with an
uppercase letter. When a function is used in this way to describe an
object, the function is called the object's constructor. The constructor
can take parameters if you wish, but it normally does not return any
values. In my particular example, I add parameters for name and age.
Use this to define properties: Add any properties you want to
include, including default values. Note that you can change the values
of these later if you wish. Each property should begin with this and a
period. If you want your object to have a color property, you'd say
something like this.color = “blue”. My example uses the
local parameters to define the properties. This is a very common
practice because it's an easy way to preload important properties.
Use this to define any methods you want: If you want your object
to have methods, define them using the this operator followed by the
function(){ keyword. You can add as many functions as you wish.

 The way JavaScript defines and uses objects is easy but a little
nonstandard. Most other languages that support object-oriented
programming (OOP) do it in a different way than the technique
described here. Some would argue that JavaScript is not a true OOP
language, as it doesn't support a feature called inheritance, but instead
uses a feature called prototyping. The difference isn't all that critical
because most uses of OOP in JavaScript are very simple objects like the
ones described here. Just appreciate that this introduction to object-
oriented programming is very cursory, but enough to get you started.

Using your shiny new objects
After you define a class, you can reuse it. Look again at the main function

******ebook converter DEMO Watermarks*******

to see how I use my newly minted Critter class:
function main(){
 //build two critters

critterA = new Critter("Alpha", 1);

critterB = new Critter("Beta", 2);
 critterB.name = "Charlie";
 critterB.age = 3;

//have 'em talk
 critterA.talk();
 critterB.talk();

} // end main
main();

After you define a class, you can use it as a new data type. This is a very
powerful capability. Here's how it works:

Be sure you have access to the class: A class isn't useful unless
JavaScript knows about it. In this example, the class is defined within
the code.
Create an instance of the class with the new keyword: The new
keyword means you want to make a particular critter based on the
definition. Normally, you assign your new object to a variable. My
constructor expects the name and age to be supplied, so it
automatically creates a critter with the given name and age.
Modify the class properties as you wish: You can change the values
of any of the class properties. In my example, I change the name and
age of the second critter just to show how it's done.
Call class methods: Because the critter class has a talk()
method, you can use it whenever you want the critter to talk.

Introducing JSON
JavaScript objects and arrays are incredibly flexible. In fact, they are so

******ebook converter DEMO Watermarks*******

well known for their power and ease of use that a special data format called
JavaScript Object Notation (JSON) has been adopted by many other
languages.
JSON is mainly used as a way to store complex data (especially
multidimensional arrays) and pass the data from program to program.
JSON is essentially another way of describing complex data in a JavaScript
object format. When you describe data in JSON, you generally do not need
a constructor because the data is used to determine the structure of the
class.
JSON data is becoming a very important part of web programming because
it allows an easy mechanism for transporting data between programs and
programming languages.

Storing data in JSON format
To see how JSON works, look at this simple code fragment:

var critter = {
 "name": "George",
 "age": 10
 };

This code describes a critter. The critter has two properties, a name and an
age. The critter looks much like an array, but rather than using a numeric
index like most arrays, the critter has string values to serve as indices. It is
in fact an object.
You can refer to the individual elements with a variation of array syntax,
like this:

alert(critter["name"]);

You can also use what's called dot notation (as used in objects) like this:
alert(critter.age);

Both notations work the same way. Most of the built-in JavaScript objects
use dot notation, but either is acceptable.

 The reason JavaScript arrays are so useful is that they are in fact
objects. When you create an array in JavaScript, you are building an

******ebook converter DEMO Watermarks*******

Owner
Highlight

object with numeric property names. This is why you can use either
array or object syntax for managing JSON object properties.

 Look at jsonDistance.html on the website to see the code
from this section in action. I don't show a screenshot here because all
the interesting work happens in the code.

To store data in JSON notation:

1. Create the variable.

You can use the var statement like you do any variable.

2. Contain the content within braces ({}).

This is the same mechanism you use to create a preloaded array (as
described earlier in this chapter).

3. Designate a key.

For the critter, I want the properties to be named “name” and “age”
rather than numeric indices. For each property, I begin with the
property name. The key can be a string or an integer.

4. Follow the key with a colon (:).
5. Create the value associated with that key.

You can then associate any type of value you want with the key. In this
case, I associate the value George with the key name.

6. Separate each name/value pair with a comma (,).

You can add as many name/value pairs as you wish.

******ebook converter DEMO Watermarks*******

 If you're familiar with other languages, you might think a JSON
structure similar to a hash table or associative array. JavaScript does
use JSON structures the way these other structures are used, but it isn't
quite accurate to say JSON is either a hash or an associative array. It's
simply an object. However, if you want to think of it as one of these
things, I won't tell anybody.

Building a more complex JSON structure
JSON is convenient because it can be used to handle quite complex data
structures. For example, look at the following (oddly familiar) data
structure written in JSON format:

var distance = {
 "Indianapolis" :
 { "Indianapolis": 0,
 "New York": 648,
 "Tokyo": 6476,
 "London": 4000 },

"New York" :
 { "Indianapolis": 648,
 "New York": 0,
 "Tokyo": 6760,
 "London": 3470 },

"Tokyo" :
 { "Indianapolis": 6476,
 "New York": 6760,
 "Tokyo": 0,
 "London": 5956 },

"London" :
 { "Indianapolis": 4000,
 "New York": 3470,
 "Tokyo": 5956,
 "London": 0 },
 };

This data structure is another way of representing the distance data used to
describe two-dimension arrays. This is another two-dimension array, but it

******ebook converter DEMO Watermarks*******

is a little different than the one previously described.

distance is a JSON object: The entire data structure is stored in a
single variable. This variable is a JSON object with name/value pairs.
The distance object has four keys: These correspond to the four
rows of the original chart.
The keys are city names: The original 2D array used numeric indices,
which are convenient but a bit artificial. In the JSON structure, the
indices are actual city names.
The value of each entry is another JSON object: The value of a
JSON element can be anything, including another JSON object. Very
complex relationships can be summarized in a single variable.
Each row is summarized as a JSON object: For example, the value
associated with “Indianapolis” is a list of distances from Indianapolis
to the various cities.
The entire declaration is one “line” of code: Although it is placed on
several lines in the editor (for clarity) the entire definition is really just
one line of code.

Setting up the data in this way seems a bit tedious, but it's very easy to
work with. The city names are used directly to extract data, so you can find
the distance between two cities with array-like syntax:

alert(distance["Indianapolis"]["London"]);

If you prefer, you can use the dot syntax:
alert(distance.Indianapolis.Tokyo);

You can even go with some kind of hybrid:
alert(distance["London"].Tokyo);

JSON has a number of important advantages as a data format:

Self-documenting: Even if you see the data structure on its own
without any code around it, you can tell what it means.
The use of strings as indices makes the code more readable: It's
much easier to understand distance[“Indianapolis”]
[“London”] than distance[0][3].

******ebook converter DEMO Watermarks*******

JSON data can be stored and transported as text: This turns out to
have profound implications for web programming, especially in AJAX
(the techniques described in Book VII).
JSON can describe complex relationships: The example shown here
is a simple two-dimension array, but the JSON format can be used to
describe much more complex relationships including complete
databases.
Many languages support JSON format: Many web languages now
offer direct support for JSON. The most important of these is PHP,
which is frequently used with JavaScript in AJAX applications.
JSON is more compact than XML: Another data format called XML
is frequently used to transmit complex data. However, JSON is more
compact and less “wordy” than XML.
JavaScript can read JSON natively: Some kinds of data need to be
translated before they can be used. As soon as your JavaScript program
has access to JSON data, it can be used directly.

 You might wonder whether you can embed methods in JSON
objects. The answer is yes, but this isn't usually done when you're using
JSON to transport information. In Book VII about AJAX, you see that
methods are often added to JSON objects to serve as callback functions,
but that usage won't make sense until you learn more about events.

******ebook converter DEMO Watermarks*******

Chapter 5
Getting Valid Input

In This Chapter
 Extracting data from drop-down lists
 Working with multiple-selection lists
 Getting data from check boxes and radio groups
 Validating input with regular expressions
 Using character, boundary, and repetition operators
 Using pattern memory

Getting input from the user is always nice, but sometimes users make
mistakes. Whenever you can, you want to make the user's job easier and
prevent certain kinds of mistakes.
Fortunately, you can take advantage of several tools designed exactly for
that purpose. In this chapter, you discover two main strategies for
improving user input: specialized input elements and pattern-matching.
Together, these tools can help ensure that the data the user enters is useful
and valid.

Getting Input from a Drop-Down List
The most obvious way to ensure that the user enters something valid is to
supply him with valid choices. The drop-down list is an obvious and easy
way to do this, as you can see from Figure 5-1.
The list-box approach has a lot of advantages over text field input:

The user can input with the mouse, which is faster and easier than
typing.
You shouldn't have any spelling errors because the user didn't type the
response.

******ebook converter DEMO Watermarks*******

The user knows all the answers available because they're listed.
You can be sure the user gives you a valid answer because you
supplied the possible responses.
User responses can be mapped to more complex values — for example,
you can show the user Red and have the list box return the hex value
#FF0000.

If you want to know how to build a list box with the HTML select
object, refer to Book I, Chapter 7.

Figure 5-1: The user selects from a predefined list of valid choices.

Building the form
When you're creating a predefined list of choices, create the HTML form
first because it defines all the elements you'll need for the function. The
code is a standard form:

<body>
 <form action = "">
 <h1>Please select a color</h1>
 <fieldset>
 <select id = "selColor">
 <option value = "#FFFFFF">White</option>
 <option value = "#FF0000">Red</option>
 <option value = "#FFCC00">Orange</option>
 <option value = "#FFFF00">Yellow</option>

******ebook converter DEMO Watermarks*******

 <option value = "#00FF00">Green</option>
 <option value = "#0000FF">Blue</option>
 <option value = "#663366">Indigo</option>
 <option value = "#FF00FF">Violet</option>
 </select>

<input type = "button"
 value = "change color"
 onclick = "changeColor()" />
 </fieldset>
 </form>

</body>
</html>

The select object's default behavior is to provide a drop-down list. The
first element on the list is displayed, but when the user clicks the list, the
other options appear.
A select object that the code refers to should have an id field.

 In this and most examples in this chapter, I add CSS styling to
clean up each form. Be sure to look over the styles if you want to see
how I did it. Note also that I'm only showing the HTML right now. The
entire code listing also includes JavaScript code, which I describe in the
next section.

The other element in the form is a button. When the user clicks the button,
the changeColor() function is triggered.

 Because the only element in this form is the select object, you
may want to change the background color immediately without
requiring a button click. You can do so by adding an event handler
directly onto the select object:

<select id = "selColor"
 onchange = "changeColor()">

The event handler causes the changeColor() function to be triggered
as soon as the user changes the select object's value. Typically, you'll

******ebook converter DEMO Watermarks*******

forego the user clicking a button only when the select is the only
element in the form. If the form includes several elements, processing
doesn't usually happen until the user signals she's ready by clicking a
button.

Reading the list box
Fortunately, standard drop-down lists are quite easy to read. Here's the
JavaScript code:

<script type = "text/javascript">
 // from dropdownList.html

function changeColor(){
 var selColor = document.getElementById("selColor");
 var color = selColor.value;
 document.body.style.backgroundColor = color;
 } // end function
 </script>

As you can see, the process for reading the select object is much like
working with a text-style field:

Create a variable to represent the select object. The
document.getElementById() trick works here just like it does
for text fields.
Extract the value property of the select object. The value
property of the select object reflects the value of the currently
selected option. So, if the user has chosen Yellow, the value of
selColor is “#FFFF00”.
Set the document's background color. Use the DOM mechanism to
set the body's background color to the chosen value.

Managing Multiple Selections
You can use the select object in a more powerful way than the method I
describe in the preceding section. Figure 5-2 shows a page with a multiple-
selection list box.

******ebook converter DEMO Watermarks*******

Figure 5-2: You can pick multiple choices from this list.

To make multiple selection work, you have to make a few changes to both
the HTML and the JavaScript code.

Coding a multiple selection select object
You modify the select code in two ways to make multiple selections:

Indicate multiple selections are allowed. By default, select boxes
have only one value. You'll need to set a switch to tell the browser to
allow more than one item to be selected.
Make the mode a multiline select. The standard drop-down behavior
doesn't make sense when you want multiple selections because the user
needs to see all the options at once. Most browsers automatically
switch into a multiline mode, but you should control the process
directly.

The HTML code for multiSelect.html is similar to the
dropdownList page, described in the preceding section, but note a
couple of changes.

 <body>
 <h1>Multiple Selections</h1>
 <form action = "">
 <fieldset>

******ebook converter DEMO Watermarks*******

 <label>
 Select the language(s) you know.
 (ctrl-click to select multiple lines)
 </label>
 <select id = "selLanguage"
 multiple = "multiple"
 size = "10">
 <option value = "HTML">HTML</option>
 <option value = "CSS">CSS</option>
 <option value = "JavaScript">JavaScript</option>
 <option value = "PHP">PHP</option>
 <option value = "MySQL">MySQL</option>
 <option value = "Java">Java</option>
 <option value = "VB.NET">VB.NET</option>
 <option value = "Python">Python</option>
 <option value = "Flash">Flash</option>
 <option value = "Perl">perl</option>
 </select>
 <button type = "button"
 onclick = "showChoices()">
 Submit
 </button>
 </fieldset>
 </form>

<div id = "output">

</div>
 </body>
</html>

The code isn't shocking, but it does have some important features:

Call the select object selLanguage. As usual, the form elements
need an id attribute so that you can read it in the JavaScript.
Add the multiple attribute to your select object. This attribute
tells the browser to accept multiple inputs using Shift+click (for
contiguous selections) or Ctrl+click (for more precise selection).
Set the size to 10. The size indicates the number of lines to be
displayed. I set the size to 10 because my list has ten options.
Make a button. With multiple selection, you probably won't want to
trigger the action until the user has finished making selections. A
separate button is the easiest way to make sure the code is triggered

******ebook converter DEMO Watermarks*******

when you want it to happen.
Create an output div. This code holds the response.

Writing the JavaScript code
The JavaScript code for reading a multiple-selection list box is a bit
different than the standard selection code described in the section “Reading
the list box” earlier in this chapter. The value property usually returns
one value, but a multiple-selection list box often returns more than one
result.

 The key is to recognize that a list of option objects inside a
select object is really a kind of array, not just one value. You can
look more closely at the list of objects to see which ones are selected,
which is essentially what the showChoices() function does:
<script type = "text/javascript">

 //from multi-select.html
 function showChoices(){
 //retrieve data
 var selLanguage =
document.getElementById("selLanguage");

//set up output string
 var result = "<h2>Your Languages<\/h2>";
 result += " \n";

//step through options
 for (i = 0; i < selLanguage.length; i++){
 //examine current option
 currentOption = selLanguage[i];

//print it if it has been selected
 if (currentOption.selected == true){
 result += " " + currentOption.value + "<\/li>
\n";
 } // end if
 } // end for loop

******ebook converter DEMO Watermarks*******

//finish off the list and print it out
 result += "<\/ul> \n";

output = document.getElementById("output");
 output.innerHTML = result;
 } // end showChoices
 </script>

At first, the code seems intimidating, but if you break it down, it's not too
tricky.

1. Create a variable to represent the entire select object.

The standard document.getElementById() technique works
fine.

var selLanguage =
document.getElementById("selLanguage");

2. Create a string variable to hold the output.

When you're building complex HTML output, working with a string
variable is much easier than directly writing code to the element.

var result = "<h2>Your Languages<\/h2>";

3. Build an unordered list to display the results.

An unordered list is a good way to spit out the results, so I create one in
my result variable.

result += " \n";

4. Step through selLanguage as if it were an array.

Use a for loop to examine the list box line by line. Note that
selLanguage has a length property like an array.

for (i = 0; i < selLanguage.length; i++){

5. Assign the current element to a temporary variable.

The currentOption variable holds a reference to each option
******ebook converter DEMO Watermarks*******

element in the original select object as the loop progresses.

currentOption = selLanguage[i];

6. Check to see whether the current element has been selected.

The object currentOption has a selected property that tells you
whether the object has been highlighted by the user. selected is a
Boolean property, so it's either true or false.

if (currentOption.selected == true){

7. If the element has been selected, add an entry to the output list.

If the user has highlighted this object, create an entry in the unordered
list housed in the result variable.

result += " " + currentOption.value + "<\/li>
\n";

8. Close up the list.

After the loop has finished cycling through all the objects, you can
close up the unordered list you've been building.

result += "<\/ul> \n";

9. Print results to the output div.

The output div's innerHTML property is a perfect place to print the
unordered list.

output = document.getElementById("output");
 output.innerHTML = result;

 Something strange is going on here. The options of a select box
act like an array. An unordered list is a lot like an array. Bingo! They
are arrays, just in different forms. You can think of any listed data as an
array. Sometimes you organize the data like a list (for display),

******ebook converter DEMO Watermarks*******

sometimes like an array (for storage in memory), and sometimes it's a
select group (for user input). Now you're starting to think like a
programmer!

Check, Please: Reading Check Boxes
Check boxes fulfill another useful data input function. They're useful any
time you have Boolean data. If some value can be true or false, a check box
is a good tool. Figure 5-3 illustrates a page that responds to check boxes.

 Check boxes are independent of each other. Although they're
often found in groups, any check box can be checked or unchecked
regardless of the status of its neighbors.

Figure 5-3: You can pick your toppings here. Choose as many as you like.

Building the check box page
To build the check box page shown in Figure 5-3, start by looking at the
HTML:

<body>
 <h1>What do you want on your pizza?</h1>
 <form action = "">

******ebook converter DEMO Watermarks*******

 <fieldset>
 <input type = "checkbox"
 id = "chkPepperoni"
 value = "pepperoni" />
 <label for = "chkPepperoni">Pepperoni</label>
 <input type = "checkbox"
 id = "chkMushroom"
 value = "mushrooms" />
 <label for = "chkMushroom">Mushrooms</label>
 <input type = "checkbox"
 id = "chkSausage"
 value = "sausage" />
 <label for = "chkSausage">Sausage</label>
 <button type = "button"
 onclick = "order()">
 Order Pizza
 </button>
 </fieldset>
 </form>
 <h2>Your order:</h2>
 <div id = "output">
 </div>
 </body>

Each check box is an individual input element. Note that check box
values aren't displayed. Instead, a label (or similar text) is usually placed
after the check box. A button calls an order() function.

 Note the labels have a for attribute which connects each label to
the corresponding check box. When you connect a label to a check box
in this way, the user can activate the check box by clicking on the box
or the label. This provides a larger target for the user, making their life
easier. Happy users make fewer mistakes, which makes your life easier.

Responding to the check boxes
Check boxes don't require a lot of care and feeding. After you extract it, the
check box has two critical properties:

You can use the value property to store a value associated with the
check box (just like you do with text fields in Chapter 2 of this
minibook).

******ebook converter DEMO Watermarks*******

The checked property is a Boolean value, indicating whether the
check box is checked or not.

The code for the order() function shows how it's done:
//from checkBoxes.html

 function order(){
 //get variables
 var chkPepperoni =
document.getElementById("chkPepperoni");
 var chkMushroom =
document.getElementById("chkMushroom");
 var chkSausage = document.getElementById("chkSausage");
 var output = document.getElementById("output");
 var result = " \n"
 if (chkPepperoni.checked){
 result += "" + chkPepperoni.value + " \n";
 } // end if
 if (chkMushroom.checked){
 result += "" + chkMushroom.value + " \n";
 } // end if
 if (chkSausage.checked){
 result += "" + chkSausage.value + " \n";
 } // end if
 result += " \n"
 output.innerHTML = result;
 } // end function

For each check box,

1. Determine whether the check box is checked.

Use the checked property as a condition.

2. If so, return the value property associated with the check box.

 Often, in practice, the value property is left out. The important
thing is whether the check box is checked. If chkMushroom is
checked, the user obviously wants mushrooms, so you may not need to
explicitly store that data in the check box itself.

******ebook converter DEMO Watermarks*******

Working with Radio Buttons
Radio button groups appear pretty simple, but they're more complex than
they seem. Figure 5-4 shows a page using radio button selection.

Figure 5-4: One and only one member of a radio group can be selected at one time.

The most important thing to remember about radio buttons is that, like
wildebeests and power-walkers, they must be in groups. Each group of
radio buttons has only one button active. The group should be set up so that
one button is always active.
You specify the radio button group in the HTML code. Each element of the
group can still have a unique id (which comes in handy for associating
with a label). Look over the code, and you'll notice something interesting.
All the radio buttons have the same name!

<body>
 <h1>With what weapon will you fight the dragon?</h1>
 <form action = "">
 <fieldset>
 <input type = "radio"
 name = "weapon"
 id = "radSpoon"
 value = "spoon"
 checked = "checked" />
 <label for = "radSpoon">Spoon</label>
 <input type = "radio"

******ebook converter DEMO Watermarks*******

 name = "weapon"
 id = "radFlower"
 value = "flower" />
 <label for = "radFlower">Flower</label>
 <input type = "radio"
 name = "weapon"
 id = "radNoodle"
 value = "wet noodle" />
 <label for = "radNoodle">Wet Noodle</label>
 <button type = "button"
 onclick = "fight()">
 fight the dragon
 </button>
 </fieldset>
 </form>
 <div id = "output">
 </div>
 </body>

Using a name attribute when everything else has an id seems a little odd,
but you do it for a good reason. The name attribute is used to indicate the
group of radio buttons. Because all the buttons in this group have the same
name, they're related, and only one of them will be selected. Each button
can still have a unique ID (and in fact it does). The ID is still useful for
associating a label with the button. Once again, this provides a larger click
target so the user can click on either the button or the label associated with
that button.
The browser recognizes this behavior and automatically unselects the other
buttons in the group whenever one is selected.
I added a label to describe what each radio button means.

 You need to preset one of the radio buttons to true with the
checked = “checked” attribute. If you fail to do so, you have to
add code to account for the possibility that there is no answer at all.

Interpreting Radio Buttons
Getting information from a group of radio buttons requires a slightly
different technique than most of the form elements. Unlike the select

******ebook converter DEMO Watermarks*******

object, there is no container object that can return a simple value. You also
can't just go through every radio button on the page because you may have
more than one group. (Imagine a page with a multiple-choice test.)
This issue is where the name attribute comes in. Although ids must be
unique, multiple elements on a page can have the same name. If they do,
you can treat these elements as an array.
Look over the code to see how it works:

// from radioGroup.html
 function fight(){
 var weapon = document.getElementsByName("weapon");
 for (i = 0; i < weapon.length; i++){
 currentWeapon = weapon[i];
 if (currentWeapon.checked){
 var selectedWeapon = currentWeapon.value;
 } // end if
 } // end for
 var output = document.getElementById("output");
 var response = "<h2>You defeated the dragon with a ";
 response += selectedWeapon + "</h2> \n";
 output.innerHTML = response;
 } // end function

This code looks much like all the other code in this chapter, but it has a
sneaky difference:

It uses getElementsByName to retrieve an array of elements
with this name. Now that you're comfortable with
getElementById, I throw a monkey wrench in the works. Note that
it's plural — getElementsByName — because this tool is used to
extract an array of elements. It returns an array of elements. (In this
case, all the radio buttons in the weapon group.)
It treats the result as an array. The resulting variable (weapon in
this example) is an array. As usual, the most common thing to do with
arrays is process them with loops. Use a for loop to step through each
element in the array.
Assign each element of the array to currentWeapon. This
variable holds a reference to the current radio button.
Check to see whether the current weapon is checked. The
checked property indicates whether any radio button is checked.

******ebook converter DEMO Watermarks*******

If so, retain the value of the radio button. If a radio button is
checked, its value is the current value of the group, so store it in a
variable for later use.
Output the results. You can now process the results as you would
with data from any other resource.

Working with Regular Expressions
Having the right kinds of form elements can be helpful, but things can still
go wrong. Sometimes, you have to let the user type things, and that
information must be in a particular format. As an example, take a look at
Figure 5-5.
A mechanism that checks whether input from a form is in the correct
format would be great. This program implements such a feature, checking
whether there is content in every field and ensuring the e-mail address and
phone number are formatted correctly. You can create this kind of testing
feature with string functions, but it can be really messy. Imagine how many
if statements and string methods it would take to enforce the following
rules on this page:

Figure 5-5: This page is a mess. No username, plus an invalid e-mail and phone number.

******ebook converter DEMO Watermarks*******

An entry must appear in each field. This one is reasonably easy —
just check for non-null values.
The e-mail must be in a valid format. That is, it must consist of a few
characters, an “at” sign (@), a few more characters, a period, and a
domain name of two to four characters. That format would be a real
pain to check for.
The phone number must also be in a valid format. Phone numbers
can appear in multiple formats, but assume that you require an area
code in parentheses, followed by an optional space, followed by three
digits, a dash, and four digits. All digits must be numeric.

Although you can enforce these rules, it would be extremely difficult to do
so using ordinary string manipulation tools.
JavaScript strings have a match method, which helps find a substring
inside a larger string. This tool is good, but we're not simply looking for
specific text, but patterns of text. For example, we want to know whether
something's an e-mail address (text, an @, more text, a period, and two to
four more characters).
Imagine how difficult that code would be to write, and then take a look at
the code for the validate.html page:

<script type = "text/javascript">
 function validate(){
 // get inputs
 name = document.getElementById("txtName").value;
 email = document.getElementById("txtEmail").value;
 phone = document.getElementById("txtPhone").value;

//create an empty error message
 errors = "";

//check name - It simply needs to exist
 if (name == ""){
 errors += "please supply a name \n";
 } // end if

//check email
 emailRE = /^.+@.+\..{2,4}$/;
 if (email.match(emailRE)){
 //console.log("email match");

******ebook converter DEMO Watermarks*******

 //do nothing.
 } else {
 //console.log("email not a match");
 errors += "please check email address \n";
 } // end if

//check phone number
 phoneRE = /^\(\d{3}\) *\d{3}-\d{4}$/;
 if (phone.match(phoneRE)){
 //console.log("phone matches");
 //do nothing
 } else {
 //console.log("phone problem");
 errors += "please check phone #\n";
 } // end phone if

//check for errors
 if (errors == ""){
 alert ("now processing data");
 //process the form
 } else {
 alert(errors);
 } // end if

} // end function

 I only show the JavaScript code here to save space. Look on the
website to see how the HTML and CSS are written.

The code isn't really all that difficult!

It extracts data from the form. It does so in the usual way.
The validation is a series of nested if statements. Look at the
overall structure. The if statements go three layers deep.
The name check is very simple. The only way it can go wrong is to
have no name.
Don't check anything else if the name is wrong. If the name isn't
right, you don't need to check the other things.
Build a regular expression. This verification seems pretty simple until

******ebook converter DEMO Watermarks*******

you look at the line that contains the emailRE = /^.+@.+\..
{2,4}$/; business. That line looks like a cursing cartoonist. The
weird-looking text is a regular expression and the key to this program.
For now, just accept it as a magic incantation. I explain it in a moment,
but focus on the big picture here.
Match the regular expression against the e-mail address. The next
line checks to see whether the e-mail address is a match to the regular
expression. The result is true if the expression matches an e-mail
address or null if it doesn't.
Check the phone number. Once again, the phone number check is
simple except the match business, which is just as mysterious: /^\
(\d{3}\) *\d{3}-\d{4}$/ (seriously, who makes this stuff
up?). That's another regular expression.
If everything worked, process the form. Usually, at this point, you
call some sort of function to finish handling the form processing.

 Frequently, you do validation in JavaScript before you pass
information to a program on the server. This way, your server program
already knows the data is valid by the time it gets there. Look ahead to
AJAX in Book VII, Chapter 1 to see how this is done.

Introducing regular expressions
Of course, the secret of this program is to decode the mystical expressions
used in the match statements. They aren't really strings at all, but very
powerful text-manipulation techniques called regular expression parsing.
Regular expressions have migrated from the Unix world into many
programming languages, including JavaScript.
A regular expression is a powerful mini-language for searching and
replacing text patterns. Essentially, what it does is allow you to search for
complex patterns and expressions. It's a weird-looking language, but it has
a certain charm once you know how to read the arcane-looking
expressions.

******ebook converter DEMO Watermarks*******

 Regular expressions are normally used with the string match()
method in JavaScript, but you can also use them with the replace()
method and a few other places.

Table 5-1 summarizes the main operators in JavaScript regular expressions.

******ebook converter DEMO Watermarks*******

Don't memorize this table! I explain in the rest of this chapter exactly how
regular expressions work. Keep Table 5-1 handy as a reference.
To see how regular expressions work, take a look at regex.html in
Figure 5-6.

******ebook converter DEMO Watermarks*******

Figure 5-6: This tool allows you to test regular expressions.

The top textbox accepts a regular expression, and the second text field
contains text to examine. You can practice the examples in the following
sections to see how regular expressions work. They're really quite useful
after you get the hang of them. While you walk through the examples, try
them out in this tester. (I include it on the website for you, but I don't
reproduce the code here. Of course you're always welcome to view the
source code.)

Using characters in regular expressions
The main thing you do with a regular expression is search for text. Say that
you work for the bigCorp company, and you ask for employee e-mail
addresses. You can make a form that accepts only e-mail addresses with
the term bigCorp in them by using the following code:

if (email.match(/bigCorp/)){
 alert("match");
} else {
 alert("no match");
} // end if

The text in the match() method is enclosed in slashes (/) rather than
quote symbols because the expression isn't technically a string; it's a
regular expression. The slashes help the interpreter realize this special kind
of text requires additional processing.

******ebook converter DEMO Watermarks*******

 If you forget and enclose a regular expression inside quotes, it
will still work most of the time. JavaScript tries to convert string values
into regular expressions when it needs to. However, if you've ever
watched a science fiction movie, you know it's generally not best to
trust computers. Use the slash characters to explicitly coerce the text
into regular expression format. I'm not saying your computer will take
over the world if you don't, but you never can tell. . . .

This match is the simplest type. I'm simply looking for the existence of the
needle (bigCorp) in a haystack (the e-mail address stored in email). If
bigCorp is found anywhere in the text, the match is true, and I can do what
I want (usually process the form on the server). More often, you want to
trap for an error and remind the user what needs to be fixed.

Marking the beginning and end of the line
You may want to improve the search because what you really want are
addresses that end with bigCorp.com. You can put a special character
inside the match string to indicate where the end of the line should be:

if (email.match(/bigCorp.com$/)){
 alert("match");
} else {
 alert("no match");
} // end if

The dollar sign at the end of the match string indicates that this part of the
text should occur at the end of the search string, so andy@bigCorp.com is a
match, but not bigCorp.com announces a new Website.

 If you're an ace with regular expressions, you know this example
has a minor problem, but it's pretty picky. I explain it in the upcoming
“Working with special characters” section. For now, just appreciate that
you can include the end of the string as a search parameter.

Likewise, you can use the caret character (^) to indicate the beginning of a
string.

******ebook converter DEMO Watermarks*******

http://bigCorp.com

If you want to ensure that a text field contains only the phrase oogie boogie
(and why wouldn't you?), you can tack on the beginning and ending
markers. The code /^oogie boogie$/ is a true match only if nothing
else appears in the phrase.

Working with special characters
In addition to ordinary text, you can use a bunch of special character
symbols for more flexible matching:

Matching a character with the period: The most powerful character
is the period (.), which represents a single character. Any single
character except the newline (\n) matches against the period. A
character that matches any character may seem silly, but it's actually
quite powerful. The expression /b.g/ matches big, bag, and bug. In
fact, it matches any phrase that contains b followed by any single
character and then g, so bxg, b g, and b9g are also matches.
Using a character class: You can specify a list of characters in square
braces, and JavaScript matches if any one of those characters matches.
This list of characters is sometimes called a character class. For
example, /b[aeiou]g/ matches on bag, beg, big, bog, or bug. This
method is a really quick way to check a lot of potential matches.

You can also specify a character class with a range. [a-zA-Z] checks
all the letters.

Specifying digits: One of the most common tricks is to look for
numbers. The special character \d represents a number (0–9). You can
check for a U.S. phone number (without the area code — yet) using a
pattern that looks for three digits, a dash, and four digits: /\d\d\d-
\d\d\d\d/.
Marking punctuation characters: You can tell that regular
expressions use a lot of funky characters, such as periods and braces.
What if you're searching for one of these characters? Just use a
backslash to indicate that you're looking for the actual character and
not using it as a modifier. For example, the e-mail address would be
better searched with bigCorp\.com because it specifies there must

******ebook converter DEMO Watermarks*******

http://bigCorp\.com

be a period. If you don't use the backslash, the regular expression tool
interprets the period as “any character” and allows something like
bigCorpucom. Use the backslash trick for most punctuation, such as
parentheses, braces, periods, and slashes.

If you want to include an area code with parentheses, just use
backslashes to indicate the parentheses: /\(\d\d\d\) \d\d\d-
\d\d\d\d/. And if you want to ensure the only thing in the sample is
the phone number, just add the boundary characters: /^\(\d\d\d\)
\d\d\d \d\d\d\d$/.

Finding word boundaries: Sometimes you want to know whether
something is a word. Say that you're searching for the, but you don't
want a false positive on breathe or theater. The \b character means
“the edge of a word,” so /\bthe\b/ matches the but not words
containing “the” inside them.

Conducting repetition operations
All the character modifiers refer to one particular character at a time, but
sometimes you want to deal with several characters at once. Several
operators can help you with this process.

Finding one or more elements: The plus sign (+) indicates “one or
more” of the preceding character, so the pattern /ab+c/ matches on
abc, abbbbbbc, or abbbbbbbc, but not on ac (there must be at least one
b) or on afc (it's gotta be b).
Matching zero or more elements: The asterisk means “zero or more”
of the preceding character. So /I'm .* happy/ matches on I'm
happy (zero occurrences of any character between I'm and happy). It
also matches on I'm not happy (because characters appear in between).

The .* combination is especially useful, because you can use it to
improve matches like e-mail addresses: /^.*@bigCorp\.com$/
does a pretty good job of matching e-mail addresses in a fictional
company.

******ebook converter DEMO Watermarks*******

Specifying the number of matches: You can use braces ({}) to
indicate the specific number of times the preceding character should be
repeated. For example, you can rewrite a phone number pattern as /\
(\d{3}\) *\d{3}-\d{4}/. This structure means “three digits in
parentheses, followed by any number of spaces (zero or more), and
then three digits, a dash, and four digits. Using this pattern, you can tell
whether the user has entered the phone number in a valid format.

You can also specify a minimum and maximum number of matches, so
/[aeiou]{1, 3}/ means “at least one and no more than three
vowels.”

Now you can improve the e-mail pattern so that it includes any number
of characters, an @ sign, and ends with a period and two to four letters:
/^.+@.+\..{2,4}$/.

 A regular expression can check to see if an e-mail address
matches the right pattern, but it can't tell if it's a valid address that really
exists on the Internet. You actually have to try to send an e-mail to see
if it's valid, which is beyond the scope of JavaScript. (I show how to
send e-mails through PHP in Book V.)

Working with pattern memory
Sometimes you want to remember a piece of your pattern and reuse it. You
can use parentheses to group a chunk of the pattern and remember it. For
example, /(foo){2}/ doesn't match on foo, but it does on foofoo. It's the
entire segment that's repeated twice.
You can also refer to a stored pattern later in the expression. The pattern
/^(.).*\1$/ matches any word or phrase that begins and ends with the
same character. The \1 symbol represents the first pattern in the string; \2
represents the second, and so on.
After you've finished a pattern match, the remembered patterns are still
available in special variables. The variable $1 is the first pattern stored; $2
is the second, and so on. You can use this trick to look for HTML tags and

******ebook converter DEMO Watermarks*******

report what tag was found: Match ^<(.*)>.*<\/\1>$ and then print
$1 to see what the tag was.

There's much more to discover about regular expressions, but this basic
overview should give you enough to write some powerful and useful
patterns.

New HTML5/CSS3 Tricks for
Validation

HTML5 and CSS3 add a few more tricks to simplify validation, and they
are absolutely wonderful.
While you can always use JavaScript and regular expressions to validate
your pages (as described in this chapter), HTML5 promises a much easier
solution. When you use the special-purpose input elements (described in
Book I, Chapter 7), the browser will automatically check the form field to
ensure it is in a proper format. If the entry is not valid, the form will
(generally) not submit, and the special :invalid CSS pseudo-class will
be associated with the invalid field. Simply supply CSS to your page
handling the :invalid state:

:invalid {
 background-color: red;
 }

When this CSS state is active, any invalid fields will have the :invalid
styling. For example, if you have an email field defined and the content
of that field is not a valid e-mail address, the invalid style will be
applied. As soon as the address is in the right format, the invalid style
will be removed.
The developer doesn't need to add any other code to the form. Simply add
CSS to display invalid entries, and the browser will do the rest. You don't
even need to specify the regular expression for e-mail addresses or any
other specialty input fields — the appropriate regular expression for each
field type is already built in.
Note that if a field is required (with the required attribute), it will be
considered invalid until it contains some value.

******ebook converter DEMO Watermarks*******

It is possible that the browser will refuse to process a form until all fields
are validated, but this behavior does not yet seem to be universal among
HTML5-compliant browsers.
If you wish, you can turn off the validation for any field by adding the
novalidate attribute to that element.
Figure 5-7 shows the newElements.html page from Book I, Chapter 7
modified with a nice style sheet and the validation modifiers in place. Note
that the name field is required and the e-mail address is invalid, so these
fields show the red background I specified for invalid fields.

Figure 5-7: The new HTML5 form elements have automatic validation.

Please look over the code for html5validation.html on the website
— the code hasn't changed substantially from Book
I, Chapter 7. The CSS code is new, so I reproduce that here:

<style type = "text/css">
 fieldset {
 width: 600px;
 background-color: #EEEEEE;
 margin-left: auto;
 margin-right: auto;
 box-shadow: 5px 5px 5px gray;
 }
 label {
 float: left;
 clear: left;

******ebook converter DEMO Watermarks*******

 width: 250px;
 text-align: right;
 padding-right: 1em;
 }

input {
 float: left;
 }

 :required {
 border: 1px solid red;
 }

 :invalid {
 color: white;
 background-color: red;
 }

button {
 display: block;
 margin-left: auto;
 margin-right: auto;
 clear: both;
 }
 </style>

Adding a pattern
The pattern attribute allows you to specify a regular expression used to
validate the form. If the content matches the regular expression, the field
will be considered valid. (See the “Working with Regular Expressions”
section of this chapter for more details.) The pattern attribute should be
used only when the standard validation techniques are not sufficient (that
is, you're using an ordinary input element that doesn't have an automatic
pattern) because it can be difficult to debug regular expressions.

<input type = "text"
 id = "txtPhone"
 pattern = "\(\d{3}\) +\d{3}-\d{4}"
 title = "(ddd) ddd-dddd" />

When you specify a pattern, you should also include a title attribute.
The title should indicate what the pattern is. The browser can use this as a
tip for the user. It may also be useful to add pattern information as

******ebook converter DEMO Watermarks*******

placeholder text. (See the placeholder attribute later.)

Marking a field as required
The required attribute allows you to specify a particular field as
required. Supporting browsers will mark all required fields (perhaps by
highlighting them in red) if they are not filled in. Some browsers will also
send a warning if the user tries to submit a form with empty required fields.

<input type = "text"
 required />

The special :required pseudo-class allows you to apply a CSS style to
all required elements in your form (giving them a border or background-
color, for example). Here's an example of a CSS style for marking required
elements with a red border:

:required {
 border: 1px solid red;
 }

If you have a required field and it has no content, that field will trigger the
invalid style.

Adding placeholder text
The placeholder attribute allows you to add a special placeholder
value in your text fields. This placeholder acts as a temporary label
showing the purpose of the field without requiring a label tag. As soon as
the user activates the field, the placeholder text disappears.

<input type = "text"
 placeholder = "Name" />

Not all browsers support placeholder text. Other browsers will simply
ignore the placeholder attribute. Likewise, if the field is already filled
in, the placeholder will not be visible. For these reasons, it is still preferred
to add a label so users know what to type in each text area. Placeholder text
is especially helpful when it is used to indicate how the input should be
formatted (especially if this will be enforced by validation or a pattern).

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 6
Drawing on the Canvas

In This Chapter
 Adding a canvas to your HTML page
 Drawing paths and geometric shapes
 Working with images
 Pixel manipulation

The canvas element is one of the most interesting new developments in
HTML5. Although the <canvas> tag is an HTML tag, it really isn't
interesting without JavaScript programming. The <canvas> tag provides
a graphics context, which is an area of the page that can be drawn upon
with JavaScript commands.
The <canvas> tag supplies a rich toolkit of drawing operations that may
very well revolutionize the web. Innovations in the <canvas> tag along
with advances in the speed of JavaScript engines may very well lead to
new uses of the web. A number of developers have developed games with
the <canvas> tag and JavaScript that would have required Flash or Java
just a few years ago. Also, the flexibility of <canvas> could lead to
entirely new visual tools and widgets that are not based on HTML, which
could have profound implications on usability and user interfaces.
The <canvas> tag is supported by all current browsers.

Although many of the features of the <canvas> element (shadows,
transformations, and images) are available through other parts of the
HTML5 universe, the implementation of the various <canvas> elements
is identical on all browsers that support the platform. This universal
support makes the canvas ideal for animation applications.

Canvas Basics
Begin with a simple demonstration of the <canvas> tag. The canvas

******ebook converter DEMO Watermarks*******

variation of “Hello World” creates a simple canvas and draws a rectangle
on it.

Setting up the canvas
To use the <canvas> tag, build a web page with a <canvas> element in
it. Typically you'll provide width, height, and id parameters:

<canvas id = "drawing"
 width = "200"
 height = "200">
 <p>Your browser does not support the canvas tag...</p>
 </canvas>

Inside the <canvas> tag, you can put any HTML code you wish. This
code will appear if the browser does not support the <canvas> tag.
Typically, you'll just put some sort of message letting the user know what
she's missing.
Nothing interesting happens in a canvas without some kind of JavaScript
code. Often you'll use a function to draw on the screen. Here's my draw()
function, which is called by the body onload event:

function draw(){
 //from basicCanvas.html
 var canvas = document.getElementById("surface");
 if (canvas.getContext){
 var con = canvas.getContext('2d');
 con.fillStyle = “rgb(255,255,0)”;
 con.fillRect(40,140,150,50);
 } // end if
 } // end draw

Figure 6-1 illustrates the page created with this code:

******ebook converter DEMO Watermarks*******

Figure 6-1: This rectangle was created through code.

The draw() function illustrates all of the main ideas of working with the
canvas tag. Here's how you build a basic drawing:

Create a variable reference to the canvas: Use the standard
getElementById() mechanism to create a variable referring to the
canvas.
Extract the graphics context from the canvas: Canvas elements have
a graphics context, which is a special object that encapsulates all the
drawing methods the canvas can perform. Most browsers support a 2D
context now, but 3D contexts are beginning to appear as well.
Set the context's fillStyle: The fillStyle indicates how you
will color filled-in areas (like rectangles). The basic approach is to
supply a CSS color value. See the section “Fill and Stroke Styles” for
information on how to fill with colors, gradients, or image patterns.
Create a filled-in rectangle: The graphics context has a few built-in
shapes. The rectangle shape is pretty easy to build. It expects four
parameters: x, y, width, and height. The x and y parameters
indicate the position of the rectangle's top left corner, and the width
and height parameters indicate the size of the rectangle. All
measurements are in pixels. See the “Drawing Essential Shapes”
section for more information on the various types of primitive shapes

******ebook converter DEMO Watermarks*******

you can build.

How <canvas> works
I go into detail throughout this chapter, but it's helpful to begin with an
overview of the way <canvas> works and what it does in general.

There are really only two main drawing functions in <canvas>: fill
and stroke. Most drawing is done as a two-step process. First you define
some sort of shape (a rectangle, an arc, a series of lines) and then you tell
the canvas to draw with a stroke or a fill. A stroke simply draws a line, so if
you stroke a rectangle, you'll see the outline of the rectangle, but it will not
be filled in. The fill draws the filled-in shape, so a filled rectangle will
show the interior of the rectangle.
You can specify a fillStyle, which specifies the color and pattern of
subsequent fill commands. You can also indicate a strokeStyle, which
determines how subsequent stroke commands will be drawn.
More complex shapes are drawn with a mechanism called paths, which are
a series of line-drawing instructions. You can use paths to create strokes or
filled-in shapes.
You can draw images onto a canvas. You can draw an entire image, or part
of an image onto the canvas.
You can also draw text directly onto the canvas in various fonts and colors.
You can add shadow effects to your text elements, or even images.
The canvas object gives you access to the underlying data of an image.
This allows you to perform any kind of transformation you wish on image
data, including color balancing, adjusting brightness, and so on.
It's possible to add transformations to any of your objects. Transformations
allow you to move, resize, or rotate any element (text, drawing, image) you
place on the canvas.
Finally, you can use JavaScript's animation and user interface tools to build
your own animations that move an element around in real time or under
user control.

******ebook converter DEMO Watermarks*******

Fill and Stroke Styles
Nearly every operation in the canvas implements a fill or stroke style. To
get the most out of canvas, you need to understand how they work. There
are three primary types of styles that can be used on fills and strokes:
colors, gradients, and patterns.

Colors
There are a number of places where you can indicate a color value in the
canvas API. In general, you can use the same color tools you use in CSS
and HTML:

Six-digit hex values: The most common way to manage colors is with
the same six-digit hexadecimal scheme commonly used in CSS, with
two digits each for red, green, and blue. The value begins with a pound
sign. For example, #FF0000 is red, and #FFFF00 is yellow.
Three-digit hex values: Hex color values often use repeating values,
so you can abbreviate these values as three-digit numbers. In this
scheme, red is #F00 and yellow is #FF0
Color names: You can often use color names, like “red” or “yellow.”
Common color names usually work, but not all browsers support the
same list of color names, so “papaya whip” is not likely to be
supported. (It sounds more like a dessert recipe than a color to me
anyway.)
rgb and rgba values: You can use the rgb() function to create
colors using integers (0–255) or percentages (0%–100%). Red would
be rgb(255, 0, 0), and yellow is rgb(100%, 100%, 0%).
Note that the rgb function must go in quotes like any other color
value. If you want to include alpha, add a fourth parameter that is a 0–1
value. Transparent red would be rgba(255, 0, 0, 0.5).
hsl and hsla: The new hsl and hsla color formats are supposed
to be supported by the <canvas> element, but so far the support for
these features varies by browser.

Note that the various values for a color are always enclosed in quotes. The

******ebook converter DEMO Watermarks*******

color parameter is a string that can be interpreted as a CSS color.

Gradients
You can also fill a shape with a gradient. Canvas gradients are defined in
two steps:

Create a gradient object: There are two methods built into the context
object for this. One builds linear gradients, and the other builds radial
gradients.
Add color stops: A color stop is a special element that indicates a
color to be added to the gradient. You can add as many colors as you
wish, and you can also specify where along the gradient pattern the
color will appear.

The following code builds a radial gradient and a linear gradient on a
canvas.

function draw(){
 //from gradient.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

//build a linear gradient
 lGrad = con.createLinearGradient(0,0,100,200);

lGrad.addColorStop(0, "#FF0000");
 lGrad.addColorStop(.5, "#00FF00");
 lGrad.addColorStop(1, "#0000FF");

con.fillStyle = lGrad;
 con.fillRect(0, 0, 100, 200);

//build a radial gradient
 rGrad = con.createRadialGradient(150, 100,
 0, 150, 100, 100);
 rGrad.addColorStop(0, "#FF0000");
 rGrad.addColorStop(.5, "#00FF00");
 rGrad.addColorStop(1, "#0000FF");

con.fillStyle = rGrad;
 con.fillRect(100,0, 200, 200);

******ebook converter DEMO Watermarks*******

} // end draw

The output of this code is shown in Figure 6-2.

Figure 6-2: These gradient patterns were created by code.

A linear gradient is a pattern of colors that blend into each other along a
straight-line path. To define a linear gradient:

Create a variable to hold the gradient: Gradients are a little more
complex than simple colors, so they are stored in variables so they can
be re-used.
Build the gradient: Use the createLinearGradient() method
of the context object to build a linear gradient.
Define the gradient path: The createLinearGradient()
method expects four parameters. These define a line (x1, y1, x2, y2).
The colors are perpendicular to this line, so if you want horizontal
color bands, draw a vertical line. If you want vertical color bands, draw
a horizontal line. In my example, I drew a diagonal line for diagonal
colors. The line typically takes up the entire width or height of the
element, but it does not have to. If the line is smaller than the image,
the excess area is automatically assigned a color from the nearest end
of the gradient.

******ebook converter DEMO Watermarks*******

Add color stops: Gradients aren't much fun without colors. The
addColorStop() method of the gradient object allows you to add a
color to the gradient. Each color stop has two parameters: position
and color. The position is a 0–1 value indicating where on the
gradient line the color should be positioned. 0 is the beginning, 1 is the
end, and intermediate values are in the middle. The color parameter is a
text value that can be evaluated as a CSS color. You can use any of the
mechanisms described in the color section of this part. At a minimum,
you should define two color stops, one for the beginning, and one for
the end.
Apply the gradient as a fill pattern: If you want to use the gradient as
a fill pattern, set the context's fillStyle to the gradient variable you
just created. All subsequent fills will be done using the gradient pattern
until the fillStyle is changed to something else.

Radial gradients are similar. Rather than drawing a gradient in a straight
line, they draw a series of circular color bands. The first color is the center
of the circle, and the last color defines an outer radius. Building a radial
gradient is very similar to building a linear gradient. The only difference is
the create command.
Use the console object's createRadialGradient() method to build
a radial gradient. This command actually takes six parameters:

beginX: The X position of the starting point. This is often in the
center of your shape.
beginY: Along with centerX, this determines the beginning
position of your gradient.
beginRadius: The radius of your center circle. Usually this is 0, but
you can make it larger if you want to emphasize the center color more.
endX: Describes the X position of the ending circle. Typically this is
the same as beginX.
endY: Along with endX, endY defines the position of the ending
circle. If the beginning and ending circles have the same positions,
you'll get a circular gradient. Change the ending position to make the
gradient stretch in a particular direction.

******ebook converter DEMO Watermarks*******

endRadius: The ending radius defines where the last color gradient
will be placed. Smaller values for this radius will lead to a tightly
grouped gradient, and larger values will spread the gradient along a
larger area.After the gradient is defined, the addColorStops()
method works exactly like it does for linear gradients. The variable
created through the addRadialGradient() command is usually
stored in a variable, where it can be used for subsequent
fillStyle() requests.

Patterns
A pattern is used to define an image to be used as a fill or stroke. You can
use any image as a pattern, but it's generally best to find or create an image
that is designed to be tiled. (See Book VIII, Chapter 4 for complete
information on how to build tiled patterns using free software.) Many
sources of tiled patterns exist on the web as well. After you've got an image
you want to use as a fill pattern, here's how to implement it in the
<canvas> tag:

function draw(){
 //from pattern.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var texture = document.getElementById("texture");

pFill = con.createPattern(texture, "repeat");
 con.fillStyle = pFill;

con.fillRect(10,150,190,150);

con.font = "40px sans-serif";
 con.fillText("Pattern!", 20, 80);

con.strokeStyle = pFill;
 con.lineWidth = 5;
 con.strokeRect(10, 10, 180, 100);

} // end draw

You can see the results of this code in Figure 6-3.
******ebook converter DEMO Watermarks*******

Figure 6-3: An image pattern can be applied to text and other shapes.

A pattern is simply an image. Building a pattern is relatively
straightforward:

1. Get access to an image.

You'll need a JavaScript image object to serve as the basis of your
pattern. There's a number of ways to do this, but the easiest is to create
the image somewhere in your HTML, hide it with the
display:none style, and use the standard
document.getElementById() technique to get access to your
image. (See “Drawing an image on the canvas” toward the end of this
chapter for alternate ways to load images.)

2. Create a variable for the pattern.

Like gradients, pattern fills can be reused, so store the pattern in a
variable for later reuse.

3. Build the pattern.

The context's createPattern() method creates a pattern from an
image.

******ebook converter DEMO Watermarks*******

4. Specify the pattern's repeat parameter.

The second parameter indicates how the pattern will repeat. The default
value is repeat, which repeats the pattern in both the X and Y axis
indefinitely. If your pattern is not tiled, you will see a visible seam
where the pattern repeats. You can also set the repeat value to
repeat-x, repeat-y, and no-repeat.

5. Apply the pattern variable to the fillStyle or strokeStyle.

Assign the pattern variable to the context's fillStyle and then
perform any fill operation to draw in the pattern.

Drawing Essential Shapes
A few primitive shapes can be drawn directly onto the graphics context.
The most common shapes are rectangles and text.

Rectangle functions
You can draw three different types of rectangles:

clearRect(x, y, w, h): Erases a rectangle with the upper-left
corner (x,y) and size (w,h). Generally, erasing draws in the
background color.
fillRect(x, y, w, h): Draws a box with upper-left corner
(x,y) and size (w,h). The rectangle is filled in with the currently-
defined fillStyle.
strokeRect(x, y, w, h): Draws a box with upper-left corner
(x,y) and size (w,h). The box is not filled in, but the outline is drawn
in the currently-defined strokeStyle and using the current
lineWidth.

Figure 6-4 illustrates a couple of rectangles.

******ebook converter DEMO Watermarks*******

Figure 6-4: You can easily draw rectangles on a canvas.

Here's the code that generates Figure 6-4:
function draw(){
 //from rectangle.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

con.fillStyle = "red";
 con.strokeStyle = "green";
 con.lineWidth = "5";

con.fillRect(10, 10, 180, 80);
 con.strokeRect(10, 100, 180, 80);

} // end draw

Drawing text
The <canvas> tag has complete support for text. You can add text
anywhere on the canvas, using whichever font style and size you wish.
Figure 6-5 shows a canvas with embedded text.

******ebook converter DEMO Watermarks*******

Figure 6-5: Text is embedded into the canvas.

Text is drawn onto canvas much like a rectangle. The first step is to pick
the desired font. Canvas fonts are created by assigning a font to the
context's font attribute. Fonts are defined like the single-string font
assignment in CSS. You can specify all of the font characteristics in the
same order you do when using the font shortcut: style, variant, weight, size,
and family.
When you're ready to display actual text on the screen, use the
fillText() method, which accepts three parameters. The first
parameter is the text to display. The last two parameters are the X and Y
position of the left-hand side of the text. The following code is used to
produce the result shown in Figure 6-5. When the strokeStyle is not
explicitly set, the stroke is black by default.

function draw(){
 //from text.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

//clear background
 con.fillStyle = "white";
 con.fillRect(0,0, 200, 200);

// draw font in red
 con.fillStyle = "red";

******ebook converter DEMO Watermarks*******

 con.font = "20pt sans-serif";
 con.fillText("Canvas Rocks!", 5, 100);
 con.strokeText("Canvas Rocks!", 5, 130);

} // end draw

Adding shadows
You can add shadows to anything you draw on the canvas. Shadows are
quite easy to build. They require a number of methods of the context
object:

shadowOffsetX: Determines how much the shadow will be moved
along the X axis. Normally this will be a value between 0 and 5. A
positive value moves the shadow to the right of an object. Change this
value and the shadowOffsetY value to alter where the light source
appears to be.
shadowOffsetY: Determines how far the shadow is moved along
the Y axis. A positive value moves the shadow below the object. In
general, all shadows on a page should have the same X and Y offsets to
indicate consistent lighting. The size of the offset values implies how
high the element is “lifted” off the page.
shadowColor: The shadow color indicates the color of the shadow.
Normally this is defined as black, but the color can be changed to other
values if you wish.
shadowBlur: The shadowBlur effect determines how much the
shadow is softened. If this is set to 0, the shadow is extremely crisp
and sharp. A value of 5 leads to a much softer shadow. Shadow blur
generally lightens the shadow color.

If you apply a shadow to text, be sure that the text is still readable. Large
simple fonts are preferred, and you may need to adjust the shadow color or
blur to ensure the main text is still readable. After you've applied shadow
characteristics, all subsequent drawing commands will incorporate the
shadow. If you want to turn shadows off, set the shadowColor to a
transparent color using RGBA.
Here's the code to produce text with a shadow:

******ebook converter DEMO Watermarks*******

<!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>shadow.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 body {
 background-color: #cccccc;
 }
 </style>
 <script type = "text/javascript">
 function draw(){
 //from shadow.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

//clear background
 con.fillStyle = "white";
 con.fillRect(0,0, 200, 200);

// draw font in red
 con.fillStyle = "red";
 con.font = "18pt sans-serif";

//add shadows
 con.shadowOffsetX = 3;
 con.shadowOffsetY = 3;
 con.shadowColor = "gray";
 con.shadowBlur = 5;
 con.fillText("Canvas Rocks!", 5, 100);

} // end draw

</script>
 </head>

<body onload = "draw()">
 <h1>Shadows</h1>

<canvas id = "drawing"
 height = "200"
 width = "200">
 <p>Canvas not supported!</p>
 </canvas>

******ebook converter DEMO Watermarks*******

</body>
 </html>

An example of a shadow inside a <canvas> is shown in Figure 6-6.

Figure 6-6: You can apply a shadow to any canvas drawing, including text.

Working with Paths
More complex shapes are created using the path mechanism. A path is
simply a series of commands “played back” by the graphics context. You
can think of it as a recording of pen motions. Here's an example that draws
a blue triangle with a red border:

function draw(){
 //from pathDemo.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

con.strokeStyle = "red";
 con.fillStyle = "blue";
 con.lineWidth = "5";

con.beginPath();
 con.moveTo(100, 100);
 con.lineTo(200, 200);
 con.lineTo(200, 100);
 con.lineTo(100, 100);

******ebook converter DEMO Watermarks*******

 con.closePath();
 con.stroke();
 con.fill();
 } // end draw

The code shown here generates the output displayed in Figure 6-7.

Figure 6-7: A path can be used to draw multi-line shapes.

The technique for drawing a path is not terribly complicated, but it does
involve new steps:

1. Generate the graphics context.

All <canvas> programs begin by creating a variable for the canvas
and another variable for the graphics context.

2. Set the strokeStyle and fillStyle.

strokeStyle indicates the color of lines. The lineWidth attribute
describes how wide the line will be (in pixels), and fillStyle
indicates the color that enclosed shapes will have.

3. Begin the path.

A path is a series of drawing commands. Use the beginPath()
method to start your path definition.

******ebook converter DEMO Watermarks*******

4. Move the pen.

The moveTo(x,y) command moves the pen to a particular point on
the screen without drawing.

5. Draw lines.

The lineTo(x, y) command draws a line from the current pen
position to the indicated (x, y) coordinates. See the “Drawing
Essential Shapes” section for information on other drawing commands
for building arcs, circles, and more complex curves. (Note that the line
will still not be visible. See Step 7.)

6. Close the path.

When you're finished with a path, use the closePath() function to
indicate you are finished defining the path.

7. Stroke or fill the path.

When you define a path, it is not immediately displayed! The
stroke() command draws a line using the current stroke style and
line width along the path. If you prefer, use the fill() command to
draw a filled-in shape defined by the path. If the path did not define a
closed shape, the fill() command draws a line from the ending
point to the beginning point. The fill() command fills in the path
with the color, gradient, or pattern designated with fillStyle().

Note that the closePath() function draws a connecting line between
the first point of the path and the last point. This creates closed shapes. If
you want a path to remain open, use the stroke() command before the
closePath() command. It is still necessary to call closePath()
before creating a new path.

 Remember, the lineTo() method doesn't actually draw a line!
It simply indicates your path. The path is not visible until you execute a

******ebook converter DEMO Watermarks*******

stroke(), closePath(), or fill() command.

Line-drawing options
Whenever you are using stroke commands, you can modify the line width
and style with a number of interesting options. Figure 6-8 shows a few of
these choices.

Figure 6-8: You can modify several aspects of the stroke.

The code used to create Figure 6-8 is here:
function draw(){
 //from lineStyle.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

//change line width and color
 con.strokeStyle = "red";
 con.lineWidth = 10;

con.lineJoin = "round"
 con.beginPath();
 con.moveTo(10, 40);
 con.lineTo(20, 10);
 con.lineTo(30, 40);
 con.stroke();
 con.closePath();

******ebook converter DEMO Watermarks*******

con.strokeStyle = "blue";
 con.lineJoin = "bevel"
 con.beginPath();
 con.moveTo(40, 40);
 con.lineTo(50, 10);
 con.lineTo(60, 40);
 con.stroke();
 con.closePath();

con.lineJoin = "miter";
 con.strokeStyle = "green"
 con.beginPath();
 con.moveTo(70, 40);
 con.lineTo(80, 10);
 con.lineTo(90, 40);
 con.stroke();
 con.closePath();

//line caps
 con.lineCap = "butt";
 con.strokeStyle = "red"
 con.beginPath();
 con.moveTo(10, 100);
 con.lineTo(90, 100);
 con.stroke();
 con.closePath();

con.lineCap = "round";
 con.strokeStyle = "blue"
 con.beginPath();
 con.moveTo(10, 120);
 con.lineTo(90, 120);
 con.stroke();
 con.closePath();

con.lineCap = "square";
 con.strokeStyle = "green"
 con.beginPath();
 con.moveTo(10, 140);
 con.lineTo(90, 140);
 con.stroke();
 con.closePath();

} // end draw

While the code listing is long, it is quite repetitive. There are only a few

******ebook converter DEMO Watermarks*******

new elements:

strokeStyle: Use any of the style options (color, gradient, or
pattern) to specify how your line will be drawn.
linewidth: Specify the width of your line in pixels.
lineJoin: The lineJoin property indicates how corners are
rendered in your paths. The default form is miter, which produces
sharp corners. You can also choose round, which gives rounded
corners, and bevel, which squares off the corners.
lineCap: You can also determine how the ends of the lines are
rendered. Use round to produce rounded edges, square to produce
squared-off edges, and butt to produce edges that are cut off exactly
at the line width. Square and butt look almost identical, but square adds
a small length to each line, and butt cuts off the line immediately.

Drawing arcs and circles
Arcs and circles are part of the path mechanism. They are created much
like lines, as they are executed as part of a path. After the path is complete,
use the stroke() or fill() command to actually draw the arc or
circle.
Arcs and circles are both created with the arc() method.

To draw an arc or a circle:

1. Set the stroke or fill style.

Like all path-drawing commands, you'll need to specify the fill or
stroke style before drawing the arc.

2. Begin a path.

Arcs, like lines, must be drawn as part of a path. Arcs can be combined
with lines if you wish.

3. Specify the center of the circle.

******ebook converter DEMO Watermarks*******

An arc is simply a partial circle, so you begin defining an arc by
determining the center of a circle. The first two parameters of the
arc() method are the center of the circle.

4. Indicate the radius of the circle.

The third parameter is the radius of the circle that describes the arc.

5. Define beginning and ending points.

An arc is a part of a circle. To indicate which part of the circle you
want to draw, indicate the beginning and ending angles. These
measurements are the fourth and fifth parameters of the arc()
method. Note that angles are defined in radians.

6. Indicate the direction to draw.

The last parameter determines the drawing direction. Use true for
counter-clockwise, and false for clockwise.

The arc drawing functions are used in the following code:
function draw(){
 //from arcCirc.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");

con.strokeStyle = "green";
 con.fillStyle = "rgba(255,0,0,0.5)";
 con.lineWidth = "5";

//half-circle stroked
 con.beginPath();
 con.arc(220, 140, 50, 0, Math.PI, false);
 con.closePath();
 con.stroke();

//full circle filled
 con.beginPath();
 con.arc(220, 220, 50, 0, Math.PI*2, true);
 con.closePath();
 con.fill();

******ebook converter DEMO Watermarks*******

 }

This code generates the image shown in Figure 6-9.

Figure 6-9: Draw circles and arcs with the arc() command.

The angle measurements of the arc() command use radians as the unit of
angle measurement. Radians are frequently used in mathematics rather than
degrees. A radian is simply the angle described when you stretch the radius
of a circle around the circumference of that same circle. Radians are
normally expressed using the constant π, so there are 2 * π radians in a full
circle. JavaScript has the built-in constant Math.PI to simplify working
with pi. You can use Table 6-1 to determine the main angles. (See Table 6-
1.)

Table 6-1 Angle Measurements in Radians
DirectionAngle

North 3 * Math.PI/2

West Math.PI

South Math.PI/2

East 0

******ebook converter DEMO Watermarks*******

 If you're familiar with radian measurement, you might think the
angles are upside down (typically, π /2 is north and 3* π /2 is south).
The angles are reversed because Y increases downwards in computer
systems.

Drawing quadratic curves
The canvas element also supports two elegant curve-drawing mechanisms.
A quadratic curve is a special curve with a start and ending point.
However, the line between the beginning and ending point is influenced by
a control point. As an example, look at Figure 6-10. It shows a simple
curve with a control point.

Figure 6-10: Quadratic curves have a single control point.

If you examine the code for the quadratic curve, you'll see it works much
like drawing lines and arcs:

function draw(){
 //from quad.html
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");

con.strokeStyle = "black";

******ebook converter DEMO Watermarks*******

 con.lineWidth = "5";
 con.beginPath();
 con.moveTo(10,190);
 con.quadraticCurveTo(100, 10, 190, 190);
 con.stroke();
 con.closePath();

//mark beginning and end with blue
 drawDot(10, 190, "blue");
 drawDot(190, 190, "blue");

//mark control points with red
 drawDot(100, 10, "red");

} // end draw
 function drawDot(x, y, color){
 con.fillStyle = color;
 con.beginPath();
 con.arc(x, y, 10, 0, 2 * Math.PI, true);
 con.fill();
 con.closePath();
 } // end drawDot

The beginning and ending points of a quadratic curve are described
explicitly, and the line begins and ends on these points. However, the
control point doesn't usually lie on the curve. Instead, it influences the
curve.
Here's how to build a quadratic curve:

1. Begin a path.

Curves, like most drawing features, act in the context of a path.

2. Move to the starting position.

Use the moveTo() command to move to where you want the curve to
begin.

3. Use the quadraticCurveTo()method to draw the curve.

This method takes four parameters: the X and Y position of the control
point and the X and Y position of the end point.

******ebook converter DEMO Watermarks*******

4. Draw another curve if you wish.

Like most of the drawing commands, you can chain a series of
quadraticCurveTo() calls together to build a more complex
shape.

Note that for this example I called a custom function called drawDot to
draw the various points on the screen. See the complete code on my
website. (For more information on the website, see this book's
Introduction.)

Building a Bézier curve
The Bézier curve is another curve-drawing tool. It is similar to the
quadratic curve, except it requires two control points. Figure 6-11
illustrates a Bézier curve.
Building a Bézier curve is almost exactly like building a quadratic curve.
The bezierCurveTo function takes six parameters, the X and Y
position of control point one, control point two, and the ending point.
Here's the code for the Bézier path shown in Figure 6-11.

Figure 6-11: The Bézier curve uses two control points.

function draw(){

//from bezier.html

******ebook converter DEMO Watermarks*******

 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");

con.strokeStyle = "black";
 con.lineWidth = "5";
 con.beginPath();
 con.moveTo(10,10);
 con.bezierCurveTo(100, 10, 100, 190, 190, 190);
 con.stroke();
 con.closePath();

//mark beginning and end with blue
 drawDot(10, 10, "blue");
 drawDot(190, 190, "blue");

//mark control points with red
 drawDot(100, 10, "red");
 drawDot(100, 190, "red");

} // end draw

function drawDot(x, y, color){
 con.fillStyle = color;
 con.beginPath();
 con.arc(x, y, 10, 0, 2 * Math.PI, true);
 con.fill();
 con.closePath();
 } // end drawDot

Like the quadratic curve example, I used a custom drawDot() function
to draw circles for the control point. See the section “Drawing arcs and
circles” for information on how to draw these dots.

Images
Although HTML has long had support for images, the canvas interface
adds new life to web images. Images can be displayed inside a canvas,
where they can be integrated with the vector-drawing techniques of the
canvas API. You can also select a portion of an image to display and apply
the various transformations to your image to create interesting
compositions and animations.
Figure 6-12 shows a basic version of this technique, with an image drawn

******ebook converter DEMO Watermarks*******

twice on a canvas element.

Figure 6-12: The canvas element has flexible options for drawing images.

Drawing an image on the canvas
The easiest way to use an image in a <canvas> element is to use an
image that is already available on the web page. You can put an image on
the page with the ordinary tag and use the CSS display: none
rule to make the image invisible. An alternate approach is to create an
Image object in JavaScript and apply the src attribute to connect that
image to a specific image file. For examples of both techniques, consider
the following HTML code:

<img class = "hidden"
 id = "goofyPic"
 src = "andyGoofy.gif"
 alt = "Goofy pic of me" />

<canvas id = "drawing"
 height = "400"
 width = "400">
 <p>Canvas not supported</p>

The following JavaScript code displays the image in the canvas:
function draw(){
 //from image.html
 var drawing = document.getElementById("drawing");

******ebook converter DEMO Watermarks*******

 var con = drawing.getContext("2d");
 var goofyPic = document.getElementById("goofyPic");
 con.drawImage(goofyPic, 0, 0, 50, 50);

var image2 = new Image();
 image2.src = "andyGoofy.gif";
 con.drawImage(image2, 100, 100, 70, 50);
 } // end draw

Here's how it's done:

1. Create the image in the main page.

The easiest way to access an image is to use ordinary HTML to embed
the image in the main page. If you wish, you can hide the tag
with CSS code (display: none) so that only the version in the
canvas is visible.

2. Create a JavaScript variable for the image.

Use the ordinary document.getElementByID() mechanism to
create a variable referring to the image.

3. Draw the image on the canvas.

The drawImage() function takes five parameters. The first is the
name of an image object (It must be the name of a JavaScript image
object, not just the filename of an image.) The next two parameters are
the X and Y values of the top-left corner of the image, and the last two
parameters are the size of the image (width and height.)

4. Create a JavaScript Image object.

If you don't want to embed an image in the page, you can use
JavaScript to create an image dynamically. Use the new Image()
constructor to build a new image.

5. Change the image's src property.

If you create a JavaScript image, you must specify the src attribute to

******ebook converter DEMO Watermarks*******

indicate the file associated with the image. It might take some time for
the image to load.

 The image won't display until it has loaded from the server. In
most cases, this won't be a problem, but sometimes you'll find you need
to delay your program until the image has finished loading. The image
object has an onload property that accepts a callback function. Use
this technique to wait until your drawing finishes.
image.onload = finishDrawing;
function finishDrawing(){
 //rest of drawing code goes here
}

Drawing part of an image
Sometimes you'll want to draw a small part of the original image. Figure 6-
13 illustrates a program focusing in on the center of the goofy face:

Figure 6-13: This image is a zoomed-in section of the previous image.

It's quite easy to draw part of an image. Use the same drawImage()
command, but this time use a version with nine parameters:

con.drawImage(goofyPic, 60, 70, 90, 90, 0, 0, 150, 150);

******ebook converter DEMO Watermarks*******

Here's what all these parameters mean:

Image name: The first parameter is the name of the image (not the
filename, but the name of the JavaScript Image object).
Top left corner of source: The first job is to choose the part of the
original picture that will be displayed. The next two parameters
indicate the top left corner of a selection on the original picture. (You
might use an image editor like Gimp or IrfanView to determine the
selection position and size.)
Height and width of source: The next two parameters indicate the
height and width of the source selection.
Position of destination: The next two parameters are the position of
the picture's top left corner on the canvas.
Size of destination: The last two parameters describe the size of the
destination image on the canvas.

The “draw only part of an image” technique described here is quite useful
because it allows you to combine several images into a single image
(sometimes called a sprite sheet). This decreases the overhead for
delivering the image (one large image is faster to deliver than several small
ones). It's also frequently used in games and animations where one entity
might have several images displayed in sequence to suggest walking or
attacking.

Manipulating Pixels
The <canvas> tag has one more incredible trick up its sleeve. You can
extract the data of a <canvas> tag into the underlying pixel data. If you
know how to manipulate this data, you can have very extensive control of
your image in real time. You can use this data for color balancing, as well
as experimenting with your own blurs, sharpens, and chroma-key effects.
In order to understand how to have this much control of your images, you
need to have some knowledge of how pictures are stored in memory. No
matter what format an image is stored in on the file system, it is displayed
as a list of pixels. Each pixel is represented (in the standard 32-bit system,
anyway) by four integers: RGBA. The R value represents how much red is

******ebook converter DEMO Watermarks*******

in the current dot. G stands for green, and B stands for blue. The A stands
for alpha, which is a measure of the transparency of the image. Each of
these values can vary from 0 to 255. When you convert an image to the
imageData, you get a huge array of integers. Each group of four integers
represents a single pixel of color data.
Here's an example that changes the color balance of an image:

function draw(){
 //from pixel.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var original = document.getElementById("original");

CANV_WIDTH = 200;
 CANV_HEIGHT = 200;

//draw the original on the canvas
 con.drawImage(original, 0, 0);

//get the image data
 imgData = con.getImageData(0, 0, 200, 200);

//loop through image data
 for (row = 0; row < CANV_HEIGHT; row++){
 for (col = 0; col < CANV_WIDTH; col++){
 //find current pixel
 index = (col + (row * imgData.width)) * 4;

//separate into color values
 r = imgData.data[index];
 g = imgData.data[index + 1];
 b = imgData.data[index + 2];
 a = imgData.data[index + 3];

//manipulate color values
 r -= 20;
 g += 50;
 b -= 30;
 a = a;

//manage boundary conditions
 if (r > 255){
 r = 255;

******ebook converter DEMO Watermarks*******

 }
 if (r < 0){
 r = 0;
 }
 if (g > 255){
 g = 255;
 }
 if (g < 0){
 g = 0;
 }
 if (b > 255){
 r = 255;
 }
 if (b < 0){
 b = 0;
 }
 if (a > 255){
 a = 255;
 }
 if (a < 0){
 a = 0;
 }

//return new values to data
 imgData.data[index] = r;
 imgData.data[index+1] = g;
 imgData.data[index+2] = b;
 imgData.data[index+3] = a;
 } // end col for loop
 } // end row for loop

//draw new image onto canvas
 con.putImageData(imgData, 0, 0);

} // end function

Although the code listing seems quite long, it really isn't too difficult to
follow:

1. Draw an original image.

The technique you'll use extracts data from a <canvas> element, so
to modify an image, first you need to draw it onto a canvas. I drew my
goofy face image on the canvas first with the ordinary drawImage()
method.

******ebook converter DEMO Watermarks*******

2. Extract the image data.

The getImageData() method gets the picture displayed by the
current canvas and places it in a huge array of integers.

3. Make a loop to handle the rows.

Image data is broken into rows and columns. Each row goes from 0 to
the height of the canvas, so make a for loop to iterate through the rows.

4. Make another loop to handle the columns.

Inside each row is data from 0 to the width of the canvas, so make a
second for loop inside the first. It's very common to use a pair of
nested for loops to step through two-dimensional data like image
information.

5. Find the index in imageData for the current row and column.

The imageData array contains four integers for each pixel, so we
have to do a little math to figure out where the first integer for each
pixel is. The easiest formula is to multiply the row number by the
width of the canvas, add that to the column number, and multiply the
entire result by four.

6. Pull the corresponding color values from the index.

The index also represents the red value of the current pixel. The next
int holds the green value, followed by the blue value, and finally the
alpha value.

7. Manipulate the color values as you wish.

If you're going to do a color-balancing app (as I'm doing), you can
simply add or subtract values to change the overall color balance. In
my example, I add a bit to green and subtract a bit from red and blue. I
chose to leave the alpha alone. Of course, this is where you can do
much more elaborate work if you want to play around with pixel-level

******ebook converter DEMO Watermarks*******

image manipulation.

8. Check for boundaries.

A pixel value cannot be lower than 0 or higher than 255, so check for
both of these boundaries and adjust all pixel values to be within legal
limits.

9. Return manipulated values back to the imgData array.

You can copy values back to the array, and you should do so, to make
the changes visible.

10. Draw the imageData back to the canvas.

The putImageData() function draws the current image data back
to the canvas as an ordinary image. The new version of the image will
reflect the changes. In my case, I have a decidedly ill-looking image.

Color-balancing is too subtle an effect to display accurately in a black-and-
white screen shot, so please visit the book's companion website to see this
program in its full glory. See the book's Introduction for more on the
website.

******ebook converter DEMO Watermarks*******

Chapter 7
Animation with the Canvas

In This Chapter
 Working with images
 Managing transformations
 Handling keyboard input
 Building basic animations

The <canvas> tag (introduced in Chapter 6 of this minibook) adds some
long-needed graphical support to HTML. In this chapter, you see how to
extend these ideas to create interesting animations and even user
interaction.

Transformations
Transformations are math operations that can be applied to any drawing or
image to change the appearance. There are three major transformations:

translation: Move a particular amount in X and Y
rotation: Rotate around a particular point
scale:Change the size of the drawing in X and Y

The <canvas> element allows all these operations on any type of
drawing. However, the way the <canvas> element does this gets a little
closer to math than you may have gotten before. Transformations in the
canvas element can be hard to understand until you understand a little
about how they really work.
In math, you don't really transform objects. Instead, you modify the
coordinate system, and draw your image in the newly transformed
coordinate system. It's common in a vector-drawing application to have
several hidden coordinate systems working at once. That's important

******ebook converter DEMO Watermarks*******

because it's the way canvas transformations work. Essentially when you
want to perform transformations on an object, you'll do the following:

1. Announce the beginning of a temporary coordinate system.

The main image already has its own coordinate system that won't
change. Before you can transform anything, you need to build a new
coordinate system to hold those changes. The (poorly named) save()
command indicates the beginning of a new coordinate system
definition.

2. Move the center with translate().

The origin (0, 0) starts in the upper-left corner of the canvas by default.
Normally you'll build your transformed objects on the (new) origin and
move the origin to place the object. If you translate(50, 50)
and then draw an image at (0, 0), the image is drawn at the origin of the
temporary coordinate system, which is at (50, 50) in the main canvas.

3. Rotate the coordinate system with rotate().

The rotate() command rotates the new coordinate system around
its origin. The rotation parameter is a degree in radians.

4. Scale the coordinate system in X and Y.

You can also alter the new coordinate system by applying X and Y
scale values. This allows you to create stretched and squashed images.

5. Create elements in the new coordinate system.

After you've applied all the transformations you want, you can use all
the ordinary canvas drawing techniques. However, these drawings will
be drawn in the “virtual” coordinate system you just made, not in the
canvas's main coordinate system.

6. Close the temporary coordinate system.

******ebook converter DEMO Watermarks*******

Generally you'll want to apply different transformations to different
parts of your canvas. When you're finished with a particular
transformation, use the restore() command to close out the new
coordinate system. All subsequent drawing commands will use the
default coordinate system of the <canvas> object.

Building a transformed image
A real example is easier to follow, so look at the code below:

function draw(){
 //from transform.html
 var drawing = document.getElementById("drawing");
 var con = drawing.getContext("2d");
 var goofyPic = document.getElementById("goofyPic");

con.save();
 con.translate(100, 100);
 con.rotate(Math.PI / 4);
 con.scale(3.0, 1.5);
 con.drawImage(goofyPic, -25, -25, 50, 50);
 con.restore();

//draw a rectangle using the ordinary coordinate system
 con.strokeStyle = "red";
 con.lineWidth = 5;
 con.strokeRect(0, 0, 200, 200);

} // end draw

This program creates a new coordinate system containing a translation,
rotation, and scale. It draws an image in the new coordinate system. It then
reverts to the standard coordinate system and draws a rectangular frame.
This program will display like Figure 7-1.

******ebook converter DEMO Watermarks*******

Figure 7-1: This canvas features several transformations.

Here's how to build this type of image:

1. Get access to an image object.

Load the image from the main site as explained in Chapter 6 of this
mini-book.

2. Start the transformation with the save()method.

The save() method has (if you ask me) a very confusing name. This
method does not save the canvas to a file. Instead, it saves the current
coordinate system settings in memory and allows you to define a new
coordinate system. I would have called this method
beginTransform().

3. Apply any translations you wish.

Remember, translations move the entire coordinate system. If you
translate the coordinate system by (100, 100) as I did in this example,
that means any subsequent drawings at (0, 0) will actually appear in the
center of my 200×200 canvas

4. Rotate the coordinate system if you wish.
******ebook converter DEMO Watermarks*******

You can apply a rotation to the coordinate system if you prefer. The
system will rotate around its origin. Typically, to get the behavior you
want, design your images so they are centered on the origin, and
translate the origin to move the image. Rotation angles are defined in
radians. If you're more comfortable with degrees, you can use this
formula to convert: radians = degrees * (Math.PI /
180).

5. Scale the coordinate system by X and Y.

You can change the apparent width and height of your new coordinate
system by indicating new scale values. Scaling is a multiplication
operation. If the scale is one, the element stays the same size. If the
scale is 2, the element is double the original size, and .5 is half the
original size. You can even scale by a negative number to invert the
image.

6. Draw your image.

Draw on the canvas after you've applied all the transformations. You
can use any canvas-drawing techniques you want: paths, rectangles,
images, text, or whatever. The drawing will be modified by the
indicated transformations.

7. End the transformation.

The restore() method should be called endTransform(). (If
you're listening, W3C, I'm available to help you come up with better
names for things. Let me know when the meetings are scheduled.)
Regardless, this method indicates that you're done thinking about all
the transformations that have been declared in this transform, and
you're ready to return to the default coordinate system. The term
restore really means “return to the coordinate state that was saved with
the save command that was called to begin this transformation.”

8. Subsequent drawings will use the default coordinates.

In my example, I draw an ordinary rectangle around the image. This

******ebook converter DEMO Watermarks*******

rectangle should use the regular coordinates of the canvas — I don't
want it rotated or scaled like the image. Because these drawing
commands exist outside the context of the save()/restore() pair,
they use the regular coordinate system.

A few thoughts about transformations
Transformations are an incredibly powerful tool set, and they're among the
most anticipated features of HTML5. However, they do hide a certain
amount of math. You can use them without understanding linear algebra
(the underlying mathematical theory), but there's still a few key ideas to
keep in mind:

Each transformation is stored as a matrix: There's an underlying
structure called a matrix (that's even cooler than the movie) that stores
all the translations, rotations, and scales in a single mathematical
structure. You can work with the transformation matrix directly if you
prefer, with the context objects’ transform() method.
The order of transformations makes a difference: Try this
experiment. Stand in the center of the room. Now go forward five steps
and turn left 90 degrees. Look at where you are. Now go back to the
same starting point. This time, turn left 90 degrees and then go forward
five steps. Are you in the same place? You might need to experiment a
bit to get things working the way you expect.
Transform the system then draw on the origin: Most of the drawing
commands in canvas allow you to draw things anywhere on the canvas.
If you're not using transformations, you can use this mechanism to
place things wherever you wish. However, if you're using a
transformation, it's much easier to transform the entire coordinate
system and then draw your elements at the origin (0, 0). Otherwise
you'll get some very strange results (especially with combined rotations
and translations).

Animation
******ebook converter DEMO Watermarks*******

Of course, the big question about the HTML5 canvas tag is whether it can
replace Flash as a mechanism for implementing games and animations in
the browser. The answer is absolutely. I wrote a whole book about it:
HTML5 Game Development For Dummies (published by John Wiley &
Sons). Check it out for much more on how to build games and animations
including user input collision-checking and instructions on building many
types of games.
The key to games and animations is to use the animation features already
built into the browser.

Overview of the animation loop
An animation generally requires a special organization called an animation
loop. The basic structure of the animation loop works the same in any
language:

1. Initialization.

Create the assets, including the background and any of the objects you
will be using. Objects that will be manipulated in real time are
normally called sprites. Generally this is done when the program first
runs, to save time during the main execution. You may also set
constants for image size, display size, frame rate, and other values that
will not change during the execution of the game.

2. Determining a frame rate.

Animations and games work by calling a function repeatedly at a
prescribed rate. In general, you'll have some sort of function that is
called repeatedly. In JavaScript, you typically use the
setInterval() function to specify a function that will be called
repeatedly. The frame rate indicates how often the specified function
will be called. Games and animations typically run at frame rates
between 10 and 30 frames per second. A faster frame rate is smoother,
but may not be maintainable with some hardware.

3. Evaluating the current state.

******ebook converter DEMO Watermarks*******

Each sprite is really a data element. During every frame, determine if
anything important has happened: Did the user press a key? Is an
element supposed to move? Did a sprite leave the screen? Did two
sprites conk into each other?

4. Modifying sprite data.

Each sprite generally has position or rotation data that can be modified
during each frame. Usually this is done through transformations
(translation, rotation, and scale), although sometimes you may switch
between images instead.

5. Clearing the background.

An animation is really a series of images drawn rapidly in the same
place. Usually you'll need to clear the background at the beginning of
each frame to clear out the last frame's image.

6. Redrawing all sprites.

Each sprite is redrawn using its new data. The sprites appear to move
because they're drawn in a new location or orientation.

 Typically I would display a screen shot here, but a still image of
an animation won't be fun to look at in this book. Please look at
autoRotate.html on this book's companion website to see the program
running in real time. While you're at it, check out all the other great
stuff I've got on that site for you. You can find out more about the
book's companion website in the Introduction.

Setting up the constants
As an example, build a program that rotates an image inside a canvas. The
complete code is in several parts. I'll use a basic image as a sprite. The first
job is to set up the various variables and constants that describe the
problem. The following code is created outside any functions because it

******ebook converter DEMO Watermarks*******

describes values that will be shared among functions:
var drawing;
 var con;
 var goofyPic;
 var angle = 0;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;

The drawing variable will refer to the canvas element. The con
variable will be the drawing context, goofyPic is the image to be rotated,
and angle will be used to determine how much the image is currently
rotated. The other values are constants used to describe the height and
width of the canvas as well as the sprite.

Initializing the animation
As usual, the body onload mechanism will be used to start up some
code as soon as the page has finished loading. However, the page now has
two functions. The init() function handles initialization, and the
draw() function is called repeatedly to handle the actual animation.
Here's the code in the init() function:

function init(){
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");
 goofyPic = document.getElementById("goofyPic");
 setInterval(draw, 100);
 } // end init

The job of the init() function is to initialize things. In this particular
example, I load up the various elements (the canvas, the context, and the
image) into JavaScript variables and set up the animation. The
setInterval() function is used to set up the main animation loop. It
takes two parameters:

A repeatable function: The first parameter is the name of a function
which will be called repeatedly. In this case, I will be calling the draw
function many times.
A delay value: The second parameter indicates how often the function
should be called in milliseconds (one-thousandths of a second.) A

******ebook converter DEMO Watermarks*******

delay of 100 will create a frame rate of 10 frames per second. A delay
of 50 will cause a frame rate of 20 frames per second, and so on.

Animate the current frame
The draw() function will be called many times in succession. In general,
its task is to clear the frame, calculate new sprite states, and redraw the
sprite. Here's the code:

function draw(){

//clear background
 con.fillStyle = "white";
 con.fillRect(0, 0, CANV_HEIGHT, CANV_WIDTH);

//draw border
 con.strokeStyle = "red";
 con.lineWidth = "5";
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

//change the rotation angle
 angle += .25;
 if (angle > Math.PI * 2){
 angle = 0;
 }

//start a new transformation system
 con.save();
 con.translate(100, 100);
 con.rotate(angle);

//draw the image
 con.drawImage(goofyPic,
 SPR_WIDTH/-2, SPR_HEIGHT/-2,
 SPR_WIDTH, SPR_HEIGHT);
 con.restore();
 } // end draw

Although the code may seem a little involved, it doesn't do really do
anything new. Here's what it does, step by step:

1. Clears the background.

Remember that animation is repeated drawing. If you don't clear the
background at the beginning of every frame, you'll see the previous

******ebook converter DEMO Watermarks*******

frame drawings. Use the context's clearRect() function to draw a
fresh background, or one of the other drawing tools to use a more
complex background image. You must clear the background first, so
subsequent drawings will happen on a fresh palette.

2. Draws any non-sprite content.

In this example, I want a red border around the frame. Just use ordinary
canvas elements for this. I used strokeStyle, lineWidth, and
strokeRect() to build a red rectangular frame around my canvas.
Note that I used the CANV_HEIGHT and CANV_WIDTH constants to
refer to the current canvas size.

3. Modifies sprite state.

In this example, I want to modify the rotation angle of the image. I
already created a variable called angle outside the function. (It's
important that angle was created outside the function context so it
can retain its value between calls to the function.) I add a small amount
to angle every frame. Whenever you change a variable (especially in a
virtually endless loop like an animation), you should check for
boundary conditions. In this example, I'm changing angles. The largest
permissible angle value (in radians) is 2 * π. If the angle gets larger
than 2 * π, it is reset to zero.

4. Builds a transformation.

Many animations are really modifications of a transformation. That's
the case here. I'm actually not changing the image at all, but the
transformation which contains the image. Set up a new transformation
with the save() method, and use the rotate() and
translate() functions to transform a temporary coordinate system.
(See the section called “Transformations” at the beginning of this
chapter for how transformations relate to temporary coordinate
systems.

5. Draws the image at the center of the new transformation.

******ebook converter DEMO Watermarks*******

Remember, the drawImage() command draws the image based on
the top left corner of an image. If you draw the image at (0, 0) of the
new transformation, the image appears to rotate around its top left
corner. Usually you'll want an image to rotate around its center point.
Simply draw the image so its center is at the origin. Set X to zero
minus half the image's width, and Y to zero minus half the image's
height.

6. Closes the transformation.

Use the restore() method to finish defining the temporary
coordinate system.

Moving an element
Often you'll prefer to move an element. This process is actually very
similar to the rotation mechanism. Here's some code that moves an image
and wraps it to the other side when it leaves the canvas.

//from wrap.html
 var drawing;
 var con;
 var goofyPic;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;

var x = 0;
 var y = 100;
 var dx = 10;
 var dy = 7;

function init(){
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");
 goofyPic = document.getElementById("goofyPic");
 setInterval(draw, 100);
 }

function draw(){
 //clear background

******ebook converter DEMO Watermarks*******

 con.clearRect(0, 0, 200, 200);

//move the element
 x += dx;
 y += dy;

//check for boundaries
 wrap();

//draw the image
 con.drawImage(goofyPic, x, y, SPR_WIDTH, SPR_HEIGHT);

//draw a rectangle
 con.strokeStyle = "red";
 con.lineWidth = 5;
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

} // end draw

function wrap(){
 if (x > CANV_WIDTH){
 x = 0;
 }
 if (x < 0){
 x = CANV_WIDTH;
 }
 if (y > CANV_HEIGHT){
 y = 0;
 } // end if
 if (y < 0){
 y = CANV_HEIGHT;
 }
 } // end wrap

The wrap code is very similar to the rotation program. It has a few
different features. Here's what it does:

1. Keeps track of the sprite position.

The sprite's position will change now, so the important variables are X
and Y, used to track where the sprite is.

2. Contains variables for the sprite's motion.

******ebook converter DEMO Watermarks*******

The dx variable stands for difference in x, and it is used to show how
much the x value changes each frame. Likewise, dy is used to show
how much the y value changes in each frame. x, y, dx, and dy are all
created outside the function context.

3. Moves the element values.

In every frame (in the draw() function), add dx to x and add dy to
y.

4. Checks for boundaries.

I created a new function called wrap() to check for boundary
conditions.

The code is pretty straightforward. If the sprite's x value exceeds the width
of the canvas (meaning it has moved to the right border of the canvas),
reset the x value to 0 (moving it to the left). Use a similar calculation to
check the other borders and reset the image to the opposite side. A still
image won't do justice to this animation. Please look at wrap.html on the
companion website to see an example. The bounce.html page shows the
following example.

Bouncing off the walls
If you prefer to have your sprite bounce off the walls, just replace the
wrap() function with a bounce() function that works like this:

function bounce(){
 //from bounce.html
 if (x > CANV_WIDTH - SPR_WIDTH){
 dx *= -1;
 }
 if (x < 0){
 dx *= -1;
 }
 if (y > CANV_HEIGHT - SPR_HEIGHT){
 dy *= -1;
 }
 if (y < 0){
 dy *= -1;
 }
 } // end bounce

******ebook converter DEMO Watermarks*******

Reading the Keyboard
The keyboard is a primary input technology, especially for desktop
machines. The standard way to read the keyboard is to set up special
functions called event-handlers. JavaScript has a number of pre-defined
event handlers you can implement. The keyDemo.html program illustrates
a basic keyboard handler in action.

<!DOCTYPE HTML>
<html lang="en-US">
<head>
 <meta charset="UTF-8">
 <title>keyDemo.html</title>
 <script type="text/javascript">

//var keysDown = new Array(256);
 var output;

function init(){
 output = document.getElementById("output");
 document.onkeydown = updateKeys;
 } // end init

updateKeys = function(e){
 //set current key
 currentKey = e.keyCode;
 output.innerHTML = "current key: " + currentKey;
 }

//keyboard constants simplify working with the keyboard
 K_A = 65; K_B = 66; K_C = 67; K_D = 68; K_E = 69; K_F = 70;
K_G = 71;
 K_H = 72; K_I = 73; K_J = 74; K_K = 75; K_L = 76; K_M = 77;
K_N = 78;
 K_O = 79; K_P = 80; K_Q = 81; K_R = 82; K_S = 83; K_T = 84;
K_U = 85;
 K_V = 86; K_W = 87; K_X = 88; K_Y = 89; K_Z = 90;
 K_LEFT = 37; K_RIGHT = 39; K_UP = 38;K_DOWN = 40; K_SPACE =
32;
 K_ESC = 27; K_PGUP = 33; K_PGDOWN = 34; K_HOME = 36; K_END =
35;
 K_0 = 48; K_1 = 49; K_2 = 50; K_3 = 51; K_4 = 52; K_5 = 53;
 K_6 = 54; K_7 = 55; K_8 = 56; K_9 = 57;
 </script>
</head>

******ebook converter DEMO Watermarks*******

<body onload = "init()">
 <div id = "output">
 Press a key to see its code
 </div>
</body>
</html>

Figure 7-2 illustrates basic keyboard input (but it's interactive, so you
should really look at it on the companion website).

Figure 7-2: This page reports which key you pressed.

Managing basic keyboard input
This particular example demonstrates basic keyboard-checking as well as
the more sophisticated technique used in simpleGame. Here's how the
basic version works:

1. Assigns a function to onkeydown.

The document.onkeydown attribute is a special property. If you
assign a function to this property, that function will be automatically
called each time the operating system recognizes a key press. In this
example, I assign the function updateKeys.

2. Creates the function, including an event parameter.

******ebook converter DEMO Watermarks*******

The updateKeys() function will automatically be given an event
object (normally called e).

3. Determines which key was pressed.

The e.keyCode property returns a numeric code indicating which
key was pressed. In the keyDemo program (as well as
simpleGame), the currentKey variable holds this numeric value.

4. Compares the key to one of the keyboard constants.

It's hard to remember which keys are associated with which numeric
values, so keyDemo and simpleGame provide a list of keyboard
constants. They are easy to remember: K_A is the A key, and
K_SPACE is the space bar. Of course, you can add other keys if there's
some key you want to use that isn't available. Although I didn't actually
use the keyboard constants in this example, they are useful so you can
easily determine which key was pressed.

Moving an image with the keyboard
You can achieve a form of interactivity by having an image move in
response to keyboard motion. Figure 7-3 illustrates this technique, but it
really isn't satisfying to see in a book. As usual, you need to play with this
on the website.

******ebook converter DEMO Watermarks*******

Figure 7-3: Move the image around with the arrow keys.

Essentially moving an image involves combining key ideas from
keyDemo.html (for keyboard input) and wrap.html (to set up the canvas
and make the object move under timer control). Here's the code:

<!DOCTYPE HTML>
 <html lang = "en">
 <head>
 <title>keyboar motion</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 .hidden{
 display: none;
 }
 </style>
 <script type = "text/javascript">
 //move based on keyboard input
 var drawing;
 var con;
 var goofyPic;
 CANV_HEIGHT = 200;
 CANV_WIDTH = 200;
 SPR_HEIGHT = 50;
 SPR_WIDTH = 40;
 var x = 0;
 var y = 100;
 var dx = 0;
 var dy = 0;
 var currentKey;

******ebook converter DEMO Watermarks*******

function init(){
 drawing = document.getElementById("drawing");
 con = drawing.getContext("2d");
 goofyPic = document.getElementById("goofyPic");
 document.onkeydown = updateKeys;
 setInterval(draw, 100);
 }

function updateKeys(e){
 currentKey = e.keyCode;

if (currentKey == K_LEFT){
 dx = -5;
 }

if (currentKey == K_RIGHT){
 dx = 5;
 }

if (currentKey == K_UP){
 dy = -5;
 }

if (currentKey == K_DOWN){
 dy = 5;
 }

 if (currentKey == K_SPACE){
 dx = 0;
 dy = 0;
 }
 } // end updateKeys

function draw(){
 //clear background
 con.clearRect(0, 0, 200, 200);

currentKey = null;

//move the element

******ebook converter DEMO Watermarks*******

 x += dx;
 y += dy;

//check for boundaries
 wrap();

//draw the image
 con.drawImage(goofyPic, x, y, SPR_WIDTH, SPR_HEIGHT);

//draw a rectangle
 con.strokeStyle = "red";
 con.lineWidth = 5;
 con.strokeRect(0, 0, CANV_WIDTH, CANV_HEIGHT);

} // end draw

function wrap(){
 if (x > CANV_WIDTH){
 x = 0;
 }
 if (x < 0){
 x = CANV_WIDTH;
 }
 if (y > CANV_HEIGHT){
 y = 0;
 } // end if
 if (y < 0){
 y = CANV_HEIGHT;
 }
 } // end wrap

//keyboard constants
 K_LEFT = 37; K_RIGHT = 39; K_UP = 38;K_DOWN = 40; K_SPACE =
32;

</script>
 </head>

<body onload = "init()">
 <h1>Keyboard Motion</h1>

<img class = "hidden"
 id = "goofyPic"

******ebook converter DEMO Watermarks*******

 src = "andyGoofy.gif"
 alt = "Goofy pic of me" />

<canvas id = "drawing"
 height = "200"
 width = "200">
 <p>Canvas not supported</p>
 </canvas>

<p>
 Use arrow keys to move image, space bar to stop motion.
 </p>

</body>
 </html>

This program is essentially wrap.html with the following changes:

1. Sets up updateKeys()as an event handler.

Because this program reads the keyboard in real time, you have to
assign an event handler.

2. Determines which key was pressed.

Store the last key pressed in a variable called currentKey.

3. Compares currentKey with keyboard constants.

Use constants to compare currentKey with whatever keys you're
interested in — for now, the arrow keys and space bar.

4. Changes dx and dy based on the current key value.

When you know which key is pressed, use this information to modify
the dx and dy values, which determines how the image moves.

5. The draw()function still does the drawing.

The draw() function is called on a regular interval. It's common to
separate input (keyPressed) from animation (draw).

******ebook converter DEMO Watermarks*******

 This is a very simple keyboard input mechanism. It's fine for
basic user input, but in gaming we use much more sophisticated input
techniques including a mechanism called polling, which allows
multiple keys at a time. In addition, the modern web includes mobile
devices, which have interesting new features including touch interface
and tilt control. Please see my book HTML5 Game Development For
Dummies for information on these advanced input techniques. You'll
also see other forms of animation including image-swapping and sprite
sheet animation.

******ebook converter DEMO Watermarks*******

Book V
Server-Side Programming with

PHP

 Visit www.dummies.com/extras/html5css3aio for
more on using templates with PHP.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: Getting Started on the Server
Chapter 2: PHP and HTML Forms
Chapter 3: Using Control Structures
Chapter 4: Working with Arrays
Chapter 5: Using Functions and Session Variables
Chapter 6: Working with Files and Directories
Chapter 7: Exceptions and Objects

******ebook converter DEMO Watermarks*******

Chapter 1
Getting Started on the Server

In This Chapter
 Introducing server-side programming
 Testing your installation
 Inspecting phpinfo( )
 Writing HTML with embedded PHP
 Understanding various types of quotation
 Managing concatenation and interpolation
 Using heredocs to simplify coding

Welcome to the server-side programming portion of the book. In this
minibook, you discover all the basics of PHP and how you can use PHP to
make your pages dynamic and relevant in today's Internet.
In this chapter, you read about getting your server set up and ready to go. I
walk you through the process as painlessly as possible, and by the end,
you'll be up and running, and ready to serve up your own web pages in a
test environment. (I talk about making them available to the rest of the
world in Book VIII.)

Introducing Server-Side
Programming

I begin with an introduction to server-side programming. This is a bit
different than the client-side programming you may have done in
JavaScript.

Programming on the server
Server-side programming is what you use to create pages dynamically on
the server before sending them to the client. Whereas client-side

******ebook converter DEMO Watermarks*******

programming is executed on the client's machine, server-side programming
all happens on the server before the web page is even sent to the user.
Client-side programming (as done in JavaScript) does most of the work on
the individual user's machine. This has advantages because those machines
have doohickeys such as mice and graphics cards. Client-side programs
can be interactive in real time.
The client has a big problem, though. Programs written on the client
usually have a form of forced amnesia (no long-term memory). For
security reasons, client-side applications can't store information in files and
can't interact with other programs on the computer. Also, you never know
exactly what kind of setup the user has, so you can't really be sure whether
your program will work.
This is where server-side programming comes in. In a pure server-side
programming environment, all the action happens on the web server. The
user thinks she's asking for a web page like normal, but the address really
goes to a computer program. The program does some magic and produces
a web page. The user sees a web page, perhaps never knowing this wasn't a
regular web page, but a page that was produced instead by a program.
A program running on a web server has some really nice advantages, such
as

A server-side program can access the local file system. Asking a
server program to load and save files on the server is no problem at all.
A server-side program can call external programs. This is a very
big deal because many web applications are really about working with
data. Database programs are very important to modern web
development. See Book VI for much more on this.
All the user sees is ordinary HTML. You can set up your program to
do whatever you want, but the output is regular HTML. You don't have
to worry about what browser the user has, or whether he has a Mac, or
what browser version he's using. Any browser that can display HTML
can be used with PHP.

Serving your programs
******ebook converter DEMO Watermarks*******

When using a browser to retrieve web pages, you send a request to a
server. The server then looks at the extension (.HTML, .php, .js, and so on)
of your requested file and decides what to do. If the server sees .HTML or
.js, it says, “Cool. Nothing doing here. Just gotta send her back as is.”
When the server sees .php, it says, “Oh, boy. They need PHP to build
something here.”
The server takes the page and hollers for PHP to come along and construct
the requested web page on the fly. PHP goes through and looks at the
programmer's blueprint and then constructs the working page out of
HTML.
The server then takes that page from PHP and sends back plain HTML to
the client for the browser to display to the user.
When you write PHP programs, a web server must process the form before
the browser can see it. To test your PHP programs, you need to have a web
server available and place the file in a specific place on your computer for
the server to serve it. You can't run a PHP file directly from your desktop.
It must be placed in a special place — often, the htdocs or public_html
directory under the server.

Picking a language
There are all sorts of different ways to go about dynamically creating web
pages with server-side programming. Back in the day when the Internet
was still in diapers, people used things like Perl and CGI scripting to
handle all their server-side programming. Eventually, people placed more
and more demand on their websites, and soon these technologies just
weren't enough.
The prevalent languages today are

ASP.NET: Microsoft's contender
Java: The heavyweight offering from Sun Microsystems
Python: Python is becoming a popular alternative, but it has not yet
surpassed PHP in popularity as a server-side language.
PHP: The popular language described in this minibook

ASP.NET
******ebook converter DEMO Watermarks*******

ASP.NET is event-driven, compiled, and object-oriented. ASP.NET
replaced the ’90s language ASP in 2002. Microsoft repurposed it for use
with the .NET framework to facilitate cross-compatibility with its desktop
applications (apps) and integration into Visual Studio (although you can
write ASP.NET apps from any text editor). ASP.NET runs on Microsoft's
Internet Information Services (IIS) web server, which typically requires
more expensive servers than most of the other technologies. Although
ASP.NET is an excellent technology, I don't recommend it for cost-
conscious users.

Java
Java has been a strong contender for a long time now. The language is
indeed named after coffee. If you work for a banking company or insurance
company, or need to build the next eBay or Amazon.com, you might want
to consider using Java. However, Java can consume a lot of time, and it's
hard to figure out. You may have to write up to 16 lines of code to do in
Java what could take a mere 4 lines of code in PHP. Java is absolutely free,
as is the Apache Tomcat web server that it uses to serve its web
components. Java was originally created to write desktop applications and
is still very good at doing that. If you're comfortable with C/C++, you'll be
very comfortable with Java because it's very similar. It's fully object-
oriented and it's compiled. Java is powerful, but it can be challenging for
beginners. It'd be a great second language to work with.

Python
The Python language is used in a number of contexts, including server-side
programming. Although Python has become much more popular as of late,
it still isn't used as frequently as PHP for this purpose.

PHP
PHP was born from a collection of modifications for Perl and has boomed
ever since (in a way, replacing Perl, which was once considered the duct
tape and bubble gum that held the Internet together).
PHP works great for your server-side web development purposes. Media
Wiki (the engine that was written to run the popular Internet encyclopedia
Wikipedia) runs on PHP, as do many other popular large-, medium-, and
small-scale websites. PHP is a solid, easy-to-learn, well-established
language (it was introduced in 1994). PHP can be object-oriented or

******ebook converter DEMO Watermarks*******

procedural: You can take your pick. PHP is interpreted rather than
compiled.

Compile versus interpret?
What's the difference between an interpreted language and a compiled language? A
compiled language is compiled one time into a more computer-friendly format for faster
processing when called by the computer. Compiled languages are typically very fast but
not very flexible. Interpreted languages have to be interpreted on the spot by the server
every time they're called, which is slower but provides more flexibility. With blazing fast
servers these days, interpreted languages can normally stand under the load, and the
ability to handle changes without recompiling can be an advantage in the fast-paced world
of web development.

 The current stable version of PHP used in this book is PHP5.5.
This might confuse you because there are several references to PHP6
on the Internet. There is indeed a PHP6, but it has been discontinued
for several years, with the most important improvements moved to the
PHP5 engine. Examples in this book will work on any version of PHP
past PHP5.3, which is what's most likely to be on your server.

Installing Your Web Server
For PHP to work usefully, you have to have some other things installed on
your computer, such as

A web server: This special program enables a computer to process
files and send them to web browsers. I use Apache because it's free and
powerful and works very well with PHP.
A database backend: Modern websites rely heavily on data, so a
program that can manage your data needs is very important. I use
MySQL (a free and powerful tool) for this. Book VI is entirely
dedicated to creating data with MySQL and some related tools.
A programming language: Server-side programming relies on a

******ebook converter DEMO Watermarks*******

language. I use PHP because it works great and it's free.

There are two main ways to work with a web server:

Install your own, using the free XAMPP software. Download from
www.apachefriends.org/en/xampp.html. Book VIII,
Chapter 1 has complete instructions on installing XAMPP.
Work on a remote server that somebody has already set up. Most
low-cost web servers (and even some free ones) support PHP and
MySQL right out of the box.

Please check out Book VIII, Chapter 1 for complete information on both
techniques. After you have your machine set up or you have an account
somewhere with PHP access, come back here. I'll wait.

Inspecting phpinfo()
Using your shiny new server is really quite simple, but a lot of beginners
can get confused at this point.
One thing you have to remember is that anything you want the server to
serve must be located in the server's file structure. If you have a PHP file
on your desktop and you want to view it in your browser, it won't work
because it isn't in your server. Although, yes, technically it might be on the
same machine as your server (if you're using XAMPP), it is not in the
server.
So, to serve a file from the server, it must be located in the htdocs directory
of your server install. If you've installed XAMPP, go to the folder where
you installed XAMPP (probably either c:/xampp or c:/Program
Files/xampp) and locate the htdocs directory. This is where you'll put all
your PHP files. Make note of it now.
If you're using a remote server, you'll need to use your host’s file
management tools or FTP (both described in Book VIII, Chapter 1) to
transfer the file. Often you'll have specially designated folders for placing
your web content, usually related to your domain name. You may need to
check with your server host to be certain.
To get the hang of placing your files in the correct place and accessing

******ebook converter DEMO Watermarks*******

http://www.apachefriends.org/en/xampp.html

them, create a test file that will display all your PHP, Apache, and MySQL
settings.
To test everything, make the PHP version of the famous “Hello
World!” program. Follow these steps to make your first PHP program:

1. Open a text editor to create a new file.

PHP files are essentially plain text files, just like HTML and
JavaScript. You can use the same editors to create them.

2. Build a standard web page.

Generally, your PHP pages start out as standard web pages, using your
basic HTML template. However, start with a simpler example, so you
can begin with an empty text file.

3. Add a PHP reference.

Write a tag to indicate PHP. The starting tag looks like <?php, and the
ending tag looks like ?>. As far as HTML is concerned, all the PHP
code is embedded in a single HTML tag.

4. Write a single line of PHP code.

You'll learn a lot more PHP soon, but one command is especially
useful for testing your configuration to see how it works. Type the line
phpinfo();. This powerful command supplies a huge amount of
diagnostic information.

5. Save the file to your server.

A PHP file can't be stored just anywhere. You need to place it under an
accessible directory of your web server. If you're running XAMPP,
that's the htdocs directory of your xampp directory. If you're
running a remote server, you'll need to move the file to that server,
either with your host's file transfer mechanism, an FTP program, or
automatically through your editor. (See the nearby sidebar “Picking a
PHP editor” for information on remote editing in Komodo.)

******ebook converter DEMO Watermarks*******

6. Preview your page in the browser.

Use your web browser to look at the resulting page. Note that you
cannot simply load the file through the file menu or drag it to your
browser. If you have XAMPP installed, you need to refer to the file as
http://localhost/fileName.php. If the file is on a remote
server, use the full address of the file on that server: for example,
http://myhost.freehostia.com/fileName.php.

Your code from Steps 3 and 4 should look like this:
<?php
 phpinfo();
?>

Hmm. Only three lines of code, and it doesn't seem to do much. There's
precious little HTML code there. Run it through the browser, though, and
you'll see the page shown in Figure 1-1.

Figure 1-1: That tiny PHP program sure puts a lot of information on the screen.

 If you see the actual PHP code rather than the results shown in
Figure 1-1, you probably didn't refer to the page correctly. Please check
the following:

******ebook converter DEMO Watermarks*******

http://localhost/fileName.php
http://myhost.freehostia.com/fileName.php

Is the file in the right place? Your file must be in htdocs or on a
remote server (or in a subdirectory of these places).
Did you use the .php extension? The server won't invoke PHP unless
the filename has a .php extension.
Did you refer to the file correctly? If the URL in the address bar
reads file://, you bypassed the server, and PHP was not activated.
Your address must begin with http://. Either use
http://localhost (for a locally stored file in XAMPP) or the
URL of your remote hosting service.

Picking a PHP editor
In the previous edition of this book, I recommend using Aptana for PHP editing. If you
already use Aptana for your other web editing, you may also enjoy using it for PHP.
However, Aptana has changed, and PHP support is no longer built into the standard
version of Aptana.

I honestly prefer using Komodo Edit (also mentioned in Book I, Chapter 3) for all my web
editing. It's a little simpler than Aptana, and it still has all the important features like syntax
completion and highlighting built in with no plug-ins needed.

Komodo has another feature that can be a lifesaver for PHP programmers. If you're
working on a remote web server, you can set up a connection to that server (choose Edit
⇒ Preferences ⇒ Servers). Then you can use the Save Remotely command to save the
file to the server directly. That way, you can use all the features of Komodo without a local
installation of Apache or PHP, and without having to implement an extra file transfer step.

This phpinfo page of Figure 1-1 is critical in inspecting your server
configuration. It displays all the different settings for your server,
describing what version of PHP is running and what modules are active.
This can be very useful information.

 You generally should not have a page with all the phpinfo()
information running on a live server because it tells the bad guys
information they might use to do mischief.

This test.php program shows one of the most interesting things about

******ebook converter DEMO Watermarks*******

http://localhost

PHP. The program itself is just a few lines long, but when you run it, the
result is a complex web page. Take a look at the source of the web page,
and you'll see a lot of code that you didn't write. That's the magic of PHP.
You write a program, and it creates a web page for you.
Don't panic if you don't understand anything in the page that gets produced
with the phpinfo() command. It contains many details about how PHP
is configured on your server, which may not mean much now. If you have
trouble with PHP and ask me for help, however, it's the first thing I'll ask
you for. An experienced developer can do a lot of troubleshooting by
looking over a phpinfo so it's a handy skill to know.
The basic flow of PHP programming works like this:

1. You build a standard page, and you include PHP code inside it.
2. When the server recognizes the PHP code, it calls the PHP interpreter

and passes that code to it.

PHP programs are almost always designed to create HTML code, which
gets passed back to the user. The user will never see PHP code because it
will get translated to HTML before it gets to the browser.

 By default, Apache will load index.HTML or index.php
automatically if you type a directory path into the web browser. If
you're using XAMPP, there's already a program in htdocs called
index.php. Rename it index.php.off. Now, if you navigate to
http://localhost/, you'll see a list of directories and files your
server can run, including test.php. When you have a live site, you'll
typically name one file index.HTML or index.php so the user
doesn't have to type the entire filename. See Book VIII, Chapter 1 for
more information on how to set up your server to make it easiest to use.

Building HTML with PHP
In PHP, you aren't actually printing anything to the user. Instead, you're
building an HTML document that will be sent to the browser, which will

******ebook converter DEMO Watermarks*******

http://localhost/

interpret the HTML and then print that (the HTML) to the user. Therefore,
all your code gets interpreted twice: first on the server to generate the
HTML and then on the user's machine to generate the output display.
If you've used HTML, CSS, and JavaScript, you might have been frustrated
because all these environments run on the client, and you have no control
of the client environment. You don't know what browser the user will have,
and thus you don't know exactly how HTML, CSS, and JavaScript will run
there. When you program in PHP, you're working on a machine (the
server) that you actually control. You know exactly what the server's
capabilities are because (in many cases) you configured it yourself.
It's still not a perfect situation, though, because your PHP code will
generate HTML/CSS pages (sometimes even with JavaScript), and those
pages still have to contend with the wide array of client environments.
The first program you ever write in any language is invariably the “Hello
World!” program or some variant thereof. Follow these steps:

1. Create a new PHP file in your editor.

I prefer using Komodo Edit because it has great support for PHP and
remote file access.

 If you're using some other text editor, just open a plain text
file however you normally do that (often File ⇒ New) and be sure to
save it under htdocs with a .php extension. If you're using a remote
server, transfer your file to that server before testing.

2. Create your standard HTML page.

PHP code is usually embedded into the context of an HTML page.
Begin with your standard HTML template. (See Book I, Chapter 2 for
a refresher on HTML.)

3. Enter the following code in the body:
<?php
print “<h1>Hello World!</h1>”;

******ebook converter DEMO Watermarks*******

?>

 Depending on your installation of Apache, you may be able
to use the shorter <? ?> version of the PHP directive (instead of <?
php ?>). However, nearly all installations support the <?php ?>
version, so that's probably the safest way to go.

Note that you're not just writing text, but creating an HTML tag. PHP
creates HTML. That's a really important idea.

4. Save the file.

 Remember to save directly into htdocs or a subdirectory of
htdocs. If you're using a remote server, save remotely to that server
(with Komodo) or save it locally and transfer it to the server to view it.

5. View the file in a web browser, as shown in Figure 1-2.

The address of a web page begins with the http:// protocol and then
the server name. If the page is on the local machine, the server name is
localhost, which corresponds directly to your htdocs directory. If you
have a file named thing.php in the htdocs directory, the address would
be http://localhost/thing.php. Likewise, if it's in a
subdirectory of htdocs called project, the address would be
http://localhost/project/thing.php. If the page is on a
remote server, the address will include the server's name, like this:

http://www.myserver.com/thing.php

******ebook converter DEMO Watermarks*******

http://localhost/thing.php
http://localhost/project/thing.php
http://www.myserver.com/thing.php

Figure 1-2: The “Hello World!” program example.

So, what is it that you've done here? You've figured out how to use the
print statement. This allows you to spit out any text you want to the user.

 Note that each line ends with a semicolon (;), just like JavaScript
code. PHP (unlike JavaScript) is pretty fussy about semicolons, and if
you forget, you're likely to get a really strange error that can be hard to
figure out.

echo or print?
echo is another way to generate your code for the browser. In almost all circumstances,
you use echo exactly like you use print. Everyone knows what print does, but echo
sounds like I should be making some sort of dolphin noise.

The difference is that print returns a value, and echo doesn't. print can be used as
part of a complex expression, and echo can't. It really just comes down to the fact that
print is more dynamic, whereas echo is slightly (and I'm talking very slightly here) faster.

I prefer print because there's nothing that echo can do that print can't, and print
makes more sense to my simple brain.

******ebook converter DEMO Watermarks*******

 For all the other examples in this book, you can look at the
program running on the companion website and view the source to see
what is happening. That won't work with PHP code because the PHP is
converted to HTML by the time it gets to the browser. So on my
website, I've provided a special source listing for each PHP program so
you can see the code before it is passed through the interpreter.

Coding with Quotation Marks
There are many different ways to use print. The following are all legal
ways to print text, but they have subtle differences:

print ("<p>Hello World!</p>");
 print ("<p>Hello World!

 Hello Computer!</p>");
 print '<p>Hello Google!
</p>';

Any way you cut it, you have to have some form of quotations around text
that you want printed. However, PHP is usually used to write HTML code,
and HTML code contains a lot of quote marks itself. All those quotations
can lead to headaches.
What if you want to print double quotation marks inside a print
statement surrounded by double quotation marks? You escape them (you
tell PHP to treat them as literal characters, rather than the end of the string)
with a backslash, like this:

print "A Link";

This can get tedious, so a better solution is discussed in the “Generating
output with heredocs” section, later in this chapter.

 This backslash technique works only with text encased inside
double quotes. Single quotes tell PHP to take everything inside the
quotes exactly as is. Double quotes give PHP permission to analyze the
text for special characters, like escaped quotes (and variables, which

******ebook converter DEMO Watermarks*******

you learn about in the next section of this chapter). Single quotes do not
allow for this behavior, which is why they are rarely used in PHP
programming.

Escape sequences
Quotation marks aren't the only thing you can escape, though. You can give a whole host
of other special escape directives to PHP.

The most common ones are

\t: Creates a tab in the resulting HTML

\n: Creates a new line in the resulting HTML

\$: Creates a dollar sign in the resulting HTML

\”: Creates a double quote in the resulting HTML

\’: Creates a single quote in the resulting HTML

\\: Creates a backslash in the resulting HTML

PHP can take care of this for you automatically if you're receiving these values from a form.
To read more, go to http://us3.php.net/types.string.

Working with Variables PHP-Style
Variables are extremely important in any programming language and no
less so in PHP.

 A variable in PHP always begins with a $.
A PHP variable can be named almost anything. There are some reserved
words that you can't name a variable (like print, which already has a
meaning in PHP), so if your program isn't working and you can't figure out
why, try changing some variable names or looking at the reserved words
list (in the online help at www.php.net) to find out whether your
variable name is one of these illegal words.
PHP is very forgiving about the type of data in a variable. When you create

******ebook converter DEMO Watermarks*******

http://us3.php.net/types.string
http://www.php.net

a variable, you simply put content in it. PHP automatically makes the
variable whatever type it needs. This is called loose typing. The same
variable can hold numeric data, text, or other more complicated kinds of
data. PHP determines the type of data in a variable on the fly by examining
the context.
Even though PHP is cavalier about data types, it's important to understand
that data is still stored in one of several standard formats based on its type.
PHP supports several forms of integers and floating-point numbers. PHP
also has great support for text data. Programmers usually don't say “text,”
but call text data string data. This is because the internal data
representation of text reminded the early programmers of beads on a string.
You rarely have to worry about what type of information you're using in
PHP, but you do need to know that PHP is quietly converting data into
formats that it can use.

Concatenation
Concatenation is the process of joining smaller strings to form a larger
string. (See Book IV, Chapter 1 for a description of concatenation as it's
applied in JavaScript.) PHP uses the period (·) symbol to concatenate two
string values. The following example code returns the phrase
oogieboogie:

$word = "oogie ";
$dance = "boogie";

Print $word . $dance

 If you already know some JavaScript or another language, most
of the ideas transfer, but details can trip you up. JavaScript uses the +
sign for concatenation, and PHP uses the period. These are annoying
details, but with practice, you'll be able to keep it straight.

When PHP sees a period, it treats the values on either side of the period as
strings (text) and concatenates (joins) them. If PHP sees a plus sign, it
treats the values on either side of the plus sign as numbers and attempts to
perform mathematical addition on them. The operation helps PHP figure

******ebook converter DEMO Watermarks*******

out what type of data it's working with.
The following program illustrates the difference between concatenation
and addition (see Figure 1-3 for the output):

<?php
 //from helloVariable.php
 $output = "World!";
 print "<p>Hello " . $output . "</p>";
 print "<p>" . $output + 5 . "</p>";
?>

Figure 1-3: The difference between addition and concatenation.

The previous code takes the variable output with the value World and
concatenates it to Hello when printed. Next, it adds the variable output
to the number 5. When PHP sees the plus sign, it interprets the values on
either side of it as numbers. Because output has no logical numerical
value, PHP assigns it the value of 0, which it adds to 5, resulting in the
output of <p>5</p> being sent to the browser.

Interpolating variables into text
If you have a bunch of text to print with variables thrown in, it can get a
little tedious to use concatenation to add in the variables. Luckily, you don't
have to!
With PHP, you can include the variables as follows (see Figure 1-4 for the

******ebook converter DEMO Watermarks*******

output):
<!DOCTYPE html>
<html lang = “en-US”>

<head>
 <meta charset = "UTF-8" />
 <title>helloInterpolation</title>
</head>
<body>
<?php
 $firstName = "John";
 $lastName = "Doe";
 print "<p>Hello $firstName $lastName!</p>";
?>
</body>
</html>

Figure 1-4: The variables are printed without having to do annoying concatenations.

This process is called interpolation. Because all PHP variables begin with
dollar signs, you can freely put variables right inside your string values,
and when PHP sees a variable, it will automatically replace that variable
with its value.

 Interpolation works only with double-quoted strings because

******ebook converter DEMO Watermarks*******

double quotes indicate PHP should process the string before passing it
to the user.

Building HTML Output
The output of a PHP program is usually an HTML page. As far as PHP is
concerned, HTML is just string data, so your PHP program often has to do
a lot of string manipulation. You'll often be writing long chunks of text
(HTML code) with several variables (generated by your PHP program)
interspersed throughout the code. This type of text (HTML output) will
often stretch over several lines, requires carriage returns to be preserved,
and often contains special characters like quotes and <> symbols. The
ordinary quote symbols are a little tedious if you want to use them to build
a web page. Here's an example.
Say you wanted to create a program that could take the value of the $name
and $address variables and put them into a table like this:

<table style = "border: 1px solid black">
 <tr>
 <td>name</td>
 <td>John</td>
 </tr>
 <tr>
 <td>address</td>
 <td>123 Main St.</td>
 </tr>
</table>

There are a few ways to combine the PHP and HTML code as shown in the
following sections.

Using double quote interpolation
Using regular double quotes, the code would look something like this:

$name = "John";
$address = "123 Main St.";
$output = "";
$output .= "<table style = \"border: 1px solid black\"> \n";
$output .= " <tr> \n";
$output .= " <td>name</td> \n";
$output .= " <td>$name</td> \n";
$output .= " </tr> \n";
$output .= " <tr> \n";

******ebook converter DEMO Watermarks*******

$output .= " <td>address</td> \n";
$output .= " <td>$address</td> \n";
$output .= " </tr> \n";
$output .= "</table> \n";

print $output

However, using quotes to generate HTML output is inconvenient for the
following reasons:

The $output variable must be initialized. Before adding anything
to the $output variable, give it an initial null value.
You must repeatedly concatenate data onto the $output variable.
The .= operator allows me to append something to a string variable.
All quotes must be escaped. Because double quotes indicate the end
of the string, all internal double quotes must be preceded with the
backslash (\).
Every line must end with a newline (\n) sequence. PHP creates
HTML source code. Your PHP-derived code should look as good as
what you write by hand, so you need to preserve carriage returns. This
means you need to end each line with a newline.
The HTML syntax is buried inside PHP syntax. The example shows
PHP code creating HTML code. Each line contains code from two
languages interspersed. This can be disconcerting to a beginning
programmer.

Generating output with heredocs
PHP uses a clever solution called heredocs to resolve all these issues. A
heredoc is simply a type of multiline quote, usually beginning and ending
with the word HERE.

The best way to understand heredocs is to see one in action, so here's the
same example written as a heredoc:

<?php
$name = "John";
$address = "123 Main St.";
print <<<HERE
<table style = "border: 1px solid black">

******ebook converter DEMO Watermarks*******

 <tr>
 <td>name</td>
 <td>$name</td>
 </tr>
 <tr>
 <td>address</td>
 <td>$address</td>
 </tr>
</table>
HERE;
?>

Figure 1-5 illustrates this code in action.

Figure 1-5: This page was created with the heredoc mechanism.

Heredocs have some great advantages:

All carriage returns are preserved. There's no need to put in any
newline characters. Whatever carriage returns are in the original text
will stay in the output.
Heredocs preserve quote symbols. There's also no need to escape
your quotes because the double quote is not the end-of-string character
for a heredoc.
Variable interpolation is supported. You can use variable names in a
heredoc, just like you do for an ordinary quoted string.
The contents of a heredoc feel like ordinary HTML. When you're

******ebook converter DEMO Watermarks*******

working inside a heredoc, you can temporarily put your mind in HTML
mode, but with the ability to interpolate variables.

The following are some things to keep in mind about heredocs:

A heredoc is opened with three less-than symbols (<<<) followed by a
heredoc symbol that will act as a “superquote” (instead of single or
double quotation marks, you make your own custom quotation mark
from any value that you want).
A heredoc symbol can be denoted by almost any text, but HERE is the
most common delimiter (thus, heredoc). You can make absolutely
anything you want serve as a heredoc symbol. You probably should
just stick to HERE because that's what other programmers are
expecting.
You need only one semicolon for the whole heredoc. Technically, the
entire heredoc counts as one line. That means that the only semicolon
you need is after the closing symbol.
A heredoc must be closed with the same word it was opened with.
The closing word for the heredoc must be on its own line with no other
symbols or spaces, just the word followed by a semicolon.
You can't indent the closing word for the heredoc; there can't be any
spaces or tabs preceding or following the closing word.

 By far, the most common problem with heredocs is indenting the
closing token. The HERE (or whatever other symbol you're using) must
be flush with the left margin of your editor, or PHP won't recognize it.
This usually means PHP interprets the rest of your program as part of a
big string and never finishes executing it.

Heredocs have one disadvantage: They tend to mess up your formatting
because you have to indent heredocs differently than the rest of the code.

******ebook converter DEMO Watermarks*******

 When writing a heredoc, don't put a semicolon after the first
<<<HERE. Also, don't forget that the last HERE; can't have any
whitespace before it — it must be alone on a new line without any
spaces preceding it. An editor that understands the heredoc rules
highlights all the code inside the heredoc and saves you lots of grief.
Komodo does this automatically, as does Aptana (if you've installed the
PHP plug-in). Notepad++ also has this feature.

Switching from PHP to HTML
There's one more way to combine PHP and HTML code. The server treats
a PHP document mainly as an HTML document. Any code not inside the
<?php ?> symbols is treated as HTML, and anything inside the PHP
symbols is interpreted as PHP.
This means you can switch in and out of PHP, like the following example:

<?php
 $name = "John";
 $address = "123 Main St.";
 // switch 'out' of PHP temporarily
?>
<table style = "border: 1px solid black">
 <tr>
 <td>name</td>
 <td><?php print $name; ?></td>
 </tr>
 <tr>
 <td>address</td>
 <td><?php print $address; ?></td>
 </tr>
</table>
<?php
 //I'm back in PHP
?>

This option (switching back and forth) is generally used when you have a
lot of HTML code with only a few simple PHP variables. I prefer the
heredoc approach, but feel free to experiment and find out what system
works for you.

******ebook converter DEMO Watermarks*******

Printing shortcut
When switching in and out of PHP, if you have just one variable you want to print,
depending upon your server setup, you may be able to print the variable like this:

<?= $name ?>

You don't have to actually write print when using this technique. Note that this trick
doesn't work if you have to type php after the question mark in the opening PHP tag.

******ebook converter DEMO Watermarks*******

Chapter 2
PHP and HTML Forms

In This Chapter
 Understanding the relationship between HTML and PHP
 Using the date() function
 Formatting date and time information
 Creating HTML forms designed to work with PHP
 Choosing between get and post data transmission
 Retrieving data from your HTML forms
 Working with HTML form elements

PHP is almost never used on its own. PHP is usually used in tight
conjunction with HTML. Many languages have features for creating input
forms and user interfaces, but with PHP, the entire user experience is based
on HTML. The user never really sees any PHP. Most of the input to PHP
programs comes from HTML forms, and the output of a PHP program is an
HTML page.
In this chapter, you discover how to integrate PHP and HTML. You
explore how PHP code is embedded into HTML pages, how HTML forms
can be written so they will send information to a PHP program, how to
write a PHP program to read that data, and how to send an HTML response
back to the user.

Exploring the Relationship between
PHP and HTML

PHP is a different language than HTML, but the two are very closely
related. It may be best to think of PHP as an extension that allows you to
do things you cannot do easily in HTML. See Figure 2-1 for an example.

******ebook converter DEMO Watermarks*******

Figure 2-1: This program gives me the current date and time.

Every time you run getTime.php, it generates the current date and time and
returns these values to the user. This would not be possible in ordinary
HTML because the date and time (by definition) always change. While you
could make this page using JavaScript, the PHP approach is useful for
demonstrating how PHP works. First, take a look at the PHP code:

<!DOCTYPE html>
 <html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>showDate.php</title>
 </head>
 <body>
 <h1>Getting the Time, PHP Style</h1>
 <?php
 print "<h2>Date: ";
 print date("m-d");
 print "</h2> \n";
 print " <h2>Time: ";
 print date("h:i");
 print "</h2>";
 ?>
 </body>
 </html>

Embedding PHP inside HTML
******ebook converter DEMO Watermarks*******

The PHP code has some interesting characteristics:

It's structured mainly as an HTML document. The doctype
definition, document heading, and initial H1 heading are all ordinary
HTML. Begin your page as you do any HTML document. A PHP page
can have as much HTML code as you wish. (You might have no PHP
at all!) The only thing the PHP designation does is inform the server
that PHP code may be embedded into the document.
PHP code is embedded into the page. You can switch from HTML to
PHP with the <?php tag. Signify the end of the PHP code with the ?>
symbol.
The PHP code creates HTML. PHP is usually used to create HTML
code. In effect, PHP takes over and prints out the part of the page that
can't be created in static HTML. The result of a PHP fragment is
usually HTML code.
The date()function returns the current date with a specific
format. The format string indicates how the date should be displayed.
(See the sidebar “Exploring the date() format function,” in this
chapter, for more information about date formatting.)
The result of the PHP code will be an HTML document. When the
PHP code is finished, it will be replaced by HTML code.

Viewing the results
If you view showDate.php in your browser, you won't see the PHP
code. Instead, you'll see an HTML page. It's even more interesting when
you use your browser to view the page source. Here's what you'll see:

<!DOCTYPE html>
 <html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>showDate.php</title>
 </head>
 <body>
 <h1>Getting the Time, PHP Style</h1>
 <h2>Date: 07-05</h2>
 <h2>Time: 03:50</h2>

******ebook converter DEMO Watermarks*******

 </body>
 </html>

The remarkable thing is what you don't see. When you look at the source of
showDate.php in your browser, the PHP is completely gone! This is
one of the most important points about PHP: The browser never sees any
of the PHP. The PHP code is converted completely to HTML before
anything is sent to the browser. This means that you don't need to worry
about whether a user's browser understands PHP. Because the user never
sees your PHP code (even if he views the HTML source), PHP code works
on any browser, and is a touch more secure than client-side code.

Exploring the date() format function
The showDate.php program takes advantage of one of PHP's many interesting and
powerful functions to display the date. The PHP date() function returns the current date.
Generally, you'll pass the date() function a special format string that indicates how you
want the date to be formatted. Characters in the date string indicate a special code. Here
are a few of the characters and their meanings:

d: day of the month (numeric)

D: three character abbreviation of weekday (Wed)

m: month (numeric)

M: three-character abbreviation of month (Feb)

F: text representation of month (February)

y: two-digit representation of the year (08)

Y: four-digit representation of the year (2008)

h: hour (12 hours)

H: hour (24 hours)

i: minutes

s: seconds

You can embed standard punctuation in the format as well, so d/m/y will include the
slashes between each part of the date. There are many more symbols available. Check the
PHP documentation at http://us3.php.net/manual/en/function.date.php for
more information about date and time formatting.

******ebook converter DEMO Watermarks*******

http://us3.php.net/manual/en/function.date.php

Sending Data to a PHP Program
You can send data to a PHP program from an HTML form. For an example
of this technique, see askName.html in Figure 2-2.

Figure 2-2: This HTML page has a simple form.

HTML forms (described fully in Book I, Chapter 7) allow the user to enter
data onto a web page. However, HTML cannot respond to a form on its
own. You need some sort of program to respond to the form. Book IV
describes how to use JavaScript to respond to forms, but you can also write
PHP code to handle form-based input. When the user submits the form, the
askName.html disappears completely from the browser and is replaced
with greetUser.php, as shown in Figure 2-3.

******ebook converter DEMO Watermarks*******

Figure 2-3: This program uses the entry from the previous form.

The greetUser.php program retrieves the data from the previous page
(askName.html, in this case) and returns an appropriate greeting.

Creating a form for PHP processing
The askName.html program is a standard HTML form, but it has a couple
of special features which make it suitable for PHP processing. (See Book I,
Chapter 7 for more information about how to build HTML forms.) Here is
the HTML code:

<!DOCTYPE html>
 <html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>askName.html</title>
 </head>
 <body>
 <form action = "greetUser.php"
 method = "get">
 <fieldset>
 <label>Please enter your name</label>
 <input type = "text"
 name = "userName" />
 <button type = "submit">
 submit
 </button>

******ebook converter DEMO Watermarks*******

 </fieldset>
 </form>
 </body>
 </html>

To build a form designed to work with PHP, there are a few special steps to
take:

1. Write an HTML page as the framework.

This page is a regular HTML page. Begin with the same HTML
framework you use for building your standard HTML pages. You can
use CSS styles, if you wish (but I'm leaving them out of this simple
example).

 Normally, you can create an HTML document anywhere you
want, but this is not so when your page will be working with PHP. This
page is meant to be paired with a PHP document. PHP documents will
run only if they are in a server's file space, so you should save your
HTML document under htdocs to be sure it will call the PHP form
correctly.

2. Set the form's action property to point to a PHP program.

The form element has an attribute called action. The action
attribute is used to determine which program should receive the data
transmitted by the form. I want this data to be processed by a program
called greetUser.php, so I set greetUser.php as the action:

<form action = "greetUser.php"
 method = "get">

3. Set the form's method attribute to get.

The method attribute indicates how the form data will be sent to the
server. For now, use the get method. See the section “Choosing the
Method of Your Madness,” later in this chapter, for information on the
various methods available:

******ebook converter DEMO Watermarks*******

<form action = "greetUser.php"
 method = "get">

4. Add any input elements your form needs.

The point of a form is to get information from the user and send it to a
program on the server. Devise a form to ask whatever questions you
want from the server. My form is as simple as possible, with one text
field, but you can use any HTML form elements you want:

<form action = "greetUser.php"
 method = "get">
 <fieldset>
 <label>Please enter your name</label>
 <input type = "text"
 name = "userName" />
 <button type = "submit">
 submit
 </button>
 </fieldset>

5. Give each element a name attribute.

If you want a form element to be passed to the server, you must give it
a name attribute. Note: This is a different attribute than id, which is
used in client-side processing.

<input type = "text"
 name = "userName" />

The name attribute will be used by the PHP program to extract the
information from the form.

 A form element can have both a name and an ID, if you wish.
The name attribute will be used primarily by server-side programs,
and the id attribute is mainly used for CSS and JavaScript. The name
and ID can (and usually do) have the same value.

6. Add a submit button to the page.

******ebook converter DEMO Watermarks*******

The most important difference between a client-side form and a form
destined for processing on the server is the button. A special submit
button packages all the data in the form and passes it to the program
indicated in the action property. Submit buttons can be created in
two forms:

<input type = "submit" value = "click me"/>

or

<button type = "submit">click me</button>

Specify submit as the button's type attribute to ensure the button
sends the data to the server.

 If your form has a submit button and a blank action
attribute, the current page will be reloaded.

Receiving data in PHP
PHP code is usually a two-step process. First, you create an HTML form,
and then you send that form to a PHP program for processing. Be sure to
read the previous section on “Creating a form for PHP processing” because
now I show you how to read that form with a PHP program.
The HTML form in the last section pointed to a program named
greetUser.php. This tells the server to go to the same directory that
contained the original HTML document (askName.html) and look for a
program named greetUser.php in that directory. Because greetUser is a
PHP program, the server passes it through PHP, which will extract data
from the form. The program then creates a greeting using data that came
from the form. Look over all the code for greetUser.php before I explain it
in more detail:

<!DOCTYPE html>
 <html lang = "en-US">

******ebook converter DEMO Watermarks*******

 <head>
 <meta charset = "UTF-8">
 <title>greetUser.php</title>
 </head>
 <body>
 <?php
 $userName = filter_input(INPUT_GET, "userName");
 print "<h1>Hi, $userName!</h1>";
 ?>
 </body>
 </html>

greetUser.php is not a complex program, but it shows the most common
use of PHP: retrieving data from a form. Here's how you build it:

1. Build a new PHP program.

This program should be in the same directory as askName.html, which
should be somewhere the server can find (usually under the htdocs or
public_html directory).

2. Start with ordinary HTML.

PHP programs are usually wrapped inside ordinary HTML, so begin
the document as if it were plain HTML. Use whatever CSS styling and
ordinary HTML tags you want. (I'm keeping this example as simple as
possible, although I'd normally add some CSS styles to make the
output less boring.)

3. Add a PHP segment.

Somewhere in the page, you'll need to switch to PHP syntax so that
you can extract the data from the form. Use the <?php symbol to
indicate the beginning of your PHP code:

<?php
 $userName = filter_input(INPUT_GET, "userName");
 print "<h1>Hi, $userName!</h1>";
 ?>

4. Extract the username variable.

All of the data that was sent from the form is stored in a special
******ebook converter DEMO Watermarks*******

variable in memory. There are a number of ways to extract that data,
but the preferred method is to use the filter_input() function as
I have done here. This function takes two parameters: The first is a
constant determining the type of input (I'm looking for input passed
through the GET mechanism here). The second parameter is the name
associated with the form element. Typically you'll make a PHP variable
with the same name as the corresponding form element.

See the upcoming section “Getting data from the form” for more
information on the filter_input() mechanism and some of the
other tools that are available for retrieving information.

5. Print the greeting.

Now, your PHP program has a variable containing the user's name, so
you can print a greeting to the user. Remember that all output of a PHP
program is HTML code, so be sure to embed your output in a suitable
HTML tag. I'm putting the greeting inside a level-one heading:

print "<h1>Hi, $userName!</h1>";

 The greetUser.php script is not meant to be run directly. It relies
on askName.html. If you provide a direct link to greetUser.php, the
program will run, but it will not be sent the username, so it will not
work as expected. Do not place links to your PHP scripts unless you
designed them to work without input. On this book's companion
website, you'll find a link to the source code of each of my PHP files,
but most of them cannot be run directly, but must be called by an
HTML file. See this book's Introduction for more on the website.

Choosing the Method of Your
Madness

The key to server-side processing is adding method and action

******ebook converter DEMO Watermarks*******

properties to your HTML form. You have two primary choices for the
method property:

GET: The get method gathers the information in your form and
appends it to the URL. The PHP program extracts form data from the
address. The contents of the form are visible for anyone to see.
POST: The post method passes the data to the server through a
mechanism called environment variables. This mechanism makes the
form elements slightly more secure because they aren't displayed in
public as they are with the get method.

Using get to send data
The get method is easy to understand. View getRequest.php after it has
been called from askName.html in Figure 2-4. Pay careful attention to the
URL in the address bar.

Figure 2-4: The address has been modified!

The address sent to the PHP program has additional material appended:
http://localhost/haio/book_5/chap_2/greetUser.php?
userName=Andy+Harris

Most of this address is the (admittedly convoluted) address of the page on

******ebook converter DEMO Watermarks*******

my test server. The interesting part is the section after greetUser.php:
greetUser.php?userName=Andy+Harris

This line shows exactly how the get method passes information to the
program on the server:

The URL is extracted from the form action property. When the
submit button is activated, the browser automatically creates a special
URL beginning with the action property of the form. The default
address is the same directory as the original HTML file.
A question mark indicates form data is on the way. The browser
appends a question mark to the URL to indicate form data follows.
Each field/value pair is listed. The question mark is followed by each
field name and its associated value in the following format:

URL?field1=value1&field2=value2

An equal sign (=) follows each field name. Each field name is
separated by the value of that field with an equal sign (and no spaces).
The field value is listed immediately after the equal sign. The value
of each field follows the equal sign.
Spaces are converted to hexadecimal symbols. get data is
transmitted through the URL, and URLS are not allowed to have
spaces or other special characters in them. The browser automatically
converts all spaces in field names or values to values it can manage,
often converting spaces to special characters. Fortunately, the decoding
process removes these special characters, so it's not something you
need to worry about.

 Sometimes, the spaces are converted to %20 symbols, rather
than + signs. It isn't really that important because the conversion is
done automatically. Just know that URLs can't contain spaces.

An ampersand (&) is used to add a new field name/value pair. This
particular example (the URL created by askName.html) has only one

******ebook converter DEMO Watermarks*******

name/value pair. If the form had more elements, they would all be
separated by ampersands.

 You don't have to do any of the URL formatting. It automatically
happens when the user clicks the submit button. You'll also never have
to decode all this, as PHP will do it for you.

If you understand how the get method works, you can take advantage of it
to send data to programs without the original form. For example, take a
look at this address:

http://www.google.com/search?q=dramatic+chipmunk

If you type this code into your browser's location bar, you'll get the Google
search results for a classic five-second video. (If you haven't seen this
video, it's worth viewing.) If you know a particular server-side program
(like Google's search engine) uses the get protocol, and you know which
fields are needed (q stands for the query in Google's program), you can
send a request to a program as if that request came from a form.
You can also write a link with a preloaded search query in it:

Google search for the dramatic chipmunk

If a user clicks the resulting link, he would get the current Google search
for the dramatic chipmunk video. (Really, it's a prairie dog, but “dramatic
chipmunk” just sounds better.)

How did I know how to write the Google
query?

You might wonder how I knew what fields the Google engine expects. If the program uses
get, just use the intended form to make a search and look at the resulting URL. Some
testing and experience told me that only the q field is absolutely necessary.

This trick (bypassing the form) could be considered rude by some because it circumvents
safety features that may be built into the form. Still, it can be helpful for certain very public
features, like preloaded Google searches, or looking up weather data for a particular

******ebook converter DEMO Watermarks*******

location through a hard-coded link.

 Of course, if you can send requests to a program without using
the intended form, others can do the same to you. You can never be 100
percent sure that people are sending requests from your forms. This can
cause some problems. Look at the next section for a technique to
minimize this problem by reading only data sent via the post method.

Using the post method to transmit form data
The GET method is easy to understand because it sends all data directly in
the URL. This makes it easy to see what's going on, but there are some
downsides to using get:

The resulting URL can be very messy. Addresses on the web can
already be difficult without the added details of a get request. A form
with several fields can make the URL so long that it's virtually
impossible to follow.
All form information is user-readable. The get method displays
form data in the URL, where it can easily be read by the user. This may
not be desired, especially when the form sends potentially sensitive
data.
The amount of information that can be passed is limited. Some
servers won't accept URLs longer than 4,000 characters. If you have a
form with many fields or with fields that contain a lot of data, you will
easily exceed this limit.

The answer to the limitations of the get method is another form of data
transmission: the post method.
Here’s how it works:

You specify that the form's method will be POST. You create the
HTML form in exactly the same way. The only difference is the form
method attribute. Set it to post:

******ebook converter DEMO Watermarks*******

<form action = "greetUser.php"
 method = "post">

Data is gathered and encoded, just like it is in the get method.
When the user clicks the submit button, the data is encoded in a format
similar to the get request, but it's not attached to the URL.
The form data is sent directly to the server. The PHP program can
still retrieve the data (usually through a mechanism called environment
variables) even though the data is not encoded on the URL. Again, you
won't be responsible for the details of extracting the data. PHP makes it
pretty easy.

The post method is often preferable to get because

The URL is not polluted with form data. The data is no longer
passed through the URL, so the resulting URL is a lot cleaner than one
generated by the get method.
The data is not visible to the user. Because the data isn't presented in
the URL, it's slightly more secure than get data.
There is no practical size limit. The size of the URL isn't a limiting
factor. If your page will be sending a large amount of data, the post
method is preferred.

 With all these advantages, you might wonder why anybody uses
get at all. Really, there are two good reasons. The get approach
allows you to embed requests in URLs (which can't be done with
post). Also, get is sometimes a better choice for debugging because
it's easier to see what's being passed to the server.

Getting data from the form
The preferred way to extract data from the form is the filter_input()
function. This powerful tool not only extracts data from the form, but it
also protects against certain kinds of attacks and allows you to sanitize
your data before you use it. Filter input requires two or three parameters:

******ebook converter DEMO Watermarks*******

The input type constant: The first parameter is a constant describing
where the data can be found. Most often, this value is INPUT_GET or
INPUT_POST. A few other values are available (INPUT_COOKIE
and INPUT_ENV) but they are rarely used. A couple of very useful
values are not yet implemented (INPUT_SESSION and
INPUT_REQUEST).
A variable name: This is the name attribute from the form which
called this program. If the name is misspelled or does not exist, the
results will be unpredictable (see Chapter 3 of this minibook on how to
handle this situation). The variable name must have the same case as
the HTML form element name, must be encased in quotes, and does
not include the dollar sign because this is an HTML variable rather
than a PHP variable. Typically you'll pass the result of the
filter_input() function to a PHP variable with the same name as
the form element.
An optional filter: You can specify one of a number of filters to pass
input through before processing. These filters come in two main
flavors:

Sanitizing filters all begin with the phrase FILTER_SANITIZE, and
they are designed to strip off various types of characters.
FILTER_SANITIZE_STRING removes or converts any special
characters, and FILTER_SANITIZE_EMAIL removes any character
not allowed in an e-mail address. There are filters for all the main data
types (int and float) as well as special web-specific filters (e-mail,
URL, special HTML characters).

Validation filters do not actually load the value, but check to see that it
is in an acceptable format. They all begin with FILTER_VALIDATE
and return a Boolean expressing whether the variable passed the
validation. Typically you'll validate a variable before you accept it to
prevent hackers from passing malicious code to your programs.

If you don't indicate a filter, the FILTER_SANITIZE_STRING filter
is automatically applied, which does give you one level of protection.
A list of the most commonly used filters is presented in Table 2-1.

******ebook converter DEMO Watermarks*******

Table 2-1 Standard PHP Filters
Filter Description

FILTER_SANITIZE_STRING Strips tags, encodes or removes special
characters.

FILTER_SANITIZE_SPECIAL_CHARS Converts HTML special characters (<>&)
with ASCII equivalents.

FILTER_SANITIZE_EMAIL Removes any characters not allowed in an
e-mail address.

FILTER_SANITIZE_URL Removes any characters not allowed in a
URL.

FILTER_SANITIZE_NUMBER_INT Removes all characters but numeric digits
and sign (+/-) symbols

FILTER_SANITIZE_NUMBER_INT Removes all characters but numeric digits,
periods, commas, and sign (+/-) symbols.

FILTER_VALIDATE_INT True if input is an int.

FILTER_VALIDATE_FLOAT True if input is a floating point value.

FILTER_VALIDATE_BOOLEAN
True if input can be read as a Boolean
(true/false, on/off, yes/no, 1/0). Returns
NULL if input is non-Boolean.

FILTER_VALIDATE_URL True if input is a legal URL (doesn't check
the address).

FILTER_VALIDATE_EMAIL True if input is a legal e-mail address
(doesn't check the address).

FILTER_VALIDATE_IP True if input is a valid IP address (doesn't
check the address).

FILTER_VALIDATE_REGEXP
True if input matches a given regular
expression. (See more about regular
expressions in Book IV, Chapter 5.)

There are few more filters, and some have optional parameters, so you may
need to look at the online documentation to get all the details. Ninety
percent of the time, you'll just stick with the default
FILTER_SANITIZE_STRING filter.

Kicking it old-school: Form input like
Grandma used to do it

The filter_input technique described in this chapter is the best way to get form input,

******ebook converter DEMO Watermarks*******

but it's relatively new. For many years, other approaches were used.

PHP includes a number of special built-in variables that give you access to loads of
information. Each variable is stored as an associative array; see Chapter 4 of this minibook
for more on associative arrays. These special variables are available anywhere in your
PHP code, so they're called superglobals. Here's a few of the most important ones:

$_GET: A list of variables sent to this program through the get method

$_POST: A list of variables sent to this program through the post method

$_REQUEST: A combination of $_GET and $_POST

You can use these variables to look up information posted in the form. For example, the
askName.html page contains a field called userName. When the user views this page, it
sends a request to greetUser.php via the get method. greetUser.php can then check its
$_GET variable to see whether a field named userName exists:

$userName = $_GET["userName"];

This line checks all the data sent via get, looks for a field named userName, and copies
the contents of that field to the variable $userName.

If you want to retrieve a value sent through the post method, use this variation:

$userName = $_POST["userName"];

If you don't care whether the data was sent via get or post, use $_REQUEST:

$userName = $_REQUEST["userName"];

The $_REQUEST superglobal grabs data from both get and post requests, so it works, no
matter how the form was encoded. Many programmers use the $_REQUEST technique
because then they don't have to worry about the encoding mechanism.

The earliest forms of PHP had a feature called register_globals that automatically did the
$_REQUEST extraction for you. If your program comes from a userName field, the program
will “magically” just have a $userName variable preloaded with the value of that field.
Although this was a very convenient option, evildoers soon learned how to take advantage
of this behavior to cause all kinds of headaches. Convenient as it may be, the
register_globals feature is now turned off on most servers and isn't even available on
the next version of PHP.

The filter_input() mechanism described in this chapter is the preferred way to get
input from a form, as it provides a nice level of protection from malicious attackers, but you
will still see PHP code floating around that uses the other techniques.

Retrieving Data from Other Form
******ebook converter DEMO Watermarks*******

Elements
It's just as easy to get data from drop-down lists and radio buttons as it is to
get data from text fields. In PHP (unlike JavaScript), you use exactly the
same technique to extract data from any type of form element.

Building a form with complex elements
For an example of a more complex form, look over monty.html in
Figure 2-5. This program is a tribute to my favorite movie of all time. (You
might just have to rent this movie if you're really going to call yourself a
programmer. It's part of the culture.)

Figure 2-5: The Monty Python quiz features a drop-down list, radio buttons, and check boxes
(and a newt).

The HTML form poses the questions. (Check out Book I, Chapter 7 for a
refresher on HTML forms, if you need it.) Here's the code:

<!DOCTYPE html>
 <html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>monty.html</title>
 <link rel = "stylesheet"
 type = "text/css"

******ebook converter DEMO Watermarks*******

 href = "monty.css" />
 </head>
 <body>
 <h1>Monty Python Quiz</h1>
 <form action = "monty.php"
 method = "post">
 <fieldset>
 <p>
 <label>What is your name?</label>
 <select name = "name">
 <option value = "Roger">
 Roger the Shrubber
 </option>
 <option value = "Arthur">
 Arthur, King of the Britons
 </option>
 <option value = "Tim">
 Tim the Enchanter
 </option>
 </select>
 </p>
 <p>
 <label>What is your quest?</label>

 <input type = "radio"
 name = "quest"
 value = "herring" />
 To chop down the mightiest tree in the forest
 with a herring

 <input type = "radio"
 name = "quest"
 value = "grail" />
 I seek the holy grail.

 <input type = "radio"
 name = "quest"
 value = "shrubbery" />
 I'm looking for a shrubbery.

 </p>
 <p>
 <label>How can you tell she's a witch?</label>

 <input type = "checkbox"
 name = "nose"
 value = "nose"/>
 She's got a witch nose.

******ebook converter DEMO Watermarks*******

 <input type = "checkbox"
 name = "hat"
 value = "hat"/>
 She has a witch hat.

 <input type = "checkbox"
 name = "newt"
 value = "newt" />
 She turned me into a newt.

 </p>
 <button type = "submit">
 Submit
 </button>
 </fieldset>
 </form>
 </body>
</html>

There's nothing too crazy about this code. Please note the following
features:

The action attribute is set to monty.php. This page (monty.html)
will send data to monty.php, which should be in the same directory on
the same server.
The method attribute is set to post. All data on this page will be
passed to the server via the post method.
Each form element has a name attribute. The name attributes will
be used to extract the data in the PHP program.
All the radio buttons have the same name value. The way you get
radio buttons to work together is to give them all the same name. And
although they all have the same name, each has a different value. When
the PHP program receives the request, it will get only the value of the
selected radio button.
Each check box has an individual name. Check boxes are a little bit
different. Each check box has its own name, but the value is sent to the
server only if the check box is checked.

******ebook converter DEMO Watermarks*******

 I don't cover text areas, passwords fields, or hidden fields here
because, to PHP, they are just like text boxes. Retrieve data from these
elements just like you do for text fields.

Responding to a complex form
The monty.php program is designed to respond to monty.html. You can see
it respond when I submit the form in monty.html, as shown in Figure 2-6.

Figure 2-6: The monty.php program responds to the Monty Python quiz.

 It's no coincidence that monty.html uses monty.css and calls
monty.php. I deliberately gave these files similar names so it will be
easy to see how they fit together.

This program works like most PHP programs: It loads data from the form
into variables and assembles output based on those variables. Here's the
PHP code:

<!DOCTYPE html>
<html lang = "en-US">

******ebook converter DEMO Watermarks*******

<head>
 <meta charset = "UTF-8">
 <title>monty.php</title>
 <!-- Meant to run from monty.html -->
 </head>
 <body>
 <h1>Monty Python quiz results</h1>
 <?php
 //gather the variables
 $name = filter_input(INPUT_POST, "name");
 $quest = filter_input(INPUT_POST, "quest");
 //don't worry about check boxes yet; they may not exist
 //send some output
 $reply = <<< HERE
 <p>
 Your name is $name.
 </p>
 <p>
 Your quest is $quest.
 </p>
HERE;
 print $reply;
 //determine if she's a witch
 $witch = false;
 //See if check boxes exist
 if (filter_has_var(INPUT_POST, "nose")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "hat")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "newt")){
 $witch = true;
 }

if ($witch == true){
 print "<p>She's a witch!</p> \n";
 } // end if
 ?>
 </body>
</html>

If you want to respond to a form with multiple types of data, here's how it's
done:

1. Begin with the HTML form.

Be sure you know the names of all the fields in the form because your

******ebook converter DEMO Watermarks*******

PHP program will need this information.

2. Embed your PHP inside an HTML framework.

Use your standard HTML framework as the starting point for your PHP
documents, too. The results of your PHP code should still be standards-
compliant HTML. Use the <?php and ?> symbols to indicate the
presence of PHP code.

3. Create a variable for each form element.

Use the $_REQUEST technique described in the “Receiving data in
PHP” section of this chapter to extract form data and store it in local
variables:

//gather the variables
 $name = filter_input(INPUT_POST, "name");
 $quest = filter_input(INPUT_POST, "quest");

Don't worry about the check boxes yet. Later on, you'll determine
whether they exist. You don't really care about their values.

4. Build your output in a heredoc.

PHP programming almost always involves constructing an HTML
document influenced by the variables that were extracted from the
previous form. The heredoc method (described in Chapter 1 of this
minibook) is an ideal method for packaging output:

//send some output
[$reply = <<< HERE
[<p>
 Your name is $name.
 </p>

<p>
 Your quest is $quest.
 </p>

[HERE;
[print $reply;

******ebook converter DEMO Watermarks*******

5. Check for the existence of each check box.

Check boxes are the one exception to the “treat all form elements the
same way” rule of PHP. The important part of a check box isn't really
its value. What you really need to know is whether the check box is
checked. Here's how it works: If the check box is checked, a name and
value are passed to the PHP program. If the check box is not checked,
it's like the variable never existed:

a. Create a variable called $witch set to false. Assume
innocent until proven guilty in this witch hunt.

Each check box, if checked, would be proof that she’s a witch.
The filter_has_var() function is used to determine
whether a particular variable exists. This function takes an input
type and a variable name (just like filter_input()) and
returns true if the variable exists and false if it doesn’t.

b. Check each check box variable. If it exists, the corresponding
check box was checked, so she must be a witch (and she must
weigh the same as a duck — you've really got to watch this
movie).

After testing for the existence of all the check boxes, the
$witch variable will still be false if none of the check boxes
were checked. If any combination of check boxes is checked,
$witch will be true:

//determine if she's a witch
 $witch = false;

//See if check boxes exist
 if (filter_has_var(INPUT_POST, "nose")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "hat")){
 $witch = true;
 }
 if (filter_has_var(INPUT_POST, "newt")){
 $witch = true;

******ebook converter DEMO Watermarks*******

 }

if ($witch == true){
 print "<p>She's a witch!</p> \n";
 } // end if

 Before the filter_has_var() mechanism became available,
programmers used another function called isset() to determine if a
variable existed. Either is fine, but for this book I stick with the
filter mechanisms for consistency.

******ebook converter DEMO Watermarks*******

Chapter 3
Using Control Structures

In This Chapter
 Getting used to conditions
 Using if, else if, and else
 Using switch structures
 Working with while and for loops
 Using comparison operators

Computer programs are most interesting when they appear to make
decisions. PHP has many of the same decision-making structures as
JavaScript, so if you've already looked over Chapters 2 and 3 of Book IV,
you will find this chapter very familiar. In any case, take a look at
conditions to see the key to making the computer branch and loop.

Introducing Conditions (Again)
Computer programs make decisions. That's part of what makes them
interesting. But all the decisions a computer seems to make were already
determined by the programmer. The computer's decision-making power is
all based on an idea called a condition. This little gem is an expression that
can be evaluated as true or false. (That sounds profound. I wonder if it will
be on the mid-term?)
Conditions can be comparisons of one variable to another, they can be
Boolean (true or false) variables, or they can be functions that return a true
or false value.

 If this talk of conditions is sounding like déjà vu, you've probably
read about conditions in Book IV, Chapters 2 and 3. You'll find a lot of
the same ideas here; after all, conditions (and branches and loops, and

******ebook converter DEMO Watermarks*******

lots of other stuff) are bigger than one programming language. Even
though this mini-book covers a different language, you'll see coverage
of the same kinds of things. If you haven't read that minibook already,
you might want to look it over first so you can see how programming
remains the same even when the language changes.

Building the Classic if Statement
The if statement is the powerhouse of computer programming. Take a
look at Figure 3-1 to see it in action. This program might be familiar if you
read Book IV already. It rolls a standard six-sided die, and then displays
that die on the screen.

Figure 3-1: This program rolls a die. Try it again.

When it rolls a six, it displays an elaborate multimedia event, as shown in
Figure 3-2. (Okay, it just says Holy Guacamole! That's a six! The dancing
hippos come later …)

******ebook converter DEMO Watermarks*******

Figure 3-2: It's a six! Joy!

This program is much like the if.html program in Book IV, Chapter 3. I do
all the same things here as in that program. However, PHP and JavaScript
are a little different, and that's part of the game of programming.
Appreciate the concepts that flow between languages while noting those
details that are different.

Rolling dice the PHP way
PHP has a random number generator, which works a little differently than
the one in JavaScript. The PHP version is actually easier for dice.

$variable = rand(a, b);

This code creates a random integer between a and b (inclusive), so if you
want a random 1–6 die, you can use a statement like this:

$die = rand(1,6);

It doesn't get a lot easier than that.

Checking your six
The code for the if.php program rolls a die, displays an image, and
celebrates the joyous occasion of a six.

<!doctype html>
<html lang="en">
<head>

******ebook converter DEMO Watermarks*******

 <meta charset="UTF-8">
 <title>if.php</title>
</head>
 <title>if.php</title>
 <meta http-equiv="Content-Type"
content="text/html;charset=UTF-8" />
</head>
<body>
 <h1>Try to roll a six</h1>
 <p>
 roll again
 </p>
 <?php
 //thanks to user rg1024 from openClipart.org for
 //the great dice images
 $roll = rand(1,6);
 print <<<HERE
<p>
 <img src = "images/dado_$roll.png"
 alt = "$roll"
 height = "100px"
 width = "100px" />
</p>
HERE;
 if ($roll == 6){
 print("<h1>Holy Guacamole! That's a six!</h1>\n");
 } // end if
 ?>
</body>
</html>

The process is eerily familiar:

1. Begin with a standard HTML template.

As always, PHP is encased in HTML. There's no need to switch to
PHP until you get to the part that HTML can't do: that is, rolling dice
and responding to the roll.

2. Add a link to let the user roll again.

Add a link that returns to the same page. When the user clicks the link,
the server refreshes the page and rolls a new number.

3. Roll the rand() function to roll a die. Put the result in a variable
called $roll.

******ebook converter DEMO Watermarks*******

4. Print out a graphic by creating the appropriate tag.

I preloaded a bunch of die images into a directory called images. Each
image is carefully named dado_1.png through dado_6.png.
(Dado is Spanish for “die” — thanks to user rg1024 from
openclipart.org for the great images.) To display an image in PHP, just
print out a standard img tag. The URL is created by interpolating the
variable $roll into the image name. Don't forget that HTML requires
an alt attribute for the img tag. I just use the $roll value as the
alt. That way, the die roll will be known even if the image doesn't
work.

5. Check whether the die is a six.

This is where the condition comes in. Use the if statement to see
whether the value of $roll is 6. If so, print out a message.

 The == (two equal sign) means “is equal to.” A single equal sign
means assignment. If you use the single equal sign in a condition, the
code may not crash, but it probably won't do what you intended.

The else clause is used when you want to do one thing if a condition is
true and something else if the condition is false. The highLow.php program
shown in Figure 3-3 handles this kind of situation.
The code is very similar to the if.php program.
The bold code shows the only part of the program that's new.

 <!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>highLow.php</title>
</head>
<body>
 <h1>High or low?</h1>
 <p>
 roll again
 </p>

******ebook converter DEMO Watermarks*******

 <?php
 $roll = rand(1,6);
 print <<<HERE
 <p>
 <img src = "images/dado_$roll.png"
 alt = "$roll"
 height = "100px"
 width = "100px" />
 </p>
HERE;
 if ($roll > 3){
 print "<h2>You rolled a high one</h2>\n";
 } else {
 print "<h2>That's pretty low</h2> \n";
 } // end if
 ?>
</body>
</html>

Figure 3-3: This program tells whether the roll was high or low.

Most of the code for this program is the same as the previous code
example, but the condition is slightly different:

Now the condition is an inequality. I now use the greater-than symbol
(>) to compare the roll to the value 3. You can use any of the
comparison operators in Table 3-1. If $roll is higher than 3, the
condition will evaluate as true, and the first batch of code will run.

Table 3-1 Comparison Operators
******ebook converter DEMO Watermarks*******

Comparison Discussion
A == B True if A is equal to B
A != B True if A is not equal to B

A < B True if A is less than B (if they are numeric) or earlier in the alphabet
(for strings)

A > B True if A is larger than B (numeric) or later in the alphabet (string)
A >= B A is larger than or equal to B
A<= B A is less than or equal to B

Add an else clause.

The else clause is special because it handles the situation when the
condition is false. All it does is set up another block of code.

Include code for the false condition.

The code between else and the ending brace for if ending brace will
run only if the condition is evaluated false.

Understanding comparison operators
PHP uses many of the same comparison operators as JavaScript (and many
other languages based on C). Table 3-1 summarizes these operators.
Note that PHP determines the variable type dynamically, so comparisons
between numeric and string values may cause problems. It's best to
explicitly force variables to the type you want if you're not sure. For
example, if you want to ensure that the variable $a is an integer before you
compare it to the value 4, you could use this condition:

(integer)$a == 4

This forces the variable $a to be read as an integer. You can also use this
technique (called typecasting) to force a variable to other types: float,
string, or boolean.

Taking the middle road
Another variation of the if structure allows you to check multiple

******ebook converter DEMO Watermarks*******

conditions. As an example, look at the highMidLow.php page featured in
Figure 3-4.

Figure 3-4: Now there are three possible comments, thanks to the else if structure.

If the roll is 1 or 2, the program reports Low. If the roll is 3 or 4, it says
Middle; and if it's 5 or 6, the result is High. This if has three branches.
See how it works; you can add as many branches as you wish.

 <!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>highMidLow.php</title>
</head>
<body>
 <h1>High, middle, or low?</h1>
 <p>
 roll again
 </p>
 <?php
 $roll = rand(1,6);
 print <<<HERE
 <p>
 <img src = "images/dado_$roll.png"
 alt = "$roll"
 height = "100px"
 width = "100px" />
 </p>
HERE;
 if ($roll > 4){

******ebook converter DEMO Watermarks*******

 print "<h2>High!</h2>\n";
 } else if ($roll <= 2){
 print "<h2>Low</h2>\n";
 } else {
 print "<h2>Middle</h2> \n";
 } // end if
 ?>
</body>
</html>

The if statement is the only part of this program that's new. It's not
terribly shocking.

1. Begin with a standard condition.

Check whether the roll is greater than 4. If so, say High. If the first
condition is true, the computer evaluates the code in the first section
and then skips the rest of the while loop.

2. Add a second condition.

The else if section allows me to add a second condition. This
second condition (roll <= 2) is evaluated only if the first
condition is false. If this condition is true, the code inside this block
will be executed (printing the value Low). You can add as many else
if sections as you want. As soon as one is found to be true, the code
block associated with that condition executes, and the program leaves
the whole else system.

3. Include an else clause to catch stragglers.

If none of the previous conditions are true, the code associated with the
else clause operates. In this case, the roll is lower than 4 and higher
than 2, so report that it's in the Middle.

Building a program that makes its own form
An especially important application of the if structure is unique to server-
side programming. Up to now, many of your PHP programs required two
separate files: an HTML page to get information from the user and a PHP

******ebook converter DEMO Watermarks*******

program to respond to that code. Wouldn't it be great if the PHP program
could determine whether it had the data or not? If it has data, it will process
it. If not, it just produces a form to handle the data. That would be pretty
awesome, and that's exactly what you can do with the help of the if
statement. Figure 3-5 shows the first pass of ownForm.php.

Figure 3-5: On the first pass, ownForm.php produces an HTML form.

The interesting thing happens when the user submits the form. The
program calls itself! This time, though, ownForm recognizes that the user
has sent some data and processes that information, giving the result shown
in Figure 3-6.

******ebook converter DEMO Watermarks*******

Figure 3-6: Now the same program processes the data!

This program doesn't really require anything new, just a repurposing of
some tools you already know. Take a look at the following code:

 <!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>ownForm.php</title>
</head>
<body>
<?php
if (filter_has_var(INPUT_POST, "userName")){
 //the form exists - process it
 $userName = filter_input(INPUT_POST, "userName");
 print "<h1>Hi, $userName</h1>\n";
} else {
 //no form present, so give 'em one
 print <<<HERE
 <form action = ""
 method = "post">
 <fieldset>
 <label>Name</label>
 <input type = "text"
 name = "userName">
 <button type = "submit">
 submit
 </button>
 </fieldset>
 </form>
HERE;

******ebook converter DEMO Watermarks*******

} // end if
?>
</body>
</html>

Making a program “do its own stunts” like this is pretty easy. The key is
using an if statement. However, begin by thinking about the behavior. In
this example, the program revolves around the $userName variable. If
this variable has a value, it can be processed. If the variable has not been
set yet, the user needs to see a form so she can enter the data.

1. Check for the existence of a key variable.

Use the isset() function to determine whether the variable in
question has been set. Check the $_REQUEST or one of the other
superglobals ($_POST or $_GET) to determine whether the form has
already been submitted. You need to check the existence of only one
variable, even if the form has dozens.

2. If the variable exists, process the form.

If the variable exists, extract all the variables from the form and carry
on with your processing.

3. If the variable does not exist, build the form.

If the variable does not exist, you need to make the form that will ask
the user for that variable (and any others you need). Note that the
action attribute of the form element should be null (““). This tells the
server to re-call the same program.

 If you're using an HTML5 validator, it will complain about the
empty action attribute. This is interesting because previous HTML and
XHTML implementations required it in this situation. In this particular
situation (a PHP program creating a form that will call the PHP
program again), many web developers just live with the validator's
complaints because the empty attribute explicitly defines what I want to

******ebook converter DEMO Watermarks*******

do (call myself) and it does no harm.

Making a switch
Often, you run across a situation where you have one expression that can
have many possible values. You can always use the if–else if
structure to manage this situation, but PHP supplies another interesting
option, shown in Figure 3-7.

Figure 3-7: The Magic 8 Ball uses a switch.

The code for this program uses the switch structure. Take a look at how
it's done:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>switch.php</title>
</head>
<body>
<p>Ask the magic 8 ball a yes or no question!</p>
<?php
$yourNumber = rand(1,8);
switch($yourNumber){
 case 1:
 print "<p><img src=\"images/8ball1.png\" alt = \"fat
chance\" /></p>";
 break;

******ebook converter DEMO Watermarks*******

 case 2:
 print "<p>
</p> ";
 break;
 case 3:
 print "<p>
</p>";
 break;
 case 4:
 print "<p><img src=\"images/8ball4.png\" alt = \"You didn't
say please\" /></p>";
 break;
 case 5:
 print "<p><img src=\"images/8ball5.png\" alt = \"tell, then
kill\" /></p>";
 break;
 case 6:
 print "<p><img src=\"images/8ball6.png\" alt = \"Why trust
me?\" /></p>";
 break;
 case 7:
 print "<p><img src=\"images/8ball7.png\" alt = \"Ask your
mother\" /></p>";
 break;
 case 8:
 print "<p><img src=\"images/8ball8.png\" alt = \"The answer
is in the question\" /></p>";
 break;
 default:
 print "<p>An error has occurred. Please try again, or
contact support@somesite.com for assistance. Error code:
8BIC:$yourNumber</p>";
}
?>
<p>
 Ask another question!
</p>
</body>
</html>

The main (in fact nearly only) feature of this code is the switch
statement. Here's how it works:

1. Begin with the switch statement.

This indicates that you will be building a switch structure.

2. Put the expression in parentheses.

******ebook converter DEMO Watermarks*******

Following the switch statement is a pair of parentheses. Put the
expression (usually a variable) you wish to evaluate inside the
parentheses. In this case, I'm checking the value of the variable
$yourNumber.

3. Encase the entire switch in braces.

Use squiggle braces to indicate the entire case. As in most blocking
structures, use indentation to help you remember how the structure is
organized.

4. Establish the first case.

Put the first value you want to check for. In this situation, I'm looking
for the value 1. Note that the type of data matters, so be sure you're
comparing against the same type of data you think the variable will
contain. Use a colon (:) to indicate the end of the case. This is one of
the rare situations where you do not use a semicolon or brace at the end
of a line.

5. Write code that should happen if the expression matches the case.

If the expression matches the case (for example, if $yourNumber is
equal to 1), the code you write here will execute.

6. End the code with the break statement.

When you use an if-else if structure to work with multiple
conditions, the interpreter jumps out of the system as soon as it
encounters the first true condition. Switches work differently. Unless
you specify (with the break statement), code will continue to evaluate
even when one of the expressions is matched. You almost always need
the break statement.

7. Use the default clause to handle any unexpected behavior.

The default section of the switch structure is used to handle any
situation that wasn't covered by one of the previously defined cases. It's

******ebook converter DEMO Watermarks*******

a good idea to always include a default clause.

 It may seem odd to have a default clause in this example.
After all, I know how the rand() function works, and I know that I'll
get values only between 1 and 8. It shouldn't be possible to have a
value that isn't covered by one of the cases, yet I have a default
clause in place for exactly that eventuality. Even though something
shouldn't ever happen, sometimes it does. At the very least, I want a
nice piece of code to explain what happened and send some kind of
error message. If it's an important problem, I may have the code quietly
e-mail me a message letting me know what went wrong.

 You might wonder whether the switch is necessary at all. I could
have used the interpolation tricks shown in the dice example to get the
necessary images. However, remember that HTML requires all images
to have alt tags. With dice, the value of the roll is a perfectly
acceptable alt value. The Magic 8 Ball needs to return text if the
image doesn't work properly. I used a switch to ensure that I have the
appropriate alt text available. (Extra points if you think an array
would be an even better way to handle this situation.)

Looping with for
Sometimes you want to repeat something. PHP (like most languages)
supports a number of looping constructs. Begin with the humble but
lovable for loop, as shown in Figure 3-8.

******ebook converter DEMO Watermarks*******

Figure 3-8: This page prints a lot of dice with a for loop.

As you can see, Figure 3-8 prints a lot of dice. In fact, it prints 100 dice.
This would be tedious to do by hand, but that's exactly the kind of stuff
computers are so good at.
The following code explains all:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>for.php</title>
 <style type="text/css">
 img{
 height: 40px;
 width: 50px;
 }
 </style>
</head>
<body>
 <h1>Dice Rolling Game</h1>
 <p>Welcome to the dice rolling game. Rolling 100 dice. How
many will be sixes?</p>
 <p>
 <?php
 $sixCount = 0;

 for ($i = 0; $i < 100; $i++){
 $userNumber = rand(1,6);
 print <<< HERE

******ebook converter DEMO Watermarks*******

 <img src="images/dado_$userNumber.png"
 alt = "$userNumber"
 width = "20px"
 height = "20px" />
HERE;

 if($userNumber == 6){
 $sixCount++;
 } // end if
 } // end for

print "</p><p>You rolled $sixCount six(es)!</p>";
 ?>

<p>Try Again!</p>

</body>
</html>

Most of the code is plain-old HTML. Note the lone print statement
responsible for printing out dice. That print statement (and a few
supporting characters) are repeated 100 times. for loops are extremely
powerful ways to get a lot of work done.

1. Begin with the for keyword.

This keyword indicates the beginning of the for structure.

 for ($i = 0; $i < 100; $i++){

2. Add an initializer.

for loops usually center around a specific integer variable, sometimes
called the sentry variable. The first part of the for loop sets up the
initial value of that variable. Often, the variable is initialized to 0 or 1.

 for ($i = 0; $i < 100; $i++){

3. Add a condition.

The loop continues as long as the condition is true and exits as soon as
the condition is evaluated as false. Normally, the condition will check

******ebook converter DEMO Watermarks*******

whether the variable is larger than some value.

 for ($i = 0; $i < 100; $i++){

4. Add a modifier.

Every time through the loop, you need to do something to change the
value of the sentry. Normally, you add 1 to the sentry variable
(remember, ++ is a shortcut for “add one”).

 for ($i = 0; $i < 100; $i++){

5. Encase the body of the loop in braces.

The code that will be repeated is placed inside braces({}). As usual,
indent all code inside braces so you understand that you're inside a
structure.

 for loops are first described in Book IV, Chapter 3. Please look
to that chapter for more details on for loops, including how to build a
loop that counts backward and counts by fives. I don't repeat that
material here because for loops work exactly the same in PHP and
JavaScript.

This particular program has a few other features that make it suitable for
printing out 100 dice.

It uses $i as a counting variable. When the sentry variable's name
isn't important, $i is often used. $i will vary from 0 to 99, giving 100
iterations of the loop.
Each time through the loop, roll a die. The familiar rand()
function is used to roll a random die value between 1 and 6. Because
this code is inside the loop, it is repeated.

$userNumber = rand(1,6);

Print out an image related to the die roll. I use interpolation to
determine which image to display. Note that I used code to resize my

******ebook converter DEMO Watermarks*******

image files to a smaller size.
print <<< HERE
 <img src="images/dado_$userNumber.png"
 alt = "$userNumber"
 width = "20px"
 height = "20px" />
HERE;

Check whether you rolled a 6. For some strange reason, my
obsession with sixes continues. If the roll is a 6, add 1 to the
$sixCount variable. By the end of the loop, this will contain the
total number of sixes rolled.

if($userNumber == 6){
 $sixCount++;
} // end if

Print the value of $sixCount. After the loop is completed, report
how many sixes were rolled.

print “</p><p>You rolled $sixCount six(es)!</p>“;

Looping with while
The while loop is the other primary way of repeating code. Figure 3-9
shows a variation of the dice-rolling game.

Figure 3-9: This time, the program continues until it gets a 6.

******ebook converter DEMO Watermarks*******

while loops are much like for loops. They require the same thought:

A sentry variable: This special variable controls access to the loop.
Unlike the int usually used in for loops, the sentry of a while loop
can be any type.
Initialization: Set the initial value of the sentry variable before the
loop begins. Do not rely on default settings (because you don't know
what they will be). Instead, set this value yourself.
A condition: The while statement requires a condition. This
condition controls access to the loop. As long as the condition is true,
the loop continues. As soon as the condition is evaluated as false, the
loop exits.
A modifier: You must somehow modify the value of the sentry
variable. It's important that the modification statement happen
somewhere inside the loop. In a for loop, you almost always add or
subtract to modify a variable. In a while loop, any kind of assignment
statement can be used to modify the variable.

 for loops are a little safer than while loops because the
structure of the for loop requires you to think about initialization,
condition, and modification. All three features are built into the for
statement. The while statement requires only the condition. This
might make you think that you don't need the other parts, but that
would be dangerous. In any kind of loop, you need to initialize the
sentry variable and modify its value. With the while loop, you're
responsible for adding these features yourself. Failure to do so will
cause endless loops, or loops that never happen. See much more about
this in Book IV, Chapter 3.

Take a look at the following code for the while.php program to see how it
works:

 <!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">

******ebook converter DEMO Watermarks*******

 <title>while.php</title>
 <style type="text/css">
 img {
 height: 40px;
 width: 50px;
 }
 </style>
</head>
<body>
 <h1>Dice Rolling Game 2</h1>
 <p>Welcome to the dice rolling game. See how many rolls it
takes to get a six!</p>
 <div id = "output">
 <?php
 $userNumber = 999;
 $counter = 0;
 while ($userNumber != 6){
 $userNumber = rand(1,6);
 print <<< HERE
 <img src = "images/dado_$userNumber.png"
 alt = "$userNumber"
 height = "100px"
 width = "100px" />
HERE;
 $counter++;
 }
 print "<p>It took $counter tries to get a six.</p>";
 ?>
 </div>
 <p>Try Again!</p>
</body>
</html>

This example illustrates how subtle while loops can be. All the key
elements are there, but they don't all look like part of the while loop.

1. Initialize $userNumber.

For this loop, $userNumber is the sentry variable. The initialization
needs to guarantee that the loop runs exactly once. Because the
condition will be ($userNumber != 6), I need to give
$userNumber a value that clearly isn't 6. 999 will do the job, and
it's wild enough to be clearly out of range. Although the initialization
step appears in the code before the while loop, it's often best to start
with your condition and then back up a line to initialize because the
initialization step depends on the condition.

******ebook converter DEMO Watermarks*******

2. Set up the condition.

Think about what should cause the loop to continue or quit. Remember
that the condition explains when the loop continues. It's often easier to
think about what causes the loop to exit. That's fine; just reverse it. For
example, I want the loop to quit when $userNumber is equal to 6, so
I'll have it continue as long as $userNumber != 6.

3. Modify the sentry.

This one is tricky. In this particular example, modify the sentry
variable by getting a new random number: $userNumber =
rand(1,6). Often in a while loop, the modification step is intrinsic
to the problem you're solving. Sometimes you get the new value from
the user, sometimes you get it from a file or database, or sometimes
you just add (just like a for loop). The key here is to ensure you have
a statement that modifies the sentry variable and that the condition can
trigger. For example, using $userNumber = rand(1,5) would
result in an endless loop because $userNumber could never be 6.

 while loops can cause a lot of problems because they may
cause logic errors. That is, the syntax (structure and spelling of the
code) may be fine, but the program still doesn't operate properly.
Almost always, the problem can be resolved by thinking about those
three parts of a well-behaved loop: Initialize the sentry, create a
meaningful condition, and modify the sentry appropriately. See Book
IV, Chapter 3 for more on while loops.

Can I use a debugger for PHP?
In Book IV, you can see how to use a debugger to check your code. This is especially
handy for the logic errors that tend to occur when you're writing while loops. It would be
great if there was a similar facility for PHP code. Unfortunately, PHP debuggers are
relatively rare and can be difficult to install and use. That's because PHP is not an
interactive language, but it processes code in batch mode on the server. The Chrome

******ebook converter DEMO Watermarks*******

debugger you use in Book IV is a client-side application, and it doesn't ever see the PHP
code. The best way to debug PHP is with good-old print statements. If something doesn't
work correctly, print out the sentry variable before, inside, and after the loop to see whether
you can find the pattern. One reason why people are switching to AJAX (see Book VII) is
that more of the logic is done on the client side, where it's easier to debug.

******ebook converter DEMO Watermarks*******

Chapter 4
Working with Arrays

In This Chapter
 Creating one-dimensional arrays
 Making the most of multidimensional arrays
 Using foreach loops to simplify array management
 Breaking a string into an array

In time, arrays will become one of the most important tools in your
toolbox. They can be a bit hard to grasp for beginners, but don't let that
stop you. Arrays are awesome because they allow you to quickly apply the
same instructions to a large number of items.
In PHP, an array is a variable that holds multiple values that are mapped to
keys. Think of a golfing scorecard. You have several scores, one for each
hole on the golf course. The hole number is the key, and the score for that
hole is the value. Keys are usually numeric, but values can be any type.
You can have an array of strings, numbers, or even objects. Any time
you're thinking about a list of things, an array is the natural way to
represent this list.

Using One-Dimensional Arrays
The most basic array is a one-dimensional array, which is basically just
one container with slots. Each slot has only one variable in it. In this
section, you find out how to create this type of array and fill it.

Creating an array
Array creation is pretty simple. First, you need to create a variable and then
tell PHP that you want that variable to be an array:

$theVar = array();

Now, $theVar is an array. However, it's an empty array waiting for you

******ebook converter DEMO Watermarks*******

to come along and fill it.

 Technically, you can skip the variable creation step. It's still a
good idea to explicitly define an array because it helps you remember
the element is an array, and there are a few special cases (such as
passing an array into a function) where the definition really matters.

Filling an array
An array is a container, so it's a lot more fun if you put something in it.
You can refer to an array element by adding an index (an integer)
representing which element of the array you're talking about.
Say I have the following array:

$spanish = array();
$spanish[1] = "uno";
$spanish[2] = "dos";

What I did here is to add two elements to the array. Essentially, I said that
element 1 is uno, and element 2 is dos.
PHP has another interesting trick available. Take a look at the next line:

$spanish[] = "tres";

This seems a little odd because I didn't specify an index. PHP is pretty
helpful. If you don't specify an index, it looks at the largest index already
used in the array and places the new value at the next spot. So, the value
tres will be placed in element 3 of the array.

 PHP is somewhat notorious for its array mechanism. Depending
on how you look at it, PHP is far more forgiving or far sloppier than
most languages when it comes to arrays. For example, you don't have
to specify the length of an array. PHP just makes the array whatever
size seems to work. In fact, you don't even have to explicitly create the
array. When you start using an array, PHP automatically just makes it if
it isn't already there. Although this is pretty easy, I've seen enough
science fiction movies to know what can happen when we let

******ebook converter DEMO Watermarks*******

computers make all the decisions for us.

Viewing the elements of an array
You can access the elements of an array in exactly the same way you
created them. Array elements are just variables; the only difference is the
numeric index. Here's one way to print out the elements of the array:

print <<< HERE
 One: $spanish[1]

 Two: $spanish[2]

 Three: $spanish[3]

HERE;

I can simply print out the array elements like any ordinary variable. Just
remember to add the index.
Another great way to print out arrays is particularly useful for debugging.
Take a look at this variation:

print "<pre> \n";
print_r($spanish);
print "</pre> \n";

The print_r() function is a special debugging function. It allows you to
pass an entire array, and it prints out the array in an easy-to-read format.
It's best to put the output of the print_r() function inside a <pre>
element so that the output is preserved.

 Of course, the results of the print_r() function mean
something to you, but your users don't care about arrays. This is only a
debugging tool. Typically, you'll use some other techniques for
displaying arrays to your users.

To see what all the code in basicArray.php looks like, take a look at
Figure 4-1.

******ebook converter DEMO Watermarks*******

Figure 4-1: Arrays are pretty easy to use in PHP.

Preloading an array
Sometimes you'll know the elements that go into an array right away. In
those cases, you can use a special version of the array() function to
make this work. Take a look at this code:

$english = array("zero", "one", "two", "three");

print "<pre> \n";
print_r($english);
print "<pre> \n";

This simple program allows you to load up the value of the array in one
swoop. Note that I started with zero. Computers tend to start counting at
zero, so if you don't specify indices, the first element will be zero-indexed.
I use the print_r() function to quickly see the contents of the array.
The preloaded array is shown in Figure 4-2.

******ebook converter DEMO Watermarks*******

Figure 4-2: This array was preloaded, but the user can't tell the difference.

Using Loops with Arrays
Arrays and loops are like peanut butter and jelly; they just go together.
When you start to use arrays, eventually, you'll want to go through each
element in the array and do something with it. The for loop is the perfect
way to do this.
Look at the loopingArrays.php code to see how I step through an
array with a couple of variations of the for loop:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>loopingArrays.php</title>
</head>

<body>
 <h1>Looping through arrays</h1>
<div>
 <?php
 //first make an array of mini-book names
 $books = array("Creating the HTML Foundation",
 "Styling with CSS",
 "Using Positional CSS for Layout",
 "Client-Side Programming with JavaScript",

******ebook converter DEMO Watermarks*******

 "Server-Side Programming with PHP",
 "Databases with MySQL",
 "Into the Future with AJAX",
 "Moving From Pages to Web Sites");

//just print them out with a loop
 print "<p> \n";
 for ($i = 0; $i < sizeof($books);$i++){
 print $books[$i] . "
\n";
 } // end for
 print "</p> \n";

//use the foreach mechanism to simplify printing out the
elements
 print "<p> \n";
 foreach ($books as $book){
 print $book . "
\n";
 } // end foreach
 print "</p> \n";
 ?>
</div>
</body>
</html>

The relationship between arrays and loops isn't hard to see:

1. Create your array.

This example uses an array of minibook titles in a charming and
lovable book on web development. Note that I preloaded the array.
There's no problem with the fact that the array statement (although a
single line of logic) actually takes up several lines in the editor.

2. Build a for loop to step through the array.

The loop needs to happen once for each element in the array; in this
case, that's eight times. Set up a loop that repeats eight times. It will
start at 0 and end at 7.

3. Use the sizeof()function to determine the ending point.

Because you know that this array has eight elements, you could just set
the condition to $i < 8. The sizeof() function is preferred

******ebook converter DEMO Watermarks*******

because it will work even if the array size changes. Also, it's easier to
understand what I meant. sizeof($books) means “the size of the
$books array.” The number 8 could mean anything.

4. Print out each element.

Inside the loop, I simply print out the current element of the array,
which will be $books[$i]. Don't forget to add a
 tag if you
want a line break in the HTML output. Add the \n to keep the HTML
source code looking nice.

Simplifying loops with foreach
The relationship between loops and arrays is so close that many languages
provide a special version of the for loop just for arrays. Take a look at this
code fragment to see how cool it is:

//use the foreach mechanism to simplify printing out the
elements
print "<p> \n";
foreach ($books as $book){
 print $book . "
\n";
} // end foreach
print "</p> \n";

The foreach loop is a special version of the for loop that simplifies
working with arrays. Here's how it works:

1. Use the foreach keyword to begin the loop.

This tells PHP that you're working with the foreach variation.

2. The first parameter is the array name.

The foreach loop is designed to work with an array, so the first
parameter is the array you want to step through.

3. Create a variable to hold each element of the array.

On each pass through the loop, the $book variable will hold the

******ebook converter DEMO Watermarks*******

current element of the $books array. Most of the time, you use a loop
for an array because you want to deal with each element of the array.
Using a foreach loop makes this easier.

4. Use the $book variable inside the loop.

The $book variable is ready to go. The nice thing about using
foreach is you don't have to worry about indices. The $book
variable always contains the current element of the array.

You can see the results of both of these loops in Figure 4-3. To the user,
there's no difference. Both are simply text when it comes to output.

Figure 4-3: Two kinds of for loops are used to view these arrays.

 Many languages have variations of the foreach loop, but they
differ greatly in the details. In PHP, the array comes first, then the
scalar (non-array) variable. In Python, the order is inverted. In most
languages (like PHP), the scalar variable is generated on each pass, but
in JavaScript, the key is generated. Feel free to use the foreach loop,
but be aware that it doesn't translate between languages quite as freely
as most operations.

******ebook converter DEMO Watermarks*******

Arrays and HTML
Arrays are great because they're used to hold lists of data in your
programming language. Of course, HTML already has other ways of
working with lists. The and tags are both used for visual
representations of lists, and the <select> object is used to let the user
choose from a list. It's very common to build these HTML structures from
arrays. Figure 4-4 illustrates exactly how this is done.

Figure 4-4: This page features an ordered list and selection, both based on an array.

The code for the page is not too different than the previous examples. It
just adds some HTML formatting:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>arrayHTML.php</title>
</head>
<body>
 <h1>Arrays are useful in HTML</h1>
 <div>
 <?php
 //first make an array of mini-book names
 $books = array("Creating the XHTML Foundation",
 "Styling with CSS",
 "Using Positional CSS for Layout",
 "Client-Side Programming with JavaScript",

******ebook converter DEMO Watermarks*******

 "Server-Side Programming with PHP",
 "Databases with MySQL",
 "Into the Future with AJAX",
 "Moving From Pages to Web Sites");

//make the array into a numbered list
 print "\n";
 foreach ($books as $book){
 print " $book \n";
 } // end foreach
 print "\n";

//make the array into a select object
 print "<select name = \"book\"> \n";
 foreach ($books as $book){
 print " <option value = \"$book\">$book</option> \n";
 } // end foreach
 print "</select> \n";
 ?>
 </div>
</body>
</html>

It's a relatively simple matter to build HTML output based on arrays. To
create an ordered list or unordered list, just use a foreach loop, but add
HTML formatting to convert the array to a list formatted in HTML:

//make the array into a numbered list
print "\n";
foreach ($books as $book){
 print " $book \n";
} // end foreach
print "\n";

Likewise, if you want to allow the user to choose an element from an array,
it's pretty easy to set up a <select> structure that displays the elements
of an array:

//make the array into a select object
print "<select name = \"book\"> \n";
foreach ($books as $book){
 print " <option value = \"$book\">$book</option> \n";
} // end foreach
print "</select> \n";

Introducing Associative Arrays
******ebook converter DEMO Watermarks*******

You can use string values as keys. For example, you might create an array
like this:

$myStuff = array();
$myStuff["name"] = "andy";
$myStuff["email"] = "andy@aharrisbooks.net";

print $myStuff["name"];

Associative arrays are different than normal (numeric-indexed) arrays in
some subtle but important ways:

The order is undefined. Regular arrays are always sorted based on the
numeric index. You don't know what order an associative array will be
because the keys aren't numeric.
You must specify a key. If you're building a numeric-indexed array,
PHP can always guess what key should be next. This isn't possible with
an associative array.
Associative arrays are best for name/value pairs. Associative arrays
are used when you want to work with data that comes in name/value
pairs. This comes up a lot in PHP and HTML. HTML attributes are
often in this format, as are CSS rules and form input elements.
Some of PHP's most important values are associative arrays. The
$_REQUEST variable (described in Chapter 3 of this minibook) is an
important associative array. So are $_GET, $_POST, and several
others.

 Make sure to include quotation marks if you're using a string as
an array index. It will probably work if you don't, but it's bad
programming practice and may not work in the future.

Using foreach with associative arrays
It's very common to have a large associative array that you want to
evaluate. For example, PHP includes a very useful array called $_SERVER
that gives you information about your server configuration (things like

******ebook converter DEMO Watermarks*******

your hostname, PHP version, and lots of other useful stuff). The following
code snippet (from serverInput.php) runs through the entire
$_SERVER array and prints each key/value pair:

<?php
print "<dl> \n";

foreach ($_SERVER as $key => $value){
 print <<<HERE
 <dt>$key</dt>
 <dd>$value</dd>

HERE;
} // end foreach
print "</dl> \n";
?>

You can see this program running on my work server in Figure 4-5.

Figure 4-5: This variable stores data in an associative array.

Here's how it works:

1. Begin the foreach loop as normal.

The associative form of the foreach loop begins just like the regular
one:

foreach ($_SERVER as $key => $value){

******ebook converter DEMO Watermarks*******

2. Identify the associative array.

The first parameter is the array name:

foreach ($_SERVER as $key => $value){

3. Create a variable for the key.

Each element of an associative array has a key and a value. I put the
key in a variable named $key:

foreach ($_SERVER as $key => $value){

4. Use the => symbol to indicate the associative relationship.

This symbol helps PHP recognize you're talking about an associative
array lookup:

foreach ($_SERVER as $key => $value){

5. Assign the value of the element to a variable.

The $value variable holds the current value of the array item:

foreach ($_SERVER as $key => $value){

6. Use the variables inside your loop.

Each time PHP goes through the loop, it pulls another element from the
array, puts that element's key in the $key array, and puts the
associated value in $value. You can then use these variables inside
the loop however you wish. I used a definition list because it's a natural
way to display key/value pairs. A list of definitions is keys and values.

print <<<HERE
 <dt>$key</dt>
 <dd>$value</dd>

HERE;

******ebook converter DEMO Watermarks*******

 The $_SERVER variable is extremely useful for checking your
environment, but you shouldn't make a program that displays this kind
of information available on a publicly accessible server. Doing so gives
the bad guys information they could use to cause you headaches. Use it
for testing and debugging, and then remove it. I have this example
disabled on my live site as a security precaution, but you can still look
at the source code if you wish.

Introducing Multidimensional Arrays
Arrays in PHP can hold anything, even other arrays. This turns out to be an
extremely useful function. A multidimensional array is an array that holds
arrays. Multidimensional arrays are used when your data is arranged in
some sort of tabular form.

We're going on a trip
Some uses for these are to group things or to use as lookup tables. See
Book IV, Chapter 4 for one possible use of lookup tables — using
multidimensional arrays to hold the distances between cities. You can do
exactly the same thing with PHP. Even though the syntax is somewhat
different, the concept is exactly the same. Figure 4-6 is an HTML page that
lets the user choose what city she is traveling from and to.

******ebook converter DEMO Watermarks*******

Figure 4-6: The user picks the source and destination with selections.

The following code shows the basic HTML form:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Distance.html</title>
 <style type="text/css">
 form {
 width: 600px;
 margin: auto;
 }
 label {
 width: 250px;
 float: left;
 clear: left;
 text-align: right;
 margin-right: 1em;
 }
 select {
 float: left;
 }
 button {
 display: block;
 clear: both;
 margin: auto;
 }
 </style>
</head>
<body>

******ebook converter DEMO Watermarks*******

 <h1>Distance Calculator, PHP Style</h1>
 <form action = "distance.php"
 method = "post">
 <fieldset>
 <legend>Distance calculator</legend>
 <label>From</label><p>
 <select name = "from">
 <option value="0">Indianapolis</option>
 <option value="1">New York</option>
 <option value="2">Tokyo</option>
 <option value="3">London</option>
 </select>
 <label>To</label><p>
 <select name = "to">
 <option value="0">Indianapolis</option>
 <option value="1">New York</option>
 <option value="2">Tokyo</option>
 <option value="3">London</option>
 </select>
 <button type = "submit">
 calculate
 </button>
 </fieldset>
 </form>
</body>
</html>

There's nothing unfamiliar about this form:

1. Set the form's action to distance.php.

That's the program that will actually calculate the distance. Use the
post method, as usual.

2. Create a select object to determine where the user is leaving.

This form element will be called from because it represents the city
the user is coming from. Note that the value is an integer that will
relate to the various city numbers (0 for Indianapolis, and so on).

3. Create a second select object for the destination.

The second selection is much like the first, but it has the name to.

4. Use CSS for beautification.

******ebook converter DEMO Watermarks*******

A little CSS can go a long way to make this page look nicer.

Looking up the distance
When the user submits the form, she is rewarded with the display shown in
Figure 4-7.

Figure 4-7: This clever program calculates the distance.

Of course, you could calculate the distance between cities with if
statements, switches, and the like, but this kind of problem is really a
lookup table. That means that the best way to solve it without a computer is
to build a table. To use the table, you would use the row to indicate the
source and the column to designate the destination, and then see where
they cross for a result. It's very easy to get the computer to do exactly the
same thing by using a two-dimension array, as shown in the following
code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Distance Results</title>
</head>
<body>
 <?php
 //get variables from form

******ebook converter DEMO Watermarks*******

 $cityName = array("Indianapolis", "New York", "Tokyo",
"London");
 $from = filter_input(INPUT_POST, "from");
 $to = filter_input(INPUT_POST, "to");

$distance = array(
 array(0, 648, 6476, 4000),
 array(648, 0, 6760, 3470),
 array(6476, 6760, 0, 5956),
 array(4000, 3470, 5956, 0));

//calculate and display distance
 $result = $distance[$from][$to];
 print "<h1>Distance from $cityName[$from] to $cityName[$to]
is $result miles</h1>\n";
 ?>
</body>
</html>

The two-dimension array simplifies things greatly. Take a look at how the
program calculates the result:

1. Create a standard array to handle city names.

The cities all have numbers, so I use an array to help attach the names
to the numbers. It's important that this array is in the correct order, so
city 0 is Indianapolis throughout.

2. Retrieve to and from data from the form.

These values were sent by the previous form, so get the data and place
them in variables.

3. Build a 2D array to hold the distance data.

The distance is stored in a table. A 2D array is a perfect way to hold
this data.

4. Look up the distance in the distance array.

A 2D array requires two indices. The first indicates the row, and the
second indicates the column.

******ebook converter DEMO Watermarks*******

5. Print out the result.

After you get the data, it's pretty easy to print out.

Breaking a String into an Array
Many times, it can be useful to break a string into an array, especially when
reading input from a file.
Here are the two different ways of doing this:

explode: explode takes one parameter as a delimiter and splits the
string into an array based upon that one parameter.
preg_ split: If you require regular expressions, using
preg_split is the way to go. split allows you to take
complicated chunks of text, look for multiple different delimiters
stored in a regular expression, and break it into an array based on the
delimiters you specify.

explode works well with comma-separated value (CSV) files and the
like, where all the parameters you wish to break the text on are the same.
preg_split works better for when there are many different parameters
that you wish to break the text on or when the parameter you're looking for
is complex.

Creating arrays with explode
Array creation with explode is very straightforward:

explode(" ", $theString);

The first value is the parameter on which you're splitting up the string. The
second value is the string you would like to split into an array. In this
example, the string would be split up on each space. You can put anything
you want as the split parameter.

So, if you have the string that you want to store each word as a value in,
enter the following code (see Figure 4-8 for the output):

<!DOCTYPE html>

******ebook converter DEMO Watermarks*******

<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>explode</title>
</head>
<body>
 <h1>Using explode</h1>
 <?php
 $theString = "Twas brillig and the slithy toves";
 $theArray = explode(" ", $theString);
 print "<pre> \n";
 print_r($theArray);
 print "</pre> \n";
 ?>
</body>
</html>

The delimiter can be anything you want. If you're dealing with a CSV file,
where each value is separated by a comma, your explode method might
look like this:

$theArray = explode(",", $theString);

 You learn more about working with many types of files in
Chapter 6 of this minibook.

Figure 4-8: A string exploded into an array.

******ebook converter DEMO Watermarks*******

Creating arrays with preg_split
preg_split is a bit more complicated. preg_split uses regular
expressions to split a string into an array, which can make it a bit slower
than explode.

preg_split looks exactly like explode, but instead of one character
inside quotations, you can cram all the characters you want to split on into
brackets inside the quotations, or you can use a complicated regular
expression to determine how the values will split.

 If you need a refresher on regular expressions, check Book IV,
Chapter 5. Regular expressions work the same in JavaScript and in PHP
because both languages derived their regular expression tools from the
older language Perl. (The preg part of preg_split stands for “Perl
regular expression.”)

An instance where you'd want to use preg_split instead of explode
could be when processing an e-mail address. A basic e-mail address has
dots (.) and an at sign (@). So, to split on either of these characters, you
could do the following (see Figure 4-9 for the output):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>preg_split.html</title>
</head>
<body>
 <h1>Using preg_split</h1>
 <?php
 $theString = "joe@somewhere.net";
 $theArray = preg_split("/[@\.]/", $theString);
 print "<pre>\n";
 print_r($theArray);
 print "</pre>\n";
 ?>
 </body>
</html>

******ebook converter DEMO Watermarks*******

Figure 4-9: The e-mail address split into an array.

Recall that regular expressions are encased in the slash character, and the
square braces indicate one of a number of options. I want to split on either
the at sign or the period. Remember to specify the period with \. because
an ordinary period means “any character.”
preg_split works well for timestamps, e-mail addresses, and other
things where there's more than just one unique delimiter that you wish to
split the string on.

 Earlier versions of PHP had a function called split. It was
much like the preg_split function, but it used a different regular
expression syntax. Hardly anybody used it, and it is no longer
supported. Use explode for simple patterns and preg_split when
you need the power of regular expressions.

******ebook converter DEMO Watermarks*******

Chapter 5
Using Functions and Session

Variables
In This Chapter

 Creating functions to manage your code's complexity
 Enhancing your code by using functions
 Working with variable scope
 Getting familiar with session variables
 Incorporating session variables into your code

PHP programs are used to solve interesting problems, which can get quite
complex. In this chapter, you explore ways to manage this complexity. You
discover how to build functions to encapsulate your code. You also learn
how to use session variables to make your programs keep track of their
values, even when the program is called many times.

Creating Your Own Functions
It won't take long before your code starts to get complex. Functions are
used to manage this complexity. As an example, take a look at Figure 5-1.

******ebook converter DEMO Watermarks*******

Figure 5-1: This program rolls five dice.

Rolling dice the old-fashioned way
Before I show you how to improve your code with functions, look at a
program that doesn't use functions so you have something to compare with.
The following rollDice.php program creates five random numbers and
displays a graphic for each die:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>rollDice1.php</title>
 </head>
 <body>
 <h1>RollDice 1</h1>
 <h2>Uses Sequential Programming</h2>
 <div>
 <?php
$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

******ebook converter DEMO Watermarks*******

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

$roll = rand(1,6);
$image = "dado_$roll.png";
print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 width = "100px"
 height = "100px" />
HERE;

?>
 </div>
 </body>
</html>

Here are some interesting features of this code:

The built-in rand()function rolls a random number. Whenever
possible, try to find functions that can help you. The rand() function
produces a random integer. If you use two parameters, the resulting

******ebook converter DEMO Watermarks*******

number will be in the given range. To roll a standard six-sided die, use
rand(1,6):

$roll = rand(1,6);

I created an image for each possible roll. To make this program more
visually appealing, I created an image for each possible die roll. The
images are called dado_1.png, dado_2.png, and so on. All these
images are stored in the same directory as the PHP program.
Theimg tag is created based on the die roll. After I have a die roll,
it's easy to create an image based on that roll:

$image = "dado_$roll.png";
 print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 height = "100px"
 width = "100px" />

HERE;

The die-rolling code is repeated five times. If you can roll one die,
you can easily roll five. It's as easy as copying and pasting the code.
This seems pretty easy, but it leads to problems. What if I want to
change the way I roll the dice? If so, I'll have to change the code five
times. What if I want to roll 100 dice? The program will quickly
become unwieldy. In general, if you find yourself copying and pasting
code, you can improve the code by adding a function.

Improving code with functions
Functions are predefined code fragments. After you define a function, you
can use it as many times as you wish. As you can see in the following code,
the outward appearance of this program is identical to rollDice1.php, but
the internal organization is quite different:

<!DOCTYPE html>
<html lang = "en-US">
 <head>
 <meta charset = "UTF-8">
 <title>rollDice2.php</title>
 </head>
 <body>
 <h1>RollDice 2</h1>

******ebook converter DEMO Watermarks*******

 <h2>Uses Functions</h2>
 <?php
 function rollDie(){
 $roll = rand(1,6);
 $image = "dado_$roll.png";
 print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 height = "100px"
 width = "100px" />
HERE;
 } // end rollDie

for ($i = 0; $i < 5; $i++){
 rollDie();
 } // end for loop
 ?>
 </body>
</html>

Here's how things have changed in this version:

1. Use the function keyword to define a function.

The function keyword indicates that a function definition will
follow. The code inside the definition won't be run immediately, but
instead, PHP will “remember” the code inside the function definition
and play it back on demand:

function rollDie(){

2. Give the function a name.

The function name should indicate what the function does. I call my
function rollDie() because that's what it does (rolls a die):

function rollDie(){

3. Specify arguments with parentheses.

You can send arguments (special variables for your function to work
with) by indicating them in the parentheses. This function doesn't need
arguments, so I leave the parentheses empty:

******ebook converter DEMO Watermarks*******

function rollDie(){

 For more information on functions, arguments, and the
return statement, turn to Book IV, Chapter 4. Functions in PHP act
almost exactly like their cousins in JavaScript.

4. Begin the function definition with a left brace ({).

The left brace is used to indicate the beginning of the function code.

5. Indent the code that makes up your function.

Use indentation to indicate which code is part of your function. In this
case, the function generates the random number and prints an image
tag based on that random number:

function rollDie(){
 $roll = rand(1,6);
 $image = "dado_$roll.png";
 print <<< HERE
 <img src = "$image"
 alt = "roll: $roll"
 height = "100px"
 width = "100px" />
HERE;
 } // end rollDie

6. Denote the end of the function with a right brace (}).
7. Call the function by referring to it.

After the function is defined, you can use it in your code as if it were
built into PHP. In this example, I call the function inside a loop:

for ($i = 0; $i < 5; $i++){
 rollDie();
} // end for loop

Because the code is defined in a function, it's a simple matter to run it as
many times as I want. Functions also make your code easier to read

******ebook converter DEMO Watermarks*******

because the details of rolling the dice are hidden in the function.

Naming functions and variables
It can be hard to come up with a good naming scheme for your variables and functions.
Doing so is very important because when you come back to your program, if you haven't
named your functions and variables consistently, you'll have a hard time understanding
what you wrote. Here are two common naming schemes to make this simple: using
underscores (_) between words or camel-casing.

Using underscores is as straightforward as
separating_each_word_with_an_underscore. It's readable, but it's ugly and can
cause the variable names to get awfully lengthy.

The method I prefer and use throughout this book is camel-casing, where each new word
after the first word gets capitalized justLikeThis. It takes up less space than the
underscore method and makes reading the code quicker — and after you get used to it,
you won't even notice it anymore.

Tons of naming schemes are out there, and even if you don't use either of these, picking
one and being consistent is important. Searching for naming variables in Google returns
more than one million hits, so plenty of resources are available.

Managing variable scope
Two kinds of scope are in PHP: global and local.
If you define a variable outside a function, it has the potential to be used
inside any function. If you define a variable inside a function, you can
access it only from inside the function in which it was created. See
Book IV, Chapter 4 for more on variable scope.
So, if you have a variable that you want to access and modify from within
the function, you either need to pass it through the parentheses or access it
with the global modifier.
The following code will print hello world! only once:

<?php
$output = "<p>hello world!</p>";

function helloWorld(){
 global $output;

******ebook converter DEMO Watermarks*******

print $output;
}

function helloWorld2(){
 print $output;
}

helloWorld();
helloWorld2();
?>

I left the global keyword off in the helloWorld2() function, so it
didn't print at all because inside the function, the local variable $output
is undefined. By putting the global keyword on in the helloWorld()
function, I let it know I was referring to a global variable defined outside
the function.

 PHP defaults to local inside functions because it doesn't want you
to accidentally access or overwrite other variables throughout the
program. For more information about global and local scoping, check
out
http://us3.php.net/manual/en/language.variables.scope.php.

Returning data from functions
At the end of the function, you can tell the function to return one (and only
one) thing. The return statement should be the last statement of your
function. The return statement isn't required, but it can be handy.

The getName() function in the following code example will return
"World" to be used by the program. The program will print it once and
store the text in a variable to be printed multiple times later, as shown in
the following code and Figure 5-2:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>helloFunction</title>
</head>
<body>

******ebook converter DEMO Watermarks*******

http://us3.php.net/manual/en/language.variables.scope.php

 <?php
 function getName(){
 return "World";
 }

print "<h1>Hello, " . getName() . "!</h1>";
 $name = getName();
 print <<<HERE
 <p>$name, welcome to our site. We are so very happy to have
you here.</p>
 <p>If you would like to contact us, $name, just use the form
on the contact page.</p>
HERE;
 ?>
</body>
</html>

Figure 5-2: An example of a function with a return statement.

 The example in Figure 5-2 is admittedly contrived. This function
could easily be replaced by a variable, but the program that uses the
function doesn't know that the function has only one line. Later on, I
could make the function much more complicated (maybe pulling the
name from a database or session variable). This points out a very
important feature of functions that return values: they can feel like

******ebook converter DEMO Watermarks*******

variables when you use them.

Managing Persistence with Session
Variables

Server-side programming is very handy, but it has one major flaw. Every
connection to the server is an entirely different transaction. Sometimes,
you'll want to reuse a variable between several calls of the program. As an
example, take a look at rollDice3.php in Figure 5-3.

Figure 5-3: This page displays a roll, the number of rolls, and the total rolls so far.

The interesting feature of rollDice3.php happens when you reload the page.
Take a look at Figure 5-4. This is still rollDice3.php, after I refreshed the
browser a few times. Take a look at the total. It increases with each roll.

******ebook converter DEMO Watermarks*******

Figure 5-4: The count and total values keep on growing.

The rollDice3.php program is interesting because it defies normal server-
side programming behavior. In a normal PHP program, every time you
refresh the browser, the program starts over from scratch. Every variable
starts out new.

Understanding session variables
The rollDice3.php program acts differently. It has a mechanism for keeping
track of the total rolls and number of visits to the page.
When a visitor accesses your website, she's automatically assigned a
unique session id. The session id is either stored in a cookie or in the
URL. Sessions allow you to keep track of things for that specific user
during her time on your site and during future visits if she's not cleared her
cache or deleted her cookies.

 Any mundane hacker can sniff out your session ids if you allow
them to be stored in the URL. To keep this from happening, use the
session. use_only_cookies directive in your PHP
configuration file. This may be inconvenient to users who don't want
you to have a cookie stored on their machine, but it's necessary if you're

******ebook converter DEMO Watermarks*******

storing anything sensitive in their session.

Sessions are great because they are like a big box that the user carries
around with him that you can just throw stuff into. Even if the user comes
back to the site multiple times, the variables stored in the session retain
their values. If you have hundreds of users accessing your site at the same
time, each one will still have access to only their own versions of the
variable.

 In this example I have one program that is run several times, but
you can also use sessions to pass data between programs. All programs
coming from the same domain have access to the same session
information for each user, so you can use sessions to manage data
between programs in a larger system.

Here's the code for rollDice3.php:
{<?php
{ session_start();
{?>
{<!DOCTYPE html>
{<html lang = "en-US">

{ <head>
{ <meta charset = "UTF-8">
{ <title>rollDice3.php</title>
{ </head>
{ <body>
{ <h1>RollDice 3</h1>
{ <h2>Uses a Session Variable</h2>
{ <?php
{function init(){
{ global $count;
{ global $total;
{ //increment count if it exists
{ if (isset($_SESSION["count"])){
{ $count = $_SESSION["count"];
{ $count++;
{ $_SESSION["count"] = $count;
{ } else {
{ //if count doesn't exist, this is our first pass,
{ //so initialize both session variables
{ $_SESSION["count"] = 1;

******ebook converter DEMO Watermarks*******

{ $_SESSION["total"] = 0;
{ $count = 1;
{ } // end if
{} // end init
{function rollDie(){
{ global $total;
{ $roll = rand(1,6);
{ $image = "dado_$roll.png";
{ print <<< HERE
{ <img src = "$image"
{ alt = "roll: $roll"
{ height = "100px"
{ width = "100px" />
{HERE;
{ $total = $_SESSION["total"];
{ $total += $roll;
{ $_SESSION["total"] = $total;
{} // end rollDie
{init();
{rollDie();
{print " <p>Rolls: $count</p> \n";
{print " <p>Total: $total</p> \n";
{ ?>
{ </body>
{</html>

This program rolls a die, but it uses session variables to keep track of the
number of rolls and total value rolled. The session variable is updated
every time the same user (using the same browser) visits the site.

Adding session variables to your code
Here's how to incorporate sessions into your programs:

1. Begin your code with a call to session_start().

If you want to use session variables, your code must begin with a
session_start() call, even before the DOCTYPE definition. I put
a tiny <?php ?> block at the beginning of the program to enable
sessions:

<?php
 session_start();
?>

******ebook converter DEMO Watermarks*******

 The most common error with sessions is to not begin with
session_start(). Session variables use HTTP headers as part of
the communication process, and any other code (even a blank line or
innocent HTML code) before the session_start will cause the
header to be sent without the session information. Every program that
includes session variables must begin with a session_start()
call.

2. Check for the existence of the session variables.

Like form variables, session variables may or may not exist when the
program is executed. If this is the first pass through the program, the
session variables may not have been created yet. The init() function
checks whether the count session variable exists. If so, it will
increment the counter; if not, it will initialize the sessions.
$_SESSION is a superglobal array (much like $_REQUEST).

if (isset($_SESSION["count"])){

3. Load session variables from the $_SESSION superglobal.

Create a local variable and extract the current value from the
$_SESSION associative array:

$count = $_SESSION["count"];

Note that this line may trigger an error if you haven't already initialized
the variable. Some PHP configurations are set up to automatically
assign 0 to a nonexistent session variable, and some trigger an error.

4. Increment the counter.

The $count variable is now an ordinary variable, so you can add a
value to it in the ordinary way:

$count++;

******ebook converter DEMO Watermarks*******

5. Store the value back into the $_SESSION superglobal.

You can manipulate the local variable, but if you want to use the value
the next time the program runs for this user, you need to store the value
back into the session after you change it.

For example, the following code loads the variable $count from the
session, adds 1 to it, and stores it back into the session:

$count = $_SESSION["count"];
$count++;
$_SESSION["count"] = $count;

6. Initialize the session variables if they do not exist.

Sometimes you need access to a session variable, but that session
doesn't already exist. Usually, this will happen on the first pass of a
program meant to run multiple times. It will also happen if the user
jumps straight into a program without going through the appropriate
prior programs (say you have got a system with three PHP programs
and the user uses a bookmark to jump straight to program 3 without
going to program 1, which sets up the sessions). In these situations,
you'll either want to pass an error message or quietly create new
session variables. In my example, I simply create a new session if it
doesn't already exist. It's an easy matter of assigning values to the
$_SESSION superglobal:

//if count doesn't exist, this is our first pass,

//so initialize both session variables

$_SESSION["count"] = 1;

$_SESSION["total"] = 0;

$count = 1;

******ebook converter DEMO Watermarks*******

 If you want to reset your sessions for testing purposes, you can
write a quick program to set the variables to 0, or you can clear the
history. On most browsers, clearing all history data will also clear
cookies and session data, but you may need to check additional options
to ensure sessions are cleared in your browser. Note that the session
data itself isn't stored in the cookie. The cookie just contains a reference
number so the server can look up the session data in a file stored on the
server.

Sessions and security
The session mechanism is powerful and easy to use. It isn't quite foolproof, though.
Sessions are automatically handled through a browser mechanism called cookies. Cookies
aren't inherently good or evil, but they've gotten a bad reputation because some programs
use them maliciously. You'll occasionally run across a user who's turned off cookies, but
this is not a major problem because PHP can automatically use other options when
cookies are not available. There's rarely a need to work with cookies directly in PHP
because sessions are a higher-level abstraction of the cookie concept.

Like all data passed through the HTTP protocol, session and cookie information is passed
entirely in the clear. A person with evil intent can capture your session information and use
it to do bad things.

Generally, you should stay away from sensitive information (credit card data, Social
Security numbers, and so on) unless you're extremely comfortable with security measures.
If you must pass potentially sensitive data in your PHP program, investigate a technology
called TLS (Transport Layer Security), which automatically encrypts all data transferred
through your site. TLS replaces the older SSL technology and is available as a free plug-in
to Apache servers.

Also, session data does not (yet) go through a filter like form input data. The
filter_input command is scheduled to also allow INPUT_SESSION as an option, but it
has not yet been implemented, so session data is manipulated through a superglobal with
no filtering protection. For this reason, don't read session variable from an untrusted
program. Only read session data stored by a program you wrote or understand.

******ebook converter DEMO Watermarks*******

Chapter 6
Working with Files and

Directories
In This Chapter

 Saving to text files
 Reading from text files
 Reading a file as an array
 Parsing delimited text data
 Working with file and directory functions

An important part of any programming language is file manipulations.
Whether you need to create a comma-separated value (CSV) file or
generate a dynamic list of files in a directory, or just need a semi-
permanent place to log records on the server, file manipulation functions
are an indispensable part of your PHP toolbox.

Text File Manipulation
Work with text files is split into two basic categories: writing and reading.
Writing and reading come down to six basic functions. See the following
bullet list for a brief explanation of the six basic file functions. Each
function has an entire subsection in the following “Writing text to files”
and “Reading from the file” sections:

fopen(): Stores a connection to a file you specify in a variable you
specify
fwrite(): Writes text you specify to a file you specify
fclose(): Closes the connection to a file you specify that you
created with fopen()
fgets(): Reads a line from a file you specify

******ebook converter DEMO Watermarks*******

feof(): Checks whether you have hit the end of a file you specify
during a file read
file(): Puts the entire contents of a file you specify into an array

Writing text to files
This section details the functions needed to access and write to a file, such
as how to request access to a file from PHP with the fopen() function,
write to the file using the fwrite() function, and let PHP know you are
done with the file with the fclose() function.

fopen()
To do any file manipulations, you must tell PHP about the file you would
like to manipulate and tell PHP how you would like to manipulate that file.
The fopen() function has two required parameters that you must pass to
it: the path to the file and the type of file manipulation you would like to
perform (the mode).
The fopen() function returns a connection to the requested file if it's
successful. (The connection is called a pointer — see the “Official file
manipulation terminology” sidebar for more information.) If there is an
error, the fopen() function returns False. Whatever the fopen()
function returns (the connection or False), it should be assigned to a
variable (a stream).
Here is an example of the fopen() function; see the section “Storing data
in a CSV file” later in this chapter for an example of the fopen()
function in action:

$fileConnection = fopen($theFile, $theMode);

In the preceding example, the file connection returned by the fopen()
function is assigned to the variable $fileConnection. The variable
$theFile would contain the path to a file; for example, both
C:\\xampp\\htdocs\\inc\\info.txt and /inc/log.txt are
valid file paths. The file must be in a place the server can access, meaning
that you can put the file anywhere you could put a PHP page for the server
to serve.

******ebook converter DEMO Watermarks*******

 Although possible, you probably shouldn't try to connect to a file
in the My Documents folder or its equivalent on your operating system.
You'll need the actual file path, which can be quite convoluted. It's also
not necessary for the files you open to be in the htdocs directory.
This could be useful if you want to access a file that will not be
available except through your program. Use a relative reference if the
file will be in the same directory as your program, or use an absolute
reference if it will be somewhere else on your system. If you move your
program to a remote server, you can only access files that reside on that
server.

The variable $theMode would contain one of the values from the
following list:

r: Grants read-only access to the file
w: Grants write access to the file

 Be careful, though, because if you specify this mode (w) for the
fopen() function and use the fwrite() function, you will
completely overwrite anything that may have been in the file. Don't use
w if there's anything in the file you want to keep.

a: Grants the right to append text to the file. When you specify this
mode for the fopen() function and use the fwrite() function, the
fwrite() function appends whatever text you specify to the end of
the existing file.
r+ or w+: Grants read and write access to the file. I don't talk about r+
and w+ in this book, except to say that they're a special way of
accessing the file, called random access. This allows you to
simultaneously read and write to the file. If you require this type of
access, you probably should be using something more simple and
powerful, like relational databases.

******ebook converter DEMO Watermarks*******

Official file manipulation terminology
If you look at the documentation for fopen(), or any of the file manipulation functions, you
will see some funny terminology. To keep things simple, I decided to use more
recognizable, easily understandable terms. I wanted you to know that I switched things up
a little bit to give you a quick primer to help you out if you did happen to look at the official
documentation or talk to a more seasoned programmer who might use the official terms.

According to the official online PHP documentation, the fopen() function returns a file
pointer, and binds a named resource to a stream.

What this means is that when you use the fopen() function, it opens a file (much like you
would do if you opened the file in Notepad) and returns a pointer to that file.

It's as if you had put your mouse arrow at the beginning of the file and clicked there to
create the little blinky-line cursor telling Notepad where you are focusing (where you would
like to begin editing the text). The pointer is PHP's focus on the file.

With the fopen() function, PHP's focus is bound to a stream, which means that it is
attached to a variable. When you use the fopen() function, you associate the file with a
variable of your choosing. This variable is how PHP keeps track of the location of the file
and keeps track of where PHP's cursor is in the file. Normally, when you think of a stream,
you might think of a one-way flow. But, in this case, the stream can either be read into the
program character by character, line by line, or you can move the cursor around to any
point in the file that you want. So, rather than being just a one-way flow, the stream is really
an open connection to a file.

See http://us.php.net/manual/en/function.fopen.php for more detail on the
fopen() function.

fwrite()
After you open a file with the fopen() function and assign the file
connection to a variable (see the “fopen( )” section, earlier in this chapter,
for more information), you can use the file in your PHP code. You can
either read from the file, or you can write to the file with the fwrite()
function.
Depending on what mode you specify when you opened the file with the
fopen() function, the fwrite() function either overwrites the entire
contents of the file (if you used the w mode) or it appends the text you
specify to the end of the file (if you used the a mode).
The fwrite() function has two required parameters you must pass to it:

******ebook converter DEMO Watermarks*******

http://us.php.net/manual/en/function.fopen.php

the connection to the file that was established by the fopen() function
and the text you wish to write to the file. The fwrite() function returns
the number of bytes written to the file on success and False on failure.

Here is an example of the fwrite() function (see the section “Storing
data in a CSV file” later in this chapter for an example of the fwrite()
function in action):

$writeResults = fwrite($fileConnection, $text);

 The fwrite() function can also be written fputs().
fwrite() and fputs() both do the exact same thing. fputs() is
just a different way of writing fwrite(). fputs() is referred to as
an alias of fwrite().

fclose()
After you finish working with the file, closing the file connection is
important.
To close the connection to a file you've been working with, you must pass
the connection to the file you wish to close to the fclose() function.
The fclose() function will return True if it is successful in closing the
connection to the file and False if it is not successful in closing the
connection to the file.
Here is an example of the fclose() function:

fclose($fileConnection);

Writing a basic text file
Often, you'll want to do something as simple as record information from a
form into a text file. Figure 6-1 illustrates a simple program that responds
to a form and passes the input to a text form.

******ebook converter DEMO Watermarks*******

Figure 6-1: Here's a standard form that asks for some contact information.

I didn't reproduce the code for this form here because it's basic HTML. Of
course, it's available on the book's companion website, and I encourage you
to look it over there. See this book's Introduction for more on the
companion website.

I'm being attacked by robots!
The basic HTML form shown here is fine, but you'll find that when you start putting forms
on the web, you'll eventually get attacked by robot spam programs using your form to post
(often inappropriate) content through your form.

The best solution to this is a technique called CAPTCHA, which is a mechanism for
determining whether a form is submitted by a human or a computer. When you fill out
forms online and have to type random words or letters from a weird image, you're using a
form of CAPTCHA.

You can implement a very simple form of CAPTCHA by converting your form to a PHP
page. Create a simple math problem and store the answer in a session variable. Ask the
user to solve the problem and submit the response as part of the form. Have your program
check the user's answer against the session.

Although this will not prevent a concerted attack, it is good enough for basic protection.

When the user enters contact data into this form, it will be passed to a
program that reads the data, prints out a response, and stores the

******ebook converter DEMO Watermarks*******

information in a text file. The output of the program is shown in Figure 6-
2.

Figure 6-2: This program has responded to the file input.

The more interesting behavior of the program is not visible to the user. The
program opens a file for output and prints the contents of the form to the
end of that file. Here are the contents of the data file after a few entries:

first: Andy
last: Harris
email: andy@aharrisbooks.net
phone: 111-1111

first: Bill
last: Gates
email: bill@Microsoft.com
phone: 222-2222

first: Steve
last: Jobs
email: steve@apple.com
phone: 333-3333

first: Linus
last: Torvalds
email: linus@linux.org
phone: 444-4444

first: Rasmus
last: Lerdorf
email: rasmus@php.org

******ebook converter DEMO Watermarks*******

phone: 123 456 7890

The program to handle this input is not complicated. It essentially grabs
data from the form, opens up a data file for output, and appends that data to
anything already in the file. Here's the code for addContact.php:

<!DOCTYPE html>
<html lang=”en”>
<head>
<meta charset=”UTF-8”>
 <title>addContact.html</title>
 <link rel = “stylesheet”
 type = “text/css”
 href = “contact.css” />
</head>
<body>
 <?php
 //read data from form
 $lName = filter_input(INPUT_POST, “lName”);
 $fName = filter_input(INPUT_POST, “fName”);
 $email = filter_input(INPUT_POST, “email”);
 $phone = filter_input(INPUT_POST, “phone”);

//print form results to user
 print <<< HERE
 <h1>Thanks!</h1>
 <p>
 Your spam will be arriving shortly.
 </p>
 <p>
 first name: $fName

 last name: $lName

 email: $email

 phone: $phone
 </p>
HERE;

//generate output for text file
 $output = <<< HERE
first: $fName
last: $lName
email: $email
phone: $phone

HERE;
 //open file for output
 $fp = fopen(“contacts.txt”, “a”);
 //write to the file
 fwrite($fp, $output);
 fclose($fp);
 ?>

******ebook converter DEMO Watermarks*******

</body>
</html>

The process is straightforward:

1. Read data from the incoming form.

Just use the filter_input mechanism to read variables from the
form.

2. Report what you're doing.

Let users know that something happened. As a minimum, report the
contents of the data and tell them that their data has been saved. This is
important because the file manipulation will be invisible to the user.

3. Create a variable for output.

In this simple example, I print nearly the same values to the text file
that I reported to the user. The text file does not have HTML
formatting because it's intended to be read with a plain text editor. (Of
course, you could save HTML text, creating a basic HTML editor.)

4. Open the file in append mode.

You might have hundreds of entries. Using append mode ensures that
each entry goes at the end of the file, rather than overwriting the
previous contents.

5. Write the data to the file.

Using the fwrite() or fputs() function writes the data to the file.

6. Close the file.

Don't forget to close the file with the fclose() function.

******ebook converter DEMO Watermarks*******

 The file extension you use implies a lot about how the data is
stored. If you store data in a file with an .txt extension, the user will
assume it can be read by a plain text editor. The .dat extension implies
some kind of formatted data, and .csv implies comma-separated values
(explained later in this chapter). You can use any extension you want,
but be aware you will confuse the user if you give a text file an
extension like .pdf or .doc.

A note about file permissions
Your programs will be loading and storing files, so you need to know a little about how this
works. If you're using a Windows-based server, you will probably have no problems
because Windows has a very simplistic file permission system. However, your program will
probably be housed on a Unix-like system eventually, so you need to understand a bit
about how file permission works on these systems. In the Unix/Linux world, each file has
an owner, and that owner can designate who can do what with a file. Typically, if your
program creates a file, it can write to it and read from it, but this isn't always the case. If
you get a file-access error when testing these programs, it's likely that the operating
system is confused about who the file's owner is and what can be done to the file. You
should be able to change the ownership of a file and its permissions through the file
management system of your server or your FTP client (see Book VIII for more about these
tools). Begin by trying to set the permission of your data file to 777 (all permissions for all
users). If you cannot do this, you may need to change ownership to yourself. Try right-
clicking the filename in your tool and looking for a Properties dialog box for these options.

 In this program, I joke about sending spam to the user, but of
course I don't do it. If you really do want to send e-mails to people in a
list, it's not difficult to do. Look up the mail(to, subject,
message) function in the PHP documentation. Of course just because
you can do something doesn't mean you should. If you send e-mails to
folks without their permission, they will consider you a spammer, and
often you can get kicked off of your server for this behavior. The ability
to send e-mails with PHP has been heavily abused by spammers, so a
number of servers have turned off this feature for the cheaper hosting

******ebook converter DEMO Watermarks*******

plans.

Reading from the file
If you can write data to a file, it would make sense that you could read
from that file as well. The readContact.php program displayed in Figure 6-
3 pulls the data saved in the previous program and displays it to the screen.

Figure 6-3: This program reads the text file and displays it onscreen.

It is not difficult to write a program to read a text file. Here's the code:
<!DOCTYPE html>
<html lang=”en”
<head>
 <meta charset=”UTF-8”
 <title>readContact.php</title>
</head>
<body>
<h1>Contacts</h1>
<div>
 <?php
 //open up the contact file
 $fp = fopen(“contacts.txt”, “r”) or die(“error”);
 //print a line at a time
 while (!feof($fp)){
 $line = fgets($fp);
 print “$line
”;
 }

//close the file

******ebook converter DEMO Watermarks*******

 fclose($fp);
 ?>
</div>
</body>
</html>

The procedure is similar to writing the file, but it uses a while loop.

1. Open the file in read mode.

Open the file just as you do when you write to it, but use the r
designator to open the file for read mode. Now you can use the
fgets() function on the file.

2. Create a while loop for reading the data.

Typically, you'll read a file one line at a time. You'll create a while
loop to control the action.

3. Check for the end of the file with feof().

You want the loop to continue as long as there are more lines in the
file. The feof() function returns the value true if you are at the end
of the file and false if there are more lines to read. You want to
continue as long as feof() returns false. The exclamation point
(!) operator is a logical not. The condition !feof($fp) is true when
there is data left in the file and false when there are no lines left, so this
is the appropriate condition to use here.

4. Read the next line with the fgets()function.

This function reads the next line from the file and passes that line into a
variable (in this case, $line).

5. Print out the line.

With the contents of the current line in a variable, you can do whatever
you want with it. In this case, I'll simply print it out, but you could
format the contents, search for a particular value, or whatever else you
want.

******ebook converter DEMO Watermarks*******

Why not just link to the file?
If this program just prints out the contents of a text file, you might wonder why it's
necessary at all. After all, you could just supply a link to the text file. For this trivial
example, that might be true, but the process of reading the file gives you many other
options. For example, you might want to add improved CSS formatting. You might also
want to filter the contents: for example, only matching the lines that relate to a particular
entry. Finally, you may want to do more than print the contents of a file — say, e-mail them
or transfer them to another format. When you read the contents into memory, you can do
anything to them.

Using Delimited Data
This basic mechanism for storing data is great for small amounts of data,
but it will quickly become unwieldy if you're working with a lot of
information. If you're expecting hundreds or thousands of people to read
your forms, you'll need a more organized way to store the data. You can
see how to use relational databases for this type of task in Book VI, but for
now, another compromise is fine for simpler data tasks. You can store data
in a very basic text format that can be easily read by spreadsheets and
databases. This has the advantage of imposing some structure on the data
and is still very easy to manage.
The basic plan is to format the data in a way that it can be read back into
variables. Generally, you store all of the data for one form on a single line,
and you separate the values on that line with a delimiter, which is simply
some character intended to separate data points. Spreadsheets have used
this format for many years as a basic way to transport data. In the
spreadsheet world, this type of file is called a CSV (for comma-separated
values) file. However, the delimiter doesn't need to be a comma. It can be
nearly any character. I typically use a tab character or the pipe symbol (|)
because they are unlikely to appear in the data I'm trying to save and load.

Storing data in a CSV file
Here's how you store data in a CSV file:

1. You can use the same HTML form.
******ebook converter DEMO Watermarks*******

The data is gathered in the same way regardless of the storage
mechanism. I did make a new page called addContactCSV.html, but
the only difference between this file and the addContact.html page is
the action property. I have the two pages send the data to different
PHP programs, but everything else is the same.

2. Read the data as normal.

In your PHP program, you begin by pulling data from the previous
form.

$lName = filter_input(INPUT_POST, “lName”);
 $fName = filter_input(INPUT_POST, “fName”);
 $email = filter_input(INPUT_POST, “email”);
 $phone = filter_input(INPUT_POST, “phone”);

3. Store all the data in a single tab-separated line.

Concatenate a large string containing all the data from the form. Place
a delimiter (I used the tab symbol \t) between variables and a newline
(\n) at the end.

//generate output for text file
$output = $fName . “\t”;
$output .= $lName . “\t”;
$output .= $email . “\t”;
$output .= $phone . “\n”;

4. Open a file in append mode.

This time, I name the file contacts.csv to help myself remember that
the contact form is now stored in a CSV format.

5. Write the data to the file.

The fwrite() function does this job with ease.

6. Close the file.

This part (like most of the program) is identical to the earlier version of
the code.

******ebook converter DEMO Watermarks*******

Here's the code for addContactCSV.php in its entirety:
<!DOCTYPE html>
<html lang=”en”>
<head>
 <meta charset=”UTF-8”>
 <title>addContactCSV.php</title>
 <link rel = “stylesheet”
type = “text/css”
href = “contact.css” />
</head>
<body>
 <?php
 //read data from form
 $lName = filter_input(INPUT_POST, “lName”);
 $fName = filter_input(INPUT_POST, “fName”);
 $email = filter_input(INPUT_POST, “email”);
 $phone = filter_input(INPUT_POST, “phone”);

//print form results to user
 print <<< HERE
 <h1>Thanks!</h1>
 <p>
 Your spam will be arriving shortly.
 </p>
 <p>
 first name: $fName

 last name: $lName

 email: $email

 phone: $phone
 </p>
HERE;
 //generate output for text file
 $output = $fName . "\t";
 $output .= $lName . "\t";
 $output .= $email . "\t";
 $output .= $phone . "\n";
 //open file for output
 $fp = fopen("contacts.csv", "a");
 //write to the file
 fwrite($fp, $output);
 fclose($fp);
 ?>
</body>
</html>

As you can see, this is not a terribly difficult way to store data.

Viewing CSV data directly
******ebook converter DEMO Watermarks*******

If you look at the resulting file in a plain text editor, it looks like Figure 6-
4.

Figure 6-4: The data is separated by tab characters and each entry is on its own line.

Of course, CSV data isn't meant to be read as plain text. On most operating
systems, the .csv file extension is automatically linked to the default
spreadsheet program. If you double-click the file, it will likely open in your
spreadsheet, which will look something like Figure 6-5.

Figure 6-5: Most spreadsheets can read CSV data directly.

******ebook converter DEMO Watermarks*******

This is an easy way to store large amounts of data because you can use the
spreadsheet to manipulate the data. Of course, relational databases
(described in Book VI) are even better, but this is a very easy approach for
relatively simple data sets. I've built many data entry systems by using this
general approach.

Reading the CSV data in PHP
Of course, you may also want to read in the CSV data yourself. It's not too
difficult to do. Look over the following code for readContactCSV.php:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>readContactCSV.php</title>
</head>
<body>
 <h1>Contacts</h1>
 <div>
 <?php
 print <<< HERE
 <table border = "1">
 <tr>
 <th>First</th>
 <th>Last</th>
 <th>email</th>
 <th>phone</th>
 </tr>
HERE;
 $data = file("contacts.csv");
 foreach ($data as $line){
 $lineArray = explode("\t", $line);
 list($fName, $lName, $email, $phone) = $lineArray;
 print <<< HERE
 <tr>
 <td>$fName</td>
 <td>$lName</td>
 <td>$email</td>
 <td>$phone</td>
 </tr>
HERE;
 } // end foreach
 //print the bottom of the table
 print "</table> \n";
 ?>
 </div>
</body>

******ebook converter DEMO Watermarks*******

</html>

Figure 6-6 shows this program in action.

Figure 6-6: This program creates an HTML table from the data in the file.

In this program, I read the contents of a CSV file and display it in an
HTML table. It's not terribly different than reading any other text file, but
there are some new twists.

1. Print the table heading.

It's easiest to manually print out the table heading with the field names,
because I know what they'll be. A simple heredoc will do the job.

print <<< HERE
<table border = "1">
 <tr>
 <th>First</th>
 <th>Last</th>
 <th>email</th>
 <th>phone</th>
 </tr>
HERE;

2. Load the data into an array.

PHP has a marvelous tool called file. This function takes a filename

******ebook converter DEMO Watermarks*******

as its only input. It then opens that file and places all the contents in an
array, placing each line in its own element of the array. There's no need
to make a file pointer, or to open or close the file. In this example, I
load all the contents of contacts.csv into an array called $data.

$data = file("contacts.csv");

3. Use a foreach loop to step through the contents.

Now I can walk through the contents of the file with a simple
foreach loop. I place the current line in a variable called (wait for
it . . .) $line.

foreach ($data as $line){

4. Explode each line into its own array.

You have got to love a function with a violent name, especially when
it's really useful. Use the explode command to separate the line into
its component parts. For this example, I break on the tab (\t) character
because that's the delimiter I used when storing the file.

$lineArray = explode("\t", $line);

5. Use the list()function to store each element of the array into its
own variable.

I could just use the array, but I think it's easier to pass the data back to
the same variable names I used when creating the program. The
list() construct does exactly that. Feed it a bunch of variable names
and assign an array to it, and now each element of the array will be
assigned to the corresponding variable.

list($fName, $lName, $email, $phone) = $lineArray;

6. Print the variables in an HTML table row.

All the variables fit well in an HTML table, so just print out the current
row of the table.

******ebook converter DEMO Watermarks*******

print <<< HERE
 <tr>
 <td>$fName</td>
 <td>$lName</td>
 <td>$email</td>
 <td>$phone</td>
 </tr>
HERE;

7. Clean up your playthings.

There's a little housekeeping to do. Finish the loop and close up the
HTML table. There's no need to close the file because that was
automatically done by the file() function.

} // end foreach
//print the bottom of the table
print "</table> \n";

These shortcuts — the file() function and list() — make it very
easy to work with CSV data. That's one reason this type of data is popular
for basic data problems.

 The list() construct works only on numerically indexed
arrays and assumes that the array index begins at 0. If you want to use
the list() function with associative arrays, surround the array
variable with the array_values() function. Technically, list()
is not a function but a language construct. (See
http://us3.php.net/list for more information on the
list() function.)

 The file() function is appealing, but it isn't perfect for every
situation. It's great as long as the file size is relatively small, but if you
try to load in a very large file, you will run into memory limitations.
The “line at a time” approach used in readContact.php doesn't have this
problem because there's only a small amount of data in memory at any

******ebook converter DEMO Watermarks*******

http://us3.php.net/list

given time.

Escaping with HTML entities
If you're planning on displaying the user's input to the screen, escape all the special
characters before saving the user's input to a file or sending it to the browser. Otherwise,
some malicious user could use some simple CSS and HTML to really mess up your page.
Remember: Paranoia is your friend. The simplest way to guard against this is to use the
htmlentities() function:

$userInput = htmlentities($userInput);

This function converts any HTML characters the user may have entered into the
character's HTML entities equivalent. That is, if the user entered <div>, it'd be converted
to <div>. When you display it back to the page, instead of creating a new HTML
div, the browser will simply output the literal string <div> to the user.

If, for some reason, you want to decode these entities, use the html_entity_decode()
function. This works exactly like its htmlentities() counterpart, just in reverse.

 HTML purists tend to freak out whenever they see an HTML
table. It's true that HTML tables were once horribly abused as a layout
technique, but that doesn't mean they should never be used. It's
perfectly suitable to use a table tag to lay out tabular data, which is
exactly what I'm doing in this program.

Working with File and Directory
Functions

Sometimes, you may need PHP to work with files in a directory. Say you
have a reporting tool for a client. Each week, you generate a new report for
the client and place it in a directory. You don't want to have to alter the
page each time you do this, so instead, make a page that automatically
generates a list of all the report files for the client to select from. This is the
kind of thing you can do with functions like openddir() and
readdir().

******ebook converter DEMO Watermarks*******

opendir()
Using the opendir() function, you can create a variable (technically
speaking, this type of variable is called a handle) that allows you to work
with a particular directory.
The opendir() function takes one parameter: the path to the directory
you want to work with. The opendir() function returns a directory
handle (kind of like a connection to the directory) on success and False
on failure.
Here is an example of the opendir() function (see the “Generating the
list of file links” section to see the opendir() function in action). This
function stores a directory handle to the
C:\xampp\htdocs\XFD\xfd5.7 directory in the
$directoryHandle variable:

$directoryHandle = opendir("C:\xampp\htdocs\XFD\xfd5.7");

readdir()
After you open the directory with the opendir() function, you have a
cursor pointed at the first file. At this point, you can read the filenames one
by one with a while loop. To do this, use the readdir() function.

The readdir() function takes one parameter: the variable containing the
directory handle created with the opendir() function. The readdir()
function returns the name of a file currently being focused on by the cursor
on success and False on failure.
Here is an example of the readdir() function. This function iterates
through each file in the directory specified by $dp and assigns the
filename of the current file to a new index in $fileArray array:

while($currentFile !== false){
 $currentFile = readDir($dp);
 $filesArray[] = $currentFile;
}

The actual readdir() function itself is readdir($dp). For more on
the readdir() function, see the official PHP online documentation at
http://us.php.net/function.readdir.

******ebook converter DEMO Watermarks*******

http://us.php.net/function.readdir

 In some circumstances, the readdir() function might return
non-Boolean values which evaluate to False, such as 0 or ““. When
testing the return value of the readdir() function, use === or !==,
instead of == or !=, to accommodate these special cases.

chdir()
If you want to create a file in a directory other than the directory that the
PHP page creating the file is in, you need to change directories. You
change directories in PHP with the chdir() function.

 If you want to be absolutely sure that you're in the right directory
before writing the file, you can use an if statement with the
getcwd() function. This is usually a bit of overkill, but it can be
helpful.

The chdir() function takes one parameter: the path to the directory you
wish to work with. The chdir() function returns True on success and
False on failure.
Here is an example of the chdir(). This function changes to the
C:\xampp\htdocs\XFD\xfd5.6 directory:

chdir("C:\xampp\htdocs\XFD\xfd5.6");

When you change to a directory, you're then free to write to it with the
fwrite() function. See the “fwrite()” section, earlier in this chapter.

Generating the list of file links
Using the opendir() and readdir() functions, you can generate a list
of links to the files in a directory.
Take a look at the PHP code for the file links list example; see Figure 6-7
for the HTML generated by this example:

******ebook converter DEMO Watermarks*******

Figure 6-7: A list of links to all files in the directory specified by the opendir() function.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>fileList.php</title>
</head>
<body>

 <?php
 $dp = opendir(".");
 $currentFile = "";
 while($currentFile !== false){
 $currentFile = readDir($dp);
 $filesArray[] = $currentFile;
 } // end while
 //sort the array in alpha order
 sort($filesArray);
 //write the output
 $output = "";
 foreach($filesArray as $aFile){
 $output .= " $aFile \n";
 } // end foreach
 print "$output";
 ?>

</body>
</html>

Here's how the fileList.php program performs its magic:

******ebook converter DEMO Watermarks*******

1. Open a directory pointer to the current directory.

In all major operating systems, the period (.) character indicates the
current directory.

$dp = opendir(".");

2. Build a loop that repeats until there are no files left.

 The special !== comparison is used to prevent rare
problems, such as files named false. (Yes, believe it or not, that
sometimes happens.)

while($currentFile !== false){

3. Read the next file from the directory pointer.

The readDir() function reads the next file in and stores it to a
variable ($currentFile).

$currentFile = readDir($dp);

4. Append the current file to an array.

If you simply assign a file to an array without an index, PHP places the
element in the next available space.

$filesArray[] = $currentFile;

5. Sort the array.

The files won't be in any particular order in the array, so use the
sort() function.

sort($filesArray);

6. Print each element of the array.

I use an unordered list of links to display each file. Make it a link so
******ebook converter DEMO Watermarks*******

that the user can click the file to view it directly.

foreach($filesArray as $aFile){
 $output .= " $aFile \n";
} // end foreach

 On a Windows server, you have to escape the backslashes in the
file path. You do this by adding a backslash before the backslashes in
the file path. (For example, you would write
C:\\xampp\\htdocs\\XFD\\xfd5.7\\ instead of
C:\xampp\htdocs\XFD\xfd5.7\.) On a Unix server, you don't
have to do this because file paths use slashes (/) instead of backslashes
(\).

 If you want just one particular file type, you can use regular
expressions to filter the files. If I had wanted only the .txt and .dat
files from the directory, I could have run the file’s array through this
filter to weed out the unwanted file types:
$filesArray = preg_grep("/txt$|dat$/", $filesArray);

For more on regular expressions, check Book IV, Chapter 5 as well as
Chapter 4 of this book.

******ebook converter DEMO Watermarks*******

Chapter 7
Exceptions and Objects

In This Chapter
 Introducing PHP objects
 Creating a constructor
 Adding properties and methods to objects
 Using access modifiers to protect data
 Building sub-classes with inheritance
 Trapping for errors with exception handling

PHP has become a critically important part of web programming, and it has
undergone a number of important transformations. As PHP becomes more
mainstream, it is adopting a number of features from more traditional
languages. Two of these important features are object-oriented
programming (OOP) and exception handling. Objects are re-usable
components that encapsulate data and functions (first mentioned in Book
IV, Chapter 4). Exception handling is a mechanism used to detect and
gracefully recover from errors. Both object-oriented programming and
exception handling are important parts of modern data programming,
which is the heart of most practical PHP coding.

Object-Oriented Programming in
PHP

After you've written a few programs, you probably begin to notice a few
patterns:

Programming is hard: Writing code that does what you want is not
easy.
Code should be re-used when possible: After you get something

******ebook converter DEMO Watermarks*******

working, you want to reuse that code as much as possible to avoid the
pain of writing completely new code all the time.
Programs are about data and instructions: Programs are about both
data and the instructions needed to manipulate that data. Data are
stored in variables and instructions are stored in functions.
Abstraction is a good thing: Functions are great because they hide
details and let you solve problems in a bigger way. An even higher
level of abstraction (which collects both functions and data) might be
even better.

These ideas occurred to computer scientists, too, and the result is a style of
programming called object-oriented programming (OOP). OOP was first
described in Book IV, Chapter 4 as a feature of JavaScript. PHP also
supports object-oriented programming, but does it in a slightly different
way.

 JavaScript and PHP both support object-oriented programming,
but the details are very different. If you're comfortable with OOP in
JavaScript, you should still look closely at the way PHP does things.
The PHP mechanisms are actually very similar to those in C++, which
is one of the most commonly used multi-purpose programming
languages, so learning the PHP technique is a great idea. After you get
past the differences in details, you'll see that the big ideas of OOP
remain the same even when the language implementation changes.

The PHP mechanisms for OOP are important to learn because many of the
advanced libraries you're likely to use are object-oriented, and because
properly implemented OOP can tame complex programs in a big way.

Building a basic object
Start your experiments in OOP by looking over a simple PHP file:

<?php
//SimpleCritter.php
//meant to be included

******ebook converter DEMO Watermarks*******

class Critter{
 public $name;

public function __construct($name = "Anonymous"){
 $this->name = $name;
 } // end constructor

public function sayHi(){
 return "Hi. My name is $this->name.";
 } // end sayHi method

} // end critter def
?>

This is an interesting PHP file because it doesn't follow the patterns you've
seen before. This code isn't meant to be run directly, but to be reused by
other code. Here are the highlights:

1. No HTML needed here.

This file is pure PHP. It doesn't need any HTML at all because it will
be called by another PHP program. Code reuse is the goal here, so this
is code designed to be reused.

2. Define a class.

Use the class keyword to define a class (that is, the recipe for
making the object). In this example, I'm defining the Critter class.
Note that class names are typically capitalized.

3. Define a property.

If you define a variable inside a class, it becomes a property. Properties
are much like variables, but they live inside a class. The keyword
public indicates that the variable will be available to any code that
wants it. (Not a great idea, as it turns out, but let's keep this first
example simple. See the section Protecting your data with access
modifiers to see the problems public properties can cause and how to
resolve these problems.) Properties are the characteristics of an object.

******ebook converter DEMO Watermarks*******

4. Define a method.

Skip ahead to the function sayHi(). For the most part, it looks just
like any other function. But when a function is defined inside an object,
it becomes a method. Methods are things the object can do. Most
methods are declared public. Methods, like other functions, can have
parameters and return values.

5. Use $this to refer to the current object.

Within an object definition, the special keyword $this refers to the
object currently being defined. The $this keyword is normally used
to differentiate properties and methods from ordinary variables and
functions.

6. $this->name refers to the name property.

The special symbol -> is a dereference operator. Really that's fancier
than it sounds. It simply indicates that name is part of the object.
($this->name in PHP works pretty much like this.name in
JavaScript.)

7. Build a constructor.

In addition to ordinary methods, objects can have a special method
called a constructor. In PHP, the constructor is called
__constructor (with two preceding underscores). Constructors are
special functions that are automatically called when a class is being
instantiated. (That is, you're baking a cookie from the recipe.)
Constructors are normally used to initialize all the properties and set up
any housekeeping that might be necessary when a new instance of the
class is being created. Traditionally, the constructor is listed as the first
method in the class even if it isn't always written first.

8. The constructor takes a parameter.

Like any function, a constructor can take one or more arguments. In
this case, I want the option to name a critter as soon as it's built, so the

******ebook converter DEMO Watermarks*******

constructor has a $name parameter.

9. The parameter has a default argument.

If the user doesn't specify a parameter, the constructor will assign
“Anonymous” as a default value.

10. End the class definition.

The entire class definition goes inside a pair of squiggly braces, so
don't forget to indent your code and comment on end quotes so it's
clear what you're ending.

Using your brand-new class
What you did in simpleCritter.php was create the definition of a class. It's
like writing a recipe. This file contains the instructions for building a class,
but you'll generally use a class in a different project (or many — if your
class is useful, you'll use it many times).
Take a look at useCritter.php shown in Figure 7-1. The screenshot doesn't
look like much, but there are a lot of interesting things happening behind
the scenes. Here's the code:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>UseCritter</title>
</head>
<body>
 <?php

require_once("simpleCritter.php");
 $a = new Critter("Jack");

//referring to a property
 print "Name: $a->name
";

print $a->sayHi();

******ebook converter DEMO Watermarks*******

?>
</body>
</html>

Figure 7-1: This simple page is the result of some fancy object-oriented shenanigans.

If simpleCritter.php was about defining the class (writing a recipe),
useCritter.php is about creating an instance (making cookies from the
recipe). Here's how it works:

1. Store useCritter.php and simpleCritter.php in the same directory.

You can use complicated directory structures if you want, but when
you're getting started, keep things as simple as you can by keeping
everything together. This program (useCritter.php) needs
simpleCritter.php, so put them in the same place until you've got a
good reason to do otherwise.

2. Require simpleCritter.php file.

PHP has a number of tools that allow access to another file. The most
commonly used of these functions is require_once(). This
function will import an external file and is extremely handy for code
reuse.

require_once("simpleCritter.php");

******ebook converter DEMO Watermarks*******

 PHP has four different functions that all seem to do the same
thing: include(), include_once(), require(), and
require_once(). The differences are subtle, and not terribly
important for a beginner, but you should still know what they are. If
you use include() or include_once() and the file is not there,
the program will keep on going anyway (but will probably crash
because something you needed is not available). If you use one of the
require functions and the file is not available, the program stops
immediately.

I use require() instead of include() because if I'm calling an
external file and it's not there, I want to know right away. The once
directive adds another security feature: if you've already required the
file once, it won't be loaded into memory again. This seems silly unless
you've done some C++ programming and you remember how awkward
the mechanism for preventing multiple inclusions of the same file is.
For now, stick with require_once(). It almost always serves your
needs for file inclusion in PHP.

3. Create an instance of your new class.

Make a variable (I called mine '$a') and use the new keyword to
make this variable an instance of the Critter class. Because the
Critter constructor takes a single string parameter, I pass a name to the
Critter.

$a = new Critter("Jack");

4. Refer to properties as ordinary variables.

Any public properties of a class can be manipulated like ordinary
variables, but use the full name ($a->name) to refer to the property.
You can think of a property as a sub-variable inside a larger variable
(the class). You can read from a property or write to it just like any
other variable (although as you see in the next section, this is often

******ebook converter DEMO Watermarks*******

discouraged in real life).

//referring to a property
 print "Name: $a->name
";

5. Call a method just like a function call.

Methods are very much like functions, except they are attached to a
class instance. Call a method just like you would a function, but use the
full name ($a->sayHi()).

print $a->sayHi();

The object in this simple example is extremely simplistic, but the power of
objects comes when you have a lot of them and they become more
complex. Objects allow you to encapsulate the data and behavior of
entities, which is a very powerful concept.

Protecting your data with access modifiers
The simpleCritter class defined in the previous section does the job,
but it can be improved. As computer scientists began working with data,
one of the biggest problems they encountered was trustworthiness. How
can you be sure that the data in your program is what it's supposed to be?
The best way to ensure good data is to have some sort of gatekeeping
mechanism so that data cannot be changed without going through some
sort of filter. Objects have exactly this sort of characteristic. Take a look at
the improved Critter.php file:

<?php
//Critter with access modifiers

class Critter{
 //now the property is protected
 protected $name;

public function __construct($name = "Anonymous"){
 $this->name = $name;
 }

 public function setName($name){
 $this->name = $name;

******ebook converter DEMO Watermarks*******

 }

 public function getName(){
 return $this->name;
 }

public function sayHi(){
 return "Hi. My name is $this->name.";
 }

} // end critter def
?>

This class definition is almost like the last one, but it has one key
difference: the name property cannot be changed directly. Here's what the
code does:

1. Defines properties as protected.

There are three access modifiers you can use in PHP, which define the
accessibility of a property or method. In the SimpleCritter class,
you used public access throughout. The other modifiers you can use
are private (which means this element is available only to the
current class) and protected (for now, you can think of private
and protected as the same). (I describe the difference in the section
of this chapter called “How to inherit the wind (and anything else).”)

2. Adds a setter for each property.

When you've set a property to private or protected, you've
indicated that element cannot be modified from the outside. However,
there's a loophole. You can (and should) write your own methods to
allow access to protected properties. A setter method is almost always
named something like setPropertyName() and it takes a single
argument. A setter then might check the property for validity, and then
will pass it to the instance variable. In this simplistic example, I'll allow
any string, but if I had (for example) an angle property that measures in
degrees, I might want to check that the input was a numeric value
between 0 and 360. A setter allows you to manage data input.

******ebook converter DEMO Watermarks*******

3. Adds a getter for each property.

A getter method is almost always named something like
getPropertyName() and it doesn't take any arguments. Usually it
simply returns the property value. Typically you'll have both a getter
and a setter for each property.

Using access modifiers
When you've defined your objects with secure properties, all of the
interactions with that object tend to be with methods. Here's an example:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Use Access Modifiers</title>
</head>
<body>
 <?php
 require_once("Critter.php");

 $a = new Critter("Nobody");
 //this line is no longer legal:
 // print $a->name;

//Use the methods instead
 $a->setName("Brayden");

 print "Hi, " . $a->getName() . "!
";

?>

</body>
</html>

Figure 7-2 shows the (underwhelming) output of accessMod.php. A lot of
times in programming the most important changes are not obvious to the
user.

******ebook converter DEMO Watermarks*******

Figure 7-2: This critter is better-behaved than the last one.

This example is similar to the useCritter.php demonstration, but now I'm
using the enhanced critter with protected data. Here are the differences:

1. This example requires the enhanced Critter file.

I stored the protected version of Critter in a file called Critter.php
so that's the file I require for this example.

2. You can no longer manipulate the property directly.

Attempting to access the property directly (either reading from or
writing to the property) will now result in an error.

3. This example uses the access methods to interact with the property.

Use setName() to change the name and getName() to get the
name.

Seriously? You want me to work harder so I
can . . . work harder?

I hear you. The first object example (with public properties) was easy to understand and
******ebook converter DEMO Watermarks*******

seems to work just fine. Then I suggest making it a little more complicated by protecting the
properties, which makes you work a little harder by adding new methods, which makes you
work a little harder yet by using those methods. It all seems unnecessary and a bit
arbitrary, when the more basic object seems to be working fine.

However, protecting data members as I'm describing here is a really big deal, and it's worth
doing (even though that isn't obvious in this very contrived example). Here's why:

It's hard to repair data errors: Data errors are notoriously hard to fix after the fact.
It’s much better to have a mechanism to prevent these errors in the first place.
That’s what private properties are all about — preventing bad data.
Some data needs to fall within certain parameters: Imagine you have some sort
of class that needs an angle in degrees. You’ll want this to be a numeric value
between 0 and 360. With an ordinary variable or public property, there’s no way to
be certain the value is within the expected range. With a setter method, you can
guarantee that the value will be in the expected range.
Some “properties” aren't properties at all:Think about a class that defines a
circle. At first you probably think you’d want properties for radius, circumference,
and area. However, what if you allowed the user to change all these things? Should
we allow a circle with a radius of one and an area of one? (Answer: only if we’re
extremely close to a black hole and the laws of space and time are breaking down.)
Typically, you’d only store the radius, but you supply getCircumference() and
getArea() methods that will calculate these values based on the current radius.
To the user, circumference and area are “readonly” properties because they can be
read but not changed directly. If you wanted to allow the user to change the area,
you could do so, but you’d really reverse-engineer the new radius and change that.
It's often the law Most software shops and computer science teachers are going to
require you to protect your data whenever possible, so you might as well learn how
to do so now.

You've Got Your Momma's Eyes:
Inheritance

Object-oriented programming has another feature which makes it very
useful for large projects. Many objects are related to each other, and you
can use a family tree relationship to simplify your programming. Consider
the following example, shown in Figure 7-3.

******ebook converter DEMO Watermarks*******

Figure 7-3: This critter has an attitude.

Building a critter based on another critter
There's a new critter in town. This one has the same basic features, but a
worse attitude. Take a look at the code to see what's going on:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>inherit.php</title>
</head>
<body>
 <?php
 require_once("Critter.php");

class BitterCritter extends Critter{

//all properties and methods inherited from Critter

//You can add new properties and methods
 public function glower(){
 return "$this->name glowers at you without saying
anything.";
 } // end glower

//if you over-write an existing method, the behavior changes

******ebook converter DEMO Watermarks*******

 public function talk(){
 return "None of your business!";
 } // end talk

} // end class def

$a = new BitterCritter();

print $a->glower() . "
";
 print $a->talk() . "
";

?>
</body>
</html>

This example is an illustration of a very common programming situation,
where I want a specialization of a previously defined class. I already have a
Critter class, but I want a new kind of Critter. My new critter (the
BitterCritter) begins with the same general characteristics of the
ordinary critter, but brings a new twist. (I could also develop others — the
GlitterCritter, SpitterCritter, and HitterCritter come
to mind . . .) The object-oriented idea of inheritance is a perfect way to
handle this situation.

 If you followed the conversation about object-oriented
programming in JavaScript, you might wonder why I didn't talk much
about inheritance in Book IV. JavaScript supports a different form of
object-oriented programming based on an idea called prototyping rather
than inheritance. People have long and boring conversations about
which technique is better, but ultimately it doesn't matter much. Most
OOP languages support the form of inheritance used in PHP, so you
should really know how it works.

How to inherit the wind (and anything else)
Here's how to implement inheritance:

1. Begin with an existing class.
******ebook converter DEMO Watermarks*******

For this example, I begin with the ordinary Critter class, which I
import with the require_once() function.

2. Create your new class with the extends keyword.

As you define the class, if you use the extends keyword to indicate
which class you are inheriting, your new class will begin with all the
properties and methods of the parent class.

3. You can access public and protected elements of the parent, but
not private ones.

If a property or method was defined as private in the original class, it's
truly nobody else's business. No other code fragments can access that
element. Generally though, when you inherit from a class, the new
child class should have access to the parent class's elements. That's
why I typically create properties as protected rather than private.

4. Add new properties and methods.

You can extend your new class with additional properties and methods
that the parent did not have. The BitterCritter now features a
glower() method that ordinary critters do not have.

5. You can also overwrite parent behavior.

If you redefine a method that the parent class had, you are changing the
behavior of the new class. This allows you to modify existing
behaviors (a form of an object-oriented idea called polymorphism). In
this example, I modify the bitterCritter's talk method to be more
bitter.

 This demonstration is just the barest glimpse into object-oriented
programming. There is much more to this form of software
development than I can describe in this introductory chapter, but the

******ebook converter DEMO Watermarks*******

basics are all here. Though you might not immediately see the need to
build your own objects from scratch, you will definitely encounter
object-oriented PHP code as you begin exploring more complex ideas
like data programming and content management systems.

Catching Exceptions
Real-life programming is dangerous. Lots of things can go wrong. So the
smart way to program data is defensive programming. This practice
involves anticipating errors and trying to resolve them gracefully. PHP has
some advanced error-handling techniques available which are perfect for
the task.
Imagine you wrote some code that looked like this:

print 5 / 0;

I know you wouldn't do that, but sometimes bad code slips through. If your
server is set up to pass out error messages, you'll see something like
Figure 7-4.

Figure 7-4: PHP reports a useful error message (most of the time).

Introducing exception handling
There's actually a lot more going on in Figure 7-4 than you might

******ebook converter DEMO Watermarks*******

appreciate at first. The default behavior of many PHP installations is to
hide errors. (Denial: my favorite coping mechanism.) However, errors
occur, especially if you allow user input. This code listing explicitly traps
for errors and reports them regardless of server settings:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>try.php</title>
</head>
<body>
 <p>
 <?php
 try {
 5 / 0;
 } catch (Exception $e){
 print $e->getMessage();
 } // end try

?>
 </p>
</body>
</html>

Here's what's happening:

1. Use the try keyword to indicate potentially dangerous code.

The try keyword opens up a block of code (like a loop or condition).
All the code between try and catch is considered potentially
dangerous.

2. Place dangerous code in the try block.

Any code that might cause errors should be placed inside the try
block. In this (incredibly contrived) example, I put a line of code that
would cause any self-respecting math teacher's head to explode. The
most dangerous code usually involves things the programmer can't
directly control: access to external files, operations on user-defined
data, or exposure to external programs and processes.

3. Use the catch clause to anticipate errors.

******ebook converter DEMO Watermarks*******

The catch clause indicates the end of the dangerous code.

4. Indicate the exception type.

The parameter for the catch clause is an object of type Exception.
PHP has a number of built-in exceptions, and often a library or toolset
will include new exceptions (you can also build them yourself if you
want). In this generic case, I call the stock Exception, which
triggers on any kind of exception. (If you want, you can have multiple
catch statements, each triggering on a different kind of exception.)

5. Manage the exception.

The catch clause opens another block of code. Put the code in here
that will resolve the problem (or at least die with a little style and grace
— informing the user what went wrong before shuffling off this mortal
coil). The most common line here is to call print($e-
>getMessage()). All exception objects have a getMessage()
method, and this line reports the current error message.

Knowing when to trap for exceptions
If your server is set up for debugging (as XAMPP is by default), it won't
usually be necessary to set up exception handling because the default
behavior of a debug setup is to report the exceptions anyway. There are a
few times you'll still want explicit exception handling:

You're on a server without debug settings: You may not have access
to the server configuration, so you might not be able to turn on
automatic exception reports. Manual exception reports (as done in this
unit) still get through.
You want to do something special: The automatic exception handler
simply reports the problem. If you want to do something else (say, use
a default file if a file is not found), you’ll need a custom exception
handler for that situation.
You're doing something exotic: Special libraries (like the PDO
library described in Book VI, Chapter 5) often come with their own

******ebook converter DEMO Watermarks*******

custom exceptions, and you’ll need an exception handler to cover these
situations.

******ebook converter DEMO Watermarks*******

Book VI
Managing Data with MySQL

 Visit www.dummies.com/extras/html5css3aio for
more on SQLite and alternative data strategies.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: Getting Started with Data
Chapter 2: Managing Data with MySQL
Chapter 3: Normalizing Your Data
Chapter 4: Putting Data Together with Joins
Chapter 5: Connecting PHP to a MySQL Database

******ebook converter DEMO Watermarks*******

Chapter 1
Getting Started with Data

In This Chapter
 Understanding databases, tables, records, and fields
 Introducing the relational data model
 Introducing a three-tier model
 Understanding MySQL data types
 Getting started with MySQL and phpMyAdmin
 Adding a password to your MySQL root account
 Creating new MySQL users
 Designing a simple table
 Adding data to the table

Most programs and websites are really about data. Data drives the Internet,
so you really need to understand how data works and how to manage it
well if you want to build high-powered, modern websites.
The trend in web development is to have a bunch of specialized languages
that work together. HTML describes page content, CSS manages visual
layout, JavaScript adds client-side interactivity, and PHP adds server-side
capabilities. You're probably not surprised when I tell you that yet another
language, SQL (Structured Query Language), specializes in working with
data.
In this minibook, you discover how to manage data. Specifically, you find
out how to create databases, add data, create queries to retrieve data, and
create complex data models to solve real-world problems. In this chapter, I
show you some tools that automate the process of creating a data structure
and adding data to it. In later chapters in this minibook, I show how to
control the process directly through SQL and PHP code.

******ebook converter DEMO Watermarks*******

Examining the Basic Structure of
Data

Data has been an important part of programming since computing began.
Many languages have special features for working with data, but through
the years, a few key ideas have evolved. A system called relational data
modeling has become the primary method for data management, and a
standard language for this model, called SQL (Structured Query
Language), has been developed.
SQL has two major components:

Data Definition Language (DDL) is a subset of SQL that helps you
create and maintain databases. You use DDL to build your databases
and add data to them.
Data Query Language (DQL) is used to pull data out of a database
after it's been placed there. Generally, your user input is converted to
queries to get information from an existing database.

The easiest way to understand data is to simply look at some. The
following table contains some basic contact information:
Name Company E-mail

Bill Gates Microsoft bill@msBob.com

Steve Jobs Apple steve@rememberNewton.com

Linus Torvalds Linux Foundation linus@gnuWho.org

Andy Harris John Wiley & Sons andy@aharrisBooks.net

Note: All these e-mail addresses are completely made up (except mine).
Bill Gates hasn't given me his actual e-mail address. He doesn't answer my
calls, either . . . (sniff).
It's very common to think of data in the form of tables. In fact, the fancy
official database programmer name for this structure is table. A table (in
database terms) is just a two-dimensional representation of data. Of course,
some fancy computer-science words describe what's in a table:

******ebook converter DEMO Watermarks*******

mailto:bill@msBob.com
mailto:steve@rememberNewton.com
mailto:linus@gnuWho.org
mailto:andy@aharrisBooks.net

Each row is a record. A record describes a discrete entity. In this
table, each record is a person in an e-mail directory.
A record is made of fields. All the records in this table have three
fields: name, company, and e-mail. Fields are a lot like variables in
programming languages; they can have a type and a value. Sometimes,
fields are also called columns.
A collection of records is a table. All records in a table have the same
field definitions but can have different values in the fields.
A bunch of tables makes a database. Real-world data doesn't usually
fit well in one table. Often, you'll make several different tables that
work together to describe complex information. The database is an
aggregate of a bunch of tables. Normally, you restrict access to a
database through a user and password system.

Determining the fields in a record
If you want to create a database, you need to think about what entity you're
describing and what fields that entity contains. In the table in the preceding
section, I'm describing e-mail contacts. Each contact requires three pieces
of information:

Name: Gives the name of the contact, in 50 characters or less
Company: Describes which company the contact is associated with, in
30 characters or less
E-mail: Lists the e-mail address of the contact, in 50 characters or less

Whenever you define a record, begin by thinking about what the table
represents and then think of the details associated with that entity. The
topic of the table (the kind of thing the table represents) is the record. The
fields are the details of that record.

 Before you send me e-mails about my horrible data design, know
that I'm deliberately simplifying this first example. Sure, it should have
separate fields for first and last name, and it should also have a primary

******ebook converter DEMO Watermarks*******

key. I talk about these items later in this minibook, as well as in the
section “Defining a primary key,” later in this chapter. If you know
about these items already, you probably don't need to read this section.
For the rest of you, you should start with a simple data model, and I
promise to add all those goodies soon.

Introducing SQL data types
Each record contains a number of fields, which are much like variables in
ordinary languages. Unlike scripting languages, such as JavaScript and
PHP (which tend to be freewheeling about data types), databases are
particular about the type of data that goes in a record.
Table 1-1 illustrates several key data types in MySQL (the variant of SQL
used in this book).

Table 1-1 MySQL Data Types
Data Type Description Notes

INT (INTEGER)
Positive or negative
integer (no decimal
point)

Ranges from about –2 billion to 2 billion. Use
BIGINT for larger integers.

DOUBLE Double-precision
floating point

Holds decimal numbers in scientific notation.
Use for extremely large or extremely small
values.

DATE Date stored in YYYY-
MM-DD format Can be displayed in various formats.

TIME Time stored in
HH:MM:SS format Can be displayed in various formats.

CHAR(length) Fixed-length text Always same length. Shorter text is padded
with spaces. Longer text is truncated.

VARCHAR(length) Variable-length text Still fixed length, but trailing spaces are
trimmed. Limit 256 characters.

TEXT Longer text Up to 64,000 (roughly) characters. Use
LONGTEXT for more space.

BLOB Binary data Up to 64K of binary data. Use LONGBLOB for
more space.

******ebook converter DEMO Watermarks*******

 I list only the most commonly used data types in Table 1-1.
These data types handle most situations, but check the documentation
of your database package if you need some other type of data.

Specifying the length of a record
Data types are especially important when you're defining a database.
Relational databases have an important structural rule: Each record in a
table must take up the same amount of memory. This rule seems arbitrary,
but it's actually very useful.
Imagine that you're looking up somebody's name in a phone book, but
you're required to go one entry at a time. If you're looking for Aaron
Adams, things will be pretty good, but what if you're looking for Zebulon
Zoom? This sequential search would be really slow because you'd have to
go all the way through the phone book to find Zebulon. Even knowing that
Zeb was in record number 5,379 wouldn't help much because you don't
know exactly when one record ends and another begins.

 If your name is really Zebulon Zoom, you have a very cool name
— a good sign in the open-source world, where names like Linus and
Guido are really popular. I figure the only reason I'm not famous is my
name is too boring. I'm thinking about switching to a dolphin name or
something. (Hi, my name is “Andy Squeeeeeeek! Click Click Harris.”)

Relational databases solve this problem by forcing each record to be the
same length. Just for the sake of argument, imagine that every record takes
exactly 100 bytes. You would then be able to figure out where each record
is on the disk by multiplying the length of each record by the desired
record's index. (Record 0 would be at byte 0, record 1 is at 100, record 342
is at 34200, and so on.) This mechanism allows the computer to keep track
of where all the records are and jump immediately to a specific record,
even if hundreds or thousands of records are in the system.

******ebook converter DEMO Watermarks*******

 My description here is actually a major simplification of what's
going on, but the foundation is correct. You should really investigate
more sophisticated database and data structures classes or books if you
want more information. It's pretty cool stuff.

The length of the record is important because the data types of a record's
fields determine its size. Numeric data (integers and floating-point values)
have a fixed size in the computer's memory. Strings (as used in other
programming languages) typically have dynamic length. That is, the
amount of memory used depends on the length of the text. In a database
application, you rarely have dynamic length text. Instead, you generally
determine the number of characters for each text field.

Defining a primary key
When you turn the contact data into an actual database, you generally add
one more important field. Each table should have one field that acts as a
primary key. A primary key is a special field that's

Unique: You can't have two records in a table with the same primary
key.
Guaranteed: Every record in the table has a value in the primary key.

Primary key fields are often (though not always) integers because you can
easily build a system for generating a new unique value. (Find the largest
key in the current database and add one.)
In this book, each table has a primary key. They are usually numeric and
are usually the first field in a record definition. I also end each key field
with the letters ID to help me remember it's a primary key.
Primary keys are useful because they allow the database system to keep a
Table of Contents for quick access to the table. When you build multitable
data structures, you can see how you can use keys to link tables together.

Defining the table structure
When you want to build a table, you begin with a definition of the

******ebook converter DEMO Watermarks*******

structure of the table. What are the field names? What is each field's type?
If it's text, how many characters will you specify?
The definition for the e-mail contacts table may look like this:
Field Name Type Length (Bytes)

ContactID INTEGER 11

Name VARCHAR 50

Company VARCHAR 30

E-mail VARCHAR 50

Look over the table definition, and you'll notice some important ideas:

There's now a contactID field. This field serves as the primary
key. It's an INTEGER field.
INTEGERs are automatically assigned a length. It isn't necessary to
specify the size of an INTEGER field (as all INTEGERs are exactly 11
bytes long in MySQL).
The text fields are all VARCHARs. This particular table consists of a
lot of text. The text fields are all stored as VARCHAR types.
Each VARCHAR has a specified length. Figuring out the best length
can be something of an art form. If you make the field too short, you
aren't able to squeeze in all the data you want. If you make it too long,
you waste space.

 VARCHAR isn't quite variable length. The length is fixed, but
extra spaces are added. Imagine that I had a VARCHAR(10) field
called userName. If I enter the name 'Andy', the field contains
'Andy' (that is, 'Andy' followed by six spaces). If I enter the value
'Rumplestiltskin', the field contains the value
'Rumplestil' (the first 10 characters of 'Rumplestiltskin').

The difference between CHAR and VARCHAR is what happens to shorter
words. When you return the value of a CHAR field, all the padding spaces
are included. A VARCHAR automatically lops off any trailing spaces.

******ebook converter DEMO Watermarks*******

 In practice, programmers rarely use CHAR because VARCHAR
provides the behavior you almost always want.

Introducing MySQL
Programs that work with SQL are usually called relational database
management systems (RDBMS). A number of popular RDBMSs are
available:

Oracle is the big player. Many high-end commercial applications use
the advanced features of Oracle. It's powerful, but the price tag makes
it primarily useful for large organizations.
MS SQL Server is Microsoft's entry in the high-end database market.
It's usually featured in Microsoft-based systems integrated with .NET
programming languages and the Microsoft IIS server. It can also be
quite expensive.
MS Access is the entry-level database system installed with most
versions of Microsoft Office. Although Access is a good tool for
playing with data design, it has some well-documented problems
handling the large number of requests typical of a web-based data tool.
MySQL is an open-source database that has made a big splash in the
open-source world. While it's not quite as robust as Oracle or SQL
Server, it's getting closer all the time. The latest version has features
and capabilities that once belonged only to expensive proprietary
systems.
SQLite is another open-source database that's really showing some
promise. This program is very small and fast, so it works well in places
you wouldn't expect to see a full-fledged database (think cellphones
and tablets).

The great news is that almost all of these databases work in the same
general way. They all read fairly similar dialects of the SQL language. No
matter which database you choose, the basic operation is roughly the same.

******ebook converter DEMO Watermarks*******

Why use MySQL?
This book focuses on MySQL because this program is

Very accessible: If you've already installed XAMPP (see Book VIII),
you already have access to MySQL. Many hosting accounts also have
MySQL access built in.
Easy to use: You can use MySQL from the command line or from a
special program. Most people manipulate SQL through a program
called phpMyAdmin (introduced in the section “Setting Up
phpMyAdmin,” later in this chapter). This program provides a
graphical interface to do most of the critical tasks.
Reasonably typical: MySQL supports all the basic SQL features and a
few enhancements. If you understand MySQL, you'll be able to switch
to another RDBMS pretty easily.
Very powerful: MySQL is powerful enough to handle typical web
server data processing for a small to mid-size company. Some
extremely large corporations even use it.
Integrated with XAMPP and PHP: PHP has built-in support for
MySQL, so you can easily write PHP programs that work with MySQL
databases.
Free and open source: MySQL is available at no cost, which makes it
quite an attractive alternative. MySQL offers other advantages of open-
source software. Because the code is freely available, you can learn
exactly how it works. The open-source nature of the tool also means
there are likely to be add-ons or variations because it's easy for
developers to modify open-source tools.

Understanding the three-tier architecture
Modern web programming often uses what's called the three-tiered
architecture, as shown in Table 1-2.

******ebook converter DEMO Watermarks*******

The user talks to the system through a web browser, which manages
HTML code. CSS and JavaScript may also be at the user tier, but
everything is handled through the browser. The user then makes a request
of the server, which is sometimes passed through a server-side language
like PHP. This program then receives a request and processes it, returning
HTML back to the client. Many requests involve data, which brings the
third (data) tier into play. The web server can package up a request to the
data server through SQL. The data server manages the data and prepares a
response to the web server, which then makes HTML output back for the
user.
Figure 1-1 provides an overview of the three-tier system.

******ebook converter DEMO Watermarks*******

Figure 1-1: An overview of the three-tier data model.

Practicing with MySQL
MySQL is a server, so it must be installed on a computer in order to work.
To practice with MySQL, you have a few options:

Run your own copy of MySQL from the command line. If you have
MySQL installed on your own machine, you can go to the command
line and execute the program directly. This task isn't difficult, but it is
tedious.
Use phpMyAdmin to interact with your own copy of MySQL. This
solution is often the best. phpMyAdmin is a set of PHP programs that
allows you to access and manipulate your database through your web
browser. If you've set up XAMPP, you've got everything you need.
(See Book VIII for more information about XAMPP.) You can also
install MySQL and phpMyAdmin without XAMPP, but you should
really avoid the headaches of manual configuration, if you can. In this
chapter, I do all MySQL through phpMyAdmin, but I show other
alternatives in Chapters 2 and 5 of this minibook.

******ebook converter DEMO Watermarks*******

Run MySQL from your hosting site. If you're using Freehostia or
some other hosting service, you generally access MySQL through
phpMyAdmin.

Setting Up phpMyAdmin
By far the most common way to interact with MySQL is through
phpMyAdmin. If you've installed XAMPP, you already have
phpMyAdmin. Here's how you use it to get to MySQL:

1. Turn on MySQL with the XAMPP Control Panel, shown in
Figure 1-2.

You also need Apache running (because XAMPP runs through the
server). You don't need to run MySQL or Apache as a service, but you
must have them both running. (Turn on both programs by clicking the
start button next to the name of the program.)

Figure 1-2: I've turned on Apache and MySQL in the XAMPP control panel using the
buttons.

2. Go to the XAMPP main directory in your browser.

******ebook converter DEMO Watermarks*******

If you used the default installation, you can just point your browser to
http://localhost/xampp. It should look like Figure 1-3.

Figure 1-3: Locating the XAMPP subdirectory through localhost.

 Don't just go through the regular file system to find the
XAMPP directory. You must use the localhost mechanism so that
the PHP code in phpMyAdmin is activated.

3. Find phpMyAdmin in the Tools section of the menu.

The phpMyAdmin page looks like Figure 1-4.

******ebook converter DEMO Watermarks*******

http://localhost/xampp

Figure 1-4: The phpMyAdmin main page.

4. Create a new database.

Type the name for your database in the indicated text field. I call my
database haio. (HTML All in One — get it?)

Changing the root password
MySQL is a powerful system, which means it can cause a lot of damage in
the wrong hands. Unfortunately, the default installation of MySQL has a
security loophole you could drive an aircraft carrier through. The default
user is called root and has no password whatsoever. Although you don't
have to worry about any pesky passwords, the KGB can also get to your
data without passwords.

 This section is a bit technical, and it's pretty important if you're
running your own data server with XAMPP. But if you're using an
online hosting service, you won't have to worry about the data security
problems described in this section. You can skip on to the section
called “Using phpMyAdmin on a remote server.” Still, you'll eventually
need this stuff, so don't tear these pages out of the book or anything.

******ebook converter DEMO Watermarks*******

Believe me, the bad guys know that root is the most powerful account on
MySQL and that it has no password by default. They're glad to use that
information to do you harm (or worse, to do harm in your name).
Obviously, giving the root account a password is a very good idea.
Fortunately, it's not difficult to do:

1. Log into phpMyAdmin as normal.

The main screen looks like Figure 1-5. Your copy might have a scary
warning of gloom at the bottom. You're about to fix that problem.

Figure 1-5: Here's the main phpMyAdmin screen.

2. Click the Privileges link to modify user privileges.

The privileges tab along the top gives you access to change user
privileges. The new screen looks something like Figure 1-6.

******ebook converter DEMO Watermarks*******

Figure 1-6: The various users are stored in a table.

3. Edit the root user.

Chances are good that you have only one user, called root (and maybe
another called pma which is the phpMyAdmin user). The root
account's Password field says No. You'll be adding a password to the
root user. The icon at the right allows you to edit this record. (Hover
your mouse over the small icon to see ToolTips if you can't find it.)
The edit screen looks like Figure 1-7.

Figure 1-7: You can use this tool to modify the root user's permissions.

******ebook converter DEMO Watermarks*******

4. Examine the awesome power of the root administrator.

Even if you don't know what all these things are, root can clearly do
lots of things, and you shouldn't let this power go unchecked. (Consult
any James Bond movie for more information on what happens with
unfettered power.) You're still going to let root do all these things, but
you're going to set a password so that only you can be root on this
system. Scroll down a bit on the page until you see the segment that
looks like Figure 1-8.

Figure 1-8: This area is where you add the password.

5. Assign a password.

Simply enter the password in the Password box, and then reenter it in
the next box. Be sure that you type the same password twice. Follow
all your typical password rules (six or more characters long, no spaces,
case-sensitive).

6. Hit the Go button.

If all went well, the password changes.

7. Recoil in horror.

Try to go back to the phpMyAdmin home (with the little house icon),
******ebook converter DEMO Watermarks*******

and something awful happens, as shown in Figure 1-9.

Figure 1-9: That message can't be good. Maybe I should have left it vulnerable.

Don't panic about the error in Figure 1-9. Believe it or not, this error is
good. Up to now, phpMyAdmin was logging into your database as root
without a password (just like the baddies were going to do). Now,
phpMyAdmin is trying to do the same thing (log in as root without a
password), but it can't because now root has a password.
What you have to do is tell phpMyAdmin that you just locked the door,
and give it the key. (Well, the password, but I was enjoying my metaphor.)

1. Find the phpMyAdmin configuration file.

You have to let phpMyAdmin know that you've changed the password.
Look for a file in your phpMyAdmin directory called
config.inc.php. (If you used the default XAMPP installation
under Windows, the file is in C:\Program
Files\xampp\phpMyAdmin\config.inc.php.)

2. Find the root password setting.

Using the text editor's search function, I found it on line 70, but it may
be someplace else in your editor. In Notepad++, it looks like Figure 1-

******ebook converter DEMO Watermarks*******

10.

Figure 1-10: Here's the username and configuration information.

3. Change the root setting to reflect your password.

Enter your root password. For example, if your new password is
myPassword, change the line so that it looks like

$cfg['Servers'][$i]['password'] = 'myPassword'; //
MySQL password

 Of course, myPassword is just an example. It's really a bad
password. Put your actual password in its place.

4. Save the config.inc.php file.

Save the configuration file and return to phpMyAdmin. You may need
to set the file's permissions to 644 if you're on a Mac or Linux
machine.

5. Try getting into phpMyAdmin again.

This time, you don't get the error, and nobody is able to get into your
******ebook converter DEMO Watermarks*******

database without your password. You shouldn't have to worry about
this issue again, but whenever you connect to this database, you do
need to supply the username and password.

Adding a user
Changing the root password is the absolute minimum security measure, but
it's not the only one. You can add various virtual users to your system to
protect it further.
You're able to log into your own copy of MySQL (and phpMyAdmin) as
root because you're the root owner. (If not, then refer to the preceding
section.) It's your database, so you should be allowed to do anything with
it.
You probably don't want your programs logging in as root because that can
allow malicious code to sneak into your system and do mischief. You're
better off setting up a different user for each database and allowing that
user access only to the tables within that database.

 I'm really not kidding about the danger here. A user with root
access can get into your database and do anything, including creating
more users or changing the root password so that you can no longer get
into your own database! You generally shouldn't write any PHP
programs that use root. Instead, have a special user for that database. If
the bad guys get in as anything but root, they can't blow up everything.

Fortunately, creating new users with phpMyAdmin isn't a difficult
procedure:

1. Log into phpMyAdmin with root access.

If you're running XAMPP on your own server, you'll automatically log
in as root.

2. Activate the Privileges tab to view user privileges.
3. Add a new user using the Add a New User link on the Privileges

******ebook converter DEMO Watermarks*******

page.
4. Fill in user information on the new user page (see Figure 1-11).

Figure 1-11: Here's the new haio user being created.

Be sure to add a username and password. Typically, you use
localhost as the host.

5. Create a database, if it doesn't already exist.

If you haven't already made a database for this project, you can do so
automatically with the Create Database Automatically radio button.

6. Do not assign global privileges.

Only the root user should have global privileges. You want this user to
have the ability to work only within a specific database.

7. Create the user by clicking the Go button.

You see a new screen like Figure 1-12 (you need to scroll down a bit to
see this part of the page).

******ebook converter DEMO Watermarks*******

Figure 1-12: You can specify a specific database for this user.

8. Specify the user's database.

Select the database in the drop-down list. This user (haio) will have
access only to tables in the haio database. Note that you probably
don't have many databases on your system when you start out.

9. Apply most privileges.

You generally want your programs to do nearly everything within their
own database so that you can apply almost all privileges (for now,
anyway). I typically select all privileges except Grant, which lets the
user allow access to other users. Figure 1-13 shows the Privileges page.

******ebook converter DEMO Watermarks*******

Figure 1-13: The haio user can do everything but grant other privileges on this
database.

 As you're starting out, your programs have access to one database
and are able to do plenty with it. As your data gets more critical, you'll
probably want to create more restrictive user accounts so that those
programs that should only be reading your data don't have the ability to
modify or delete records. This change makes it more difficult for the
bad guys to mess up your day.

 Your database users won't usually be people. This idea is hard,
particularly if you haven't used PHP or another server-side language
yet. The database users are usually programs you have written that
access the database in your name.

Using phpMyAdmin on a remote server
If you're working on some remote system with your service provider, the
mechanism for managing and creating your databases may be a bit
different. Each host has its own quirks, but they're all pretty similar. As an
example, here's how I connect to the system on Freehostia at

******ebook converter DEMO Watermarks*******

http://freehostia.com (where I post the example pages for this
book):

1. Log onto your service provider using the server login.

You usually see some sort of control panel with the various tools you
have as an administrator. These tools often look like Figure 1-14.

Figure 1-14: The Free Hostia site shows a number of useful adminis-tration tools.

2. Locate your database settings.

Not all free hosting services provide database access, but most do have
free MySQL access. You usually can access some sort of tool for
managing your databases. (You'll probably have a limited number of
databases available on free servers, but more with commercial
accounts.) Figure 1-15 shows the database administration tool in Free
Hostia.

******ebook converter DEMO Watermarks*******

http://freehostia.com

Figure 1-15: The database adminis-tration tool lets me create or edit databases.

3. Create a database according to the rules enforced by your system.

Sometimes, you can create the database within phpMyAdmin (as I did
in the last section), but more often, you need to use a special tool like
the one shown in Figure 1-15 to create your databases. Free Hostia
imposes a couple of limits: The database name begins with the system
username, and it can't be more than 16 characters long.

 Don't freak out if your screen looks a little different than
Figure 1-15. Different hosting companies have slightly different rules
and systems, so things won't be just like this, but they'll probably be
similar. If you get stuck, be sure to look at the hosting service's Help
system. You can also contact the support system. They're usually glad
to help, but they're (understandably) much more helpful if you've paid
for the hosting service. Even the free hosting systems offer some online
support, but if you're going to be serious, paying for online support is a
good deal.

4. Create a password for this database.

You probably need a password (and sometimes another username) for

******ebook converter DEMO Watermarks*******

your databases to prevent unauthorized access to your data. Because
the database is a different server than the web server, it has its own
security system. On many hosting services, you must enter a password,
and the system automatically creates a MySQL username with the
same name as the database. Keep track of this information because you
need it later when you write a program to work with this data.

5. Use phpMyAdmin to add tables to your database.

After you've defined the database, you can usually use phpMyAdmin
to manipulate the data. With Free Hostia, you can simply click a
database name to log into phpMyAdmin as the administrator of that
database. Figure 1-16 shows the new database in phpMyAdmin, ready
for action.

Figure 1-16: Now I can access the database in phpMy-Admin.

 Typically, a remote server doesn't give you root access, so you
don't have to mess around with the whole root password mess described
in the “Changing the root password” section of this chapter. Instead,
you often either have one password you always use in phpMyAdmin or
you have a different user and password for each database.

******ebook converter DEMO Watermarks*******

Implementing a Database with
phpMyAdmin

When you've got a database, you can build a table. When you've defined a
table, you can add data. When you've got data, you can look at it. Begin by
building a table to handle the contact data described in the first section of
this chapter, “Examining the Basic Structure of Data”:

1. Be sure you're logged into phpMyAdmin.

The phpMyAdmin page should look something like Figure 1-17, with
your database name available in the left column.

Figure 1-17: The main screen of the phpMy-Admin system.

2. Activate the database by clicking the database name in the left
column.

If the database is empty, an Add Table page, shown in Figure 1-18,
appears.

******ebook converter DEMO Watermarks*******

Figure 1-18: Type a table name to begin adding a table.

3. Create a new table using the phpMyAdmin tool.

Now that you have a database, add the contacts table to it. The contacts
database has four fields, so type a 4 into the box and let ’er rip. A form
like Figure 1-19 appears.

Figure 1-19: Creating the contacts table.

4. Enter the field information.

Type the field names into the grid to create the table. It should look like

******ebook converter DEMO Watermarks*******

Figure 1-20.

Figure 1-20: Enter field data on this form.

In Figure 1-20, you can't see it, but you can select the index of
contactID as a primary key. Be sure to add this indicator. Also set the
collation of the entire table to ascii_general_ci.

5. Click the Save button and watch the results.

phpMyAdmin automatically writes some SQL code for you and
executes it. Figure 1-21 shows the code and the new table.

******ebook converter DEMO Watermarks*******

Figure 1-21: phpMy-Admin created this mysterious code and built a table.

Now, the left panel indicates that you're in the xfd database, which has a
table called Contact.
After you define a table, you can add data. Click Contact in the left
column, and you see the screen for managing the contact table, as shown in
Figure 1-22.

Figure 1-22: I've added the fields.

You can add data with the Insert tab, which gives a form like Figure 1-23,
******ebook converter DEMO Watermarks*******

based on your table design.

Figure 1-23: Adding a record to the table.

After you add the record, choose Insert Another Row and click the Go
button. Repeat until you've added all the contacts you want in your
database.
After you add all the records you want to the database, you can use the
Browse tab to see all the data in the table. Figure 1-24 shows my table after
I added all my contacts to it and browsed.

******ebook converter DEMO Watermarks*******

Figure 1-24: Viewing the table data in phpMy-Admin.

******ebook converter DEMO Watermarks*******

Chapter 2
Managing Data with MySQL

In This Chapter
 Working with SQL script files
 Using AUTO_INCREMENT to build primary key values
 Selecting a subset of fields
 Displaying a subset of records
 Modifying your data
 Deleting records
 Exporting your data

Although we tend to think of the Internet as a series of interconnected
documents, the web is increasingly about data. The HTML and CSS
languages are still used to manage web documents, but SQL (Structured
Query Language) — the language of data — is becoming increasingly
central. In this chapter, you discover how SQL is used to define a data
structure, add data to a database, and modify that data.

Writing SQL Code by Hand
Although you can use phpMyAdmin to build databases, all it really does is
write and execute SQL code for you. You should know how to write SQL
code yourself for many reasons:

It's pretty easy. SQL isn't terribly difficult (at least, to begin with —
things do get involved later). Once you know how, I find writing the
code in SQL is faster and easier than creating the databases in
phpMyAdmin.
You need to write code in your programs. You probably run your
database from within PHP programs. You need to be able to write SQL
commands from within your PHP code, and phpMyAdmin doesn't help

******ebook converter DEMO Watermarks*******

much with that job.
You can't trust computers. You should understand any code that has
your name on it, even if you use a tool like phpMyAdmin to write the
code. If your program breaks, you have to fix it eventually, so you
really should know how it works.
SQL scripts are portable. Moving an entire data structure to a new
server is difficult, but if you have a script that creates and populates the
database, that script is just an ASCII file. You can easily move a
complete database (including the data) to a new machine.
SQL scripts allow you to quickly rebuild a corrupted database. As
you're testing your system, you'll commonly make mistakes that can
harm your data structure. It's very nice to have a script that you can use
to quickly reset your data to some standard test state.

Understanding SQL syntax rules
SQL is a language (like XHTML, JavaScript, CSS, and PHP), so it has its
own syntax rules. The rules and traditions of SQL are a bit unique because
this language has a different purpose than more traditional programming
languages:

Keywords are in uppercase. Officially, SQL is not case-sensitive, but
the tradition is to make all reserved words in uppercase and the names
of all your custom elements camel-case (described in Book V, Chapter
6). Some variations of SQL are case-sensitive, so you're safest
assuming that they all are.
One statement can take up more than one line in the editor. SQL
statements aren't usually difficult, but they can get long. Having one
statement take up many lines in the editor is common.
Logical lines end with semicolons. Like PHP and JavaScript, each
statement in SQL ends with a semicolon.
White space is ignored. DBMS systems don't pay attention to spaces
and carriage returns, so you can (and should) use these tools to help
you clarify your code meaning.
Single quotes are used for text values. MySQL generally uses single

******ebook converter DEMO Watermarks*******

quotes to denote text values, rather than the double quotes used in other
languages. If you really want to enclose a single quote in your text,
backslash it.

Examining the buildContact.sql script
Take a look at the following code:

-- buildContact.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
 contactID int PRIMARY KEY,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

INSERT INTO contact VALUES
 (0, 'Bill Gates', 'Microsoft', 'bill@msBob.com');
INSERT INTO contact VALUES
 (1, 'Steve Jobs', 'Apple', 'steve@rememberNewton.com');
INSERT INTO contact VALUES
 (2, 'Linus Torvalds', 'Linux Foundation', 'linus@gnuWho.org');
INSERT INTO contact VALUES
 (3, 'Andy Harris', 'Wiley Press', 'andy@aharrisBooks.net');

SELECT * FROM contact;

This powerful code is written in SQL. I explain each segment in more
detail throughout the section, but here's an overview:

1. Delete the contact table, if it already exists.

This script completely rebuilds the contact table, so if it already exists,
it is temporarily deleted to avoid duplication.

2. Create a new table named contact.

As you can see, the table creation syntax is spare but pretty
straightforward. Each field name is followed by its type and length (at

******ebook converter DEMO Watermarks*******

least, in the case of VARCHARs).

3. Add values to the table by using the INSERT command.

Use a new INSERT statement for each record.

4. View the table data using the SELECT command.

This command displays the content of the table.

Dropping a table
It may seem odd to begin creating a table by deleting it, but there's actually
a good reason. As you experiment with a data structure, you'll often find
yourself building and rebuilding the tables.
The line

DROP TABLE IF EXISTS contact

means, “Look at the current database and see whether the table contact
appears in it. If so, delete it.” This syntax ensures that you start over fresh
as you are rebuilding the table in the succeeding lines. Typical SQL table
creation scripts begin by deleting any tables that will be overwritten to
avoid confusion.

Creating a table
You create a table with the (aptly named) CREATE TABLE command. The
specific table creation statement for the contact table looks like the
following:

CREATE TABLE contact (
 contactID int PRIMARY KEY,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

Creating a table involves several smaller tasks:

1. Specify the table name.

******ebook converter DEMO Watermarks*******

The CREATE TABLE statement requires a table name. Specify the
table name. Table names (like variables and filenames) should
generally not contain spaces or punctuation without good reason.

2. Begin the field definition with a parenthesis.

The left parenthesis indicates the beginning of the field list. You
traditionally list one field per line, indented as in regular code, although
that format isn't required.

3. Begin each field with its name.

Every field has a name and a type. Begin with the field name, which
should also be one word.

4. Indicate the field type.

The field type immediately follows the field name (with no
punctuation).

5. Indicate field length, if necessary.

If the field is a VARCHAR or CHAR field, specify its length within
parentheses. You can specify the length of numeric types, but I don't
recommend it because MySQL automatically determines the length of
numeric fields.

6. Add special modifiers.

Some fields have special modifiers. For now, note that the primary key
is indicated on the contactID field.

7. End the field definition with a comma.

The comma character indicates the end of a field definition.

8. End the table definition with a closing parenthesis and a semicolon.

Close the parenthesis that started the table definition and end the entire
******ebook converter DEMO Watermarks*******

statement with a semicolon.

Adding records to the table
You add data to the table with the INSERT command. The way this
command works isn't too surprising:

INSERT INTO contact VALUES
 (0, 'Bill Gates', 'Microsoft', 'bill@msBob.com');

Follow these steps:

1. Begin with the INSERT keyword.

Use INSERT to clarify that this instruction is a data insertion
command.

2. Specify the table you want to add data to.

In my example, I have only one table, so use INTO contact to
specify that's where the table goes.

3. (Optional) Specify field names.

You can specify a list of field names, but this step is unnecessary if you
add data to all fields in their standard order. If you have a list of field
names, you're expected to have exactly the same number of values in
the VALUES list, and they should be in the same order.

4. Use the VALUES keyword to indicate that a list of field values is
coming.

5. Enclose the values within parentheses.

Use parentheses to enclose the list of data values.

6. Put all values in the right order.

Place values in exactly the same order the fields were designated.

******ebook converter DEMO Watermarks*******

7. Place text values within single quotes.

MySQL uses single quotes to specify text values.

8. End the statement with a semicolon, as you do with all SQL
commands.

9. Repeat with other data.

Add as many INSERT commands as you want to populate the data
table.

Viewing the sample data
After you've created and populated a table, you'll want to look it over. SQL
provides the SELECT command for this purpose. SELECT is amazingly
powerful, but its basic form is simplicity itself:

SELECT * FROM contact;

This command simply returns all fields of all records from your database.

Running a Script with phpMyAdmin
phpMyAdmin provides terrific features for working with SQL scripts. You
can write your script directly in phpMyAdmin, or you can use any text
editor.

 Once again, your editor can really help you. I recommend a text
editor like Notepad++ or Komodo Edit, which both support syntax
coloring for SQL. This can really help you find mistakes in your code.

If you've written a script in some other editor, you'll need to save it as a
text file and import it into phpMyAdmin.
To run a script in phpMyAdmin, follow these steps:

1. Connect to phpMyAdmin.

******ebook converter DEMO Watermarks*******

Be sure that you're logged in and connected to the system.

2. Navigate to the correct database.

Typically, you use a drop-down list to the left of the main screen to
pick the database. (If you haven't created a database, see the
instructions in Chapter 1 of this minibook.) Figure 2-1 shows the main
phpMyAdmin screen with the haio database enabled.

Figure 2-1: The haio database is created and ready to go.

3. Activate the SQL pop-up window.

You can do so by clicking the small SQL icon in the left-hand
navigation menu. The resulting window looks like Figure 2-2.

Figure 2-2: The SQL script window.

******ebook converter DEMO Watermarks*******

4. (Optional) Type your SQL code directly into this dialog box.

This shortcut is good for making quick queries about your data, but
generally you create and initialize data with prewritten scripts.

5. Move to the Import Files tab.

In this tab, you can upload the file directly into the MySQL server.
Figure 2-3 shows the resulting page. Click the Choose File button to
locate your file and the Go button to load it into MySQL.

Figure 2-3: Importing an externally defined SQL script.

 If you've already created the contact database by following
the instructions in Chapter 1 of this minibook, you may be nervous that
you'll overwrite the data. You will, but for this stage in the process,
that's exactly what you want. The point of a script is to help you build a
database and rebuild it quickly. After you have meaningful data in the
table, you won't be rebuilding it so often, but during the test and
creation stage, this skill is critical.

6. Examine your handiwork.

Look back at the phpMyAdmin page, and you see something like
Figure 2-4. It shows your script and, if you ended with a SELECT
statement, an output of your table. (Later versions of phpMyAdmin
display only the last statement in the script, but all are executed unless

******ebook converter DEMO Watermarks*******

there is an error in your script.)

Figure 2-4: Here's the script results, shown in phpMyAdmin.

Using AUTO_INCREMENT for
Primary Keys

Primary keys are important because you use them as a standard index for
the table. The job of a primary key is to uniquely identify each record in
the table. Remember that a primary key has a few important characteristics:

It must exist. Every record must have a primary key.
It must be unique. Two records in the same table can't have the same
key.
It must not be null. There must be a value in each key.

When you initially create a table, you have all the values in front of you,
but what if you want to add a field later? Somehow, you have to ensure that
the primary key in every record is unique.
Over the years, database developers have discovered that integer values are
especially handy as primary keys. The great thing about integers is that you
can always find a unique one. Just look for the largest index in your table

******ebook converter DEMO Watermarks*******

and add one.
Fortunately, MySQL (like most database packages) has a wonderful feature
for automatically generating unique integer indices.
Take a look at this variation of the buildContact.sql script:

-- buildContactAutoIncrement.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
 contactID int PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(50),
 company VARCHAR(30),
 email VARCHAR(50)
);

INSERT INTO contact VALUES
 (null, 'Bill Gates', 'Microsoft', 'bill@msBob.com');
INSERT INTO contact VALUES
 (null, 'Steve Jobs', 'Apple', 'steve@rememberNewton.com');
INSERT INTO contact VALUES
 (null, 'Linus Torvalds', 'Linux Foundation',
'linus@gnuWho.org');
INSERT INTO contact VALUES
 (null, 'Andy Harris', 'Wiley Press', 'andy@aharrisBooks.net');

SELECT * FROM contact;

Here are the changes in this script:

Add the AUTO_INCREMENT tag to the primary key definition. This
tag indicates that the MySQL system will automatically generate a
unique integer for this field. You can apply the AUTO_INCREMENT
tag to any field, but you most commonly apply it to primary keys.
Replace index values with null. When you define a table with
AUTO_INCREMENT, you should no longer specify values in the
affected field. Instead, just place the value null. When the SQL
interpreter sees the value null on an AUTO_INCREMENT field, it
automatically finds the next largest integer.

******ebook converter DEMO Watermarks*******

 You may wonder why I'm entering the value null when I said
primary keys should never be null. Well, I'm not really making them
null. The null value is simply a signal to the interpreter: “Hey, this
field is AUTO_INCREMENT, and I want you to find a value for it.”

Latin-Swedish?
phpMyAdmin is a wonderful tool, but it does have one strange quirk. When you look over
your table design, you may find that the collation is set to latin1_swedish_ci. This
syntax refers to the native character set used by the internal data structure. Nothing is
terribly harmful about this set (Swedish is a wonderful language), but I don't want to
incorrectly imply that my database is written in Swedish.

Fortunately, it's an easy fix. In phpMyAdmin, go to the Operations tab and look for Table
Options. You can then set your collation to whatever you want. I typically use
latin1_general_ci as it works fine for American English, which is the language used in
most of my data sets. (See the MySQL documentation about internationalization if you're
working in a language that needs the collation feature.)

I've only run into this problem with some versions of phpMyAdmin. If you create your
database directly from the MySQL interpreter or from within PHP programs, the collation
issue doesn't seem to be a problem.

Selecting Data from Your Tables
Creating a database is great, but the real point of a database is to extract
information from it. SQL provides an incredibly powerful command for
retrieving data from the database. The basic form looks as follows:

SELECT * FROM contact;

The easiest way to practice SQL commands is to use phpMyAdmin.
Figure 2-5 shows phpMyAdmin with the SQL tab open.

******ebook converter DEMO Watermarks*******

Figure 2-5: You can easily test queries in phpMyAdmin.

Note that you can enter SQL code in multiple places. If you're working
with a particular table, you can invoke that table's SQL tab (as I do in
Figure 2-5). You can also always enter SQL code into your system with the
SQL button on the main phpMyAdmin panel (on the left panel of all
phpMyAdmin screens).

 If you have a particular table currently active, the SQL dialog
box shows you the fields of the current table, which can be handy when
you write SQL queries.

Try the SELECT * FROM contact; code in the SQL dialog box, and
you see the results shown in Figure 2-6.

******ebook converter DEMO Watermarks*******

Figure 2-6: The standard SELECT statement returns the entire table.

Selecting only a few fields
As databases get more complex, you'll often find that you don't want
everything. Sometimes, you only want to see a few fields at a time. You
can replace the asterisk (*) characters with field names. For example, if
you want to see only the names and e-mail addresses, use this variation of
the SELECT statement:

SELECT name, email FROM contact;

Only the columns you specify appear, as you can see in Figure 2-7.

******ebook converter DEMO Watermarks*******

Figure 2-7: Now, the result is only two columns wide.

Here's another really nice trick you can do with fields. You can give each
column a new virtual field name:

SELECT
 name as 'Person',
 email as 'Address'
FROM contact;

This code also selects only two columns, but this time, it attaches the
special labels Person and Address to the columns. You can see this result in
Figure 2-8.

******ebook converter DEMO Watermarks*******

Figure 2-8: You can create virtual titles for your columns.

 The capability to add a virtual name for each column doesn't
seem like a big deal now, but it becomes handy when your database
contains multiple tables. For example, you may have a table named
pet and another table named owner that both have a name field. The
virtual title feature helps keep you (and your users) from being
confused.

Selecting a subset of records
One of the most important jobs in data work is returning a smaller set of
the database that meets some kind of criterion. For example, what if you
want to dash off a quick e-mail to Bill Gates? Use this query:

SELECT *
FROM contact
WHERE
 name = 'Bill Gates';

This query has a few key features:

It selects all fields. This query selects all the fields (for now).
A WHERE clause appears. The WHERE clause allows you to specify a

******ebook converter DEMO Watermarks*******

condition.
It has a condition. SQL supports conditions, much like ordinary
programming languages. MySQL returns only the records that match
this condition.
The condition begins with a field name. SQL conditions usually
compare a field to a value (or to another field).
Conditions use single equal signs. You can easily get confused on this
detail because SQL uses the single equal sign (=) in conditions,
whereas most programming languages use double equals (==) for the
same purpose.
All text values must be within single quotes. I'm looking for an exact
match on the text string 'Steve Jobs'.
It assumes that searches are case-sensitive. Different databases have
different behavior when it comes to case-sensitivity in SELECT
statements, but you're safest assuming that case matters.

Figure 2-9 shows the result of this query.

Figure 2-9: Here's a query that returns the result of a search.

SQL is pretty picky about the entire text string. The following query
doesn't return any results in the contact database:

SELECT *

******ebook converter DEMO Watermarks*******

FROM contact
WHERE
 name = 'Bill';

The contact table doesn't have any records with a name field containing
Bill (unless you added some records when I wasn't looking). Bill Gates is
not the same as Bill, so this query returns no results.

Searching with partial information
Of course, sometimes all you have is partial information. Take a look at the
following variation to see how it works:

SELECT *
FROM contact
WHERE
 company LIKE 'W%';

This query looks at the company field and returns any records with a
company field beginning with W. Figure 2-10 shows how it works.

Figure 2-10: This query returns companies that begin with W.

The LIKE clause is pretty straightforward:

The keyword LIKE indicates a partial match is coming. It's still the
SELECT statement, but now it has the LIKE keyword to indicate an
exact match isn't necessary.

******ebook converter DEMO Watermarks*******

The search text is still within single quotes, just like the ordinary
SELECT statement.
The percent sign (%) indicates a wildcard value. A search string of
‘W%’ looks for W followed by any number of characters.
Any text followed by % indicates that you're searching the
beginning of the field. So, if you're looking for people named Steve,
you can write SELECT * FROM contact WHERE name LIKE
‘Steve%’;.

Searching for the ending value of a field
Likewise, you can find fields that end with a particular value. Say that you
want to send an e-mail to everyone in your contact book with a .com
address. This query does the trick:

SELECT *
FROM contact
WHERE
 email LIKE '%.com';

Figure 2-11 shows the results of this query.

Figure 2-11: You can build a query to check the end of a field.

Searching for any text in a field
******ebook converter DEMO Watermarks*******

One more variant of the LIKE clause allows you to find a phrase anywhere
in the field. Say that you remember somebody in your database writes
books, and you decide to search for e-mail addresses containing the phrase
book:

SELECT *
FROM contact
WHERE
 email LIKE '%book%';

The search phrase has percent signs at the beginning and the end, so if the
phrase “book” occurs anywhere in the specified field, you get a match. And
what do you know? Figure 2-12 shows this query matches on the record of
a humble, yet lovable author!

Figure 2-12: This query searched for the phrase “book” anywhere in the e-mail string.

Searching with regular expressions
If you know how to use regular expressions, you know how great they can
be when you need a more involved search. MySQL has a special form of
the SELECT keyword that supports regular expressions:

SELECT *
FROM contact
WHERE
 company REGEXP '^.{9}$';

The REGEXP keyword lets you search using powerful regular expressions.
******ebook converter DEMO Watermarks*******

(Refer to Book IV, Chapter 5 for more information on regular expressions.)
This particular expression checks for a company field with exactly nine
letters. In this table, it returns only one value, shown in Figure 2-13.

Figure 2-13: Regular expressions are even more powerful than the standard LIKE clause.

 Unfortunately, not all database programs support the REGEXP
feature, but MySQL does, and it's really powerful if you understand the
(admittedly arcane) syntax of regular expressions.

Sorting your responses
You can specify the order of your query results with the ORDER BY
clause. It works like this:

SELECT *
FROM contact
ORDER BY email;

The ORDER BY directive allows you to specify a field to sort by. In this
case, I want the records displayed in alphabetical order by e-mail address.
Figure 2-14 shows how it looks.

******ebook converter DEMO Watermarks*******

Figure 2-14: Now, the result is sorted by e-mail address.

By default, records are sorted in ascending order. Numeric fields are sorted
from smallest to largest, and text fields are sorted in standard alphabetic
order.

 Well, not quite standard alphabetic order SQL isn't as smart
as a librarian, who has special rules about skipping “the” and so on.
SQL simply looks at the ASCII values of the characters for sorting
purposes.

You can also invert the order:
SELECT *
FROM contact
ORDER BY email DESC;

Inverting the order causes the records to be produced in reverse alphabetic
order by e-mail address. DESC stands for descending order. ASC stands for
ascending order, but because it's the default, it isn't usually specified.

Editing Records
Of course, the purpose of a database is to manage data. Sometimes, you
want to edit data after it's already in the table. SQL includes handy

******ebook converter DEMO Watermarks*******

commands for this task: UPDATE and DELETE. The UPDATE command
modifies the value of an existing record, and the DELETE command
removes a record altogether.

Updating a record
Say that you decide to modify Bill Gates's address to reinforce a recent
marketing triumph. The following SQL code does the trick:

UPDATE contact
SET email = 'bill@XBoxOneRocks.com'
WHERE name = 'Bill Gates';

The UPDATE command has a few parts:

The UPDATE command. This indicates which table you will modify.
The SET command. This indicates a new assignment.
Assign a new value to a field. This uses a standard programming-style
assignment statement to attach a new value to the indicated field. You
can modify more than one field at a time. Just separate the field =
value pairs with commas.
Specify a WHERE clause. You don't want this change to happen to all
the records in your database. You want to change only the e-mail
address in records where the name is Bill Gates. Use the WHERE clause
to specify which records you intend to update.

 More than one person in your database may be named Bill Gates.
Names aren't guaranteed to be unique, so they aren't really the best
search criteria. This situation is actually a very good reason to use
primary keys. A better version of this update looks as follows:
UPDATE contact
SET email = 'bill@XBoxOneRocks.com'
WHERE contactID = 1;

The contactID is guaranteed to be unique and present, so it makes an
ideal search criterion. Whenever possible, UPDATE (and DROP) commands
should use primary key searches so that you don't accidentally change or

******ebook converter DEMO Watermarks*******

delete the wrong record.

Deleting a record
Sometimes, you need to delete records. SQL has a command for this
eventuality, and it's pretty easy to use:

WHERE contactID = 1;

The preceding line deletes the entire record with a contactID of 1.

 Be very careful with the DELETE command — it's destructive.
Be absolutely sure that you have a WHERE clause, or you may delete all
the records in your table with one quick command! Likewise, be sure
that you understand the WHERE clause so that you aren't surprised by
what gets deleted. You're better off running an ordinary SELECT using
the WHERE clause before you DELETE, just to be sure that you know
exactly what you're deleting. Generally, you should DELETE based on
only a primary key so that you don't produce any collateral damage.

Exporting Your Data and Structure
After you've built a wonderful data structure, you probably will want to
export it for a number of reasons:

You want a backup. Just in case something goes wrong!
You want to move to a production server. It's smart to work on a
local (offline) server while you figure things out, but eventually you'll
need to move to a live server. Moving the actual database files is
tricky, but you can easily move a script.
You want to perform data analysis. You may want to put your data
in a spreadsheet for further analysis or in a comma-separated text file
to be read by programs without SQL access.
You want to document the table structure. The structure of a data set
is extremely important when you start writing programs using that

******ebook converter DEMO Watermarks*******

structure. Having the table structure available in a word-processing or
PDF format can be very useful.

MySQL (and thus phpMyAdmin) has some really nice tools for exporting
your data in a number of formats.
Figure 2-15 shows an overview of the Export tab, showing some of the
features.

Figure 2-15: These are some of the various output techniques.

The different styles of output are used for different purposes:

CSV (comma-separated value) format: A plain ASCII comma-
separated format. Each record is stored on its own line, and each field
is separated by a comma. CSV is nice because it's universal. Most
spreadsheet programs can read CSV data natively, and it's very easy to
write a program to read CSV data, even if your server doesn't support
MySQL. If you want to back up your data to move to another server,
CSV is a good choice. Figure 2-16 shows some of the options for
creating a CSV file.

******ebook converter DEMO Watermarks*******

Figure 2-16: You have several options for creating CSV files.

The data file created using the specified options looks like the
following:

"contactID","name","company","email"
"1","Bill Gates","Microsoft","bill@XBoxOneRocks.com"
"2","Steve Jobs","Apple","steve@rememberNewton.com"
"3","Linus Torvalds","Linux Foundation","linus@gnuWho.org"
"4","Andy Harris","Wiley Press","andy@aharrisBooks.net"

 The CSV format often uses commas and quotes, so if these
characters appear in your data, you may encounter problems. Be sure to
test your data and use some of the other delimiters if you have
problems

MS Excel and Open Document Spreadsheet: These are the two
currently supported spreadsheet formats. Exporting your data using one
of these formats gives you a spreadsheet file that you can easily
manipulate, which is handy when you want to do charts or data
analysis based on your data. Figure 2-17 shows an Excel document
featuring the contact table.

******ebook converter DEMO Watermarks*******

Figure 2-17: This Excel spreadsheet was automatically created.

Word-processing formats: Several formats are available to create
documentation for your project. Figure 2-18 shows a document created
with this feature. Typically, you use these formats to describe the
format of the data and the current contents. LaTeX and PDF are special
formats used for printing.

Figure 2-18: Word-processing, PDF, and LaTeX formats are great for documentation.

Exporting SQL code
******ebook converter DEMO Watermarks*******

One of the neatest tricks is to have phpMyAdmin build an entire SQL
script for re-creating your database. Figure 2-19 shows the available
options.

Figure 2-19: You can specify several options for outputting your SQL code.

The resulting code is as follows:
-- phpMyAdmin SQL Dump
 -- version 3.3.9
 -- http://www.phpmyadmin.net
 --
 -- Host: localhost
 -- Generation Time: Jul 10, 2013 at 08:30 PM
 -- Server version: 5.5.8
 -- PHP Version: 5.3.5

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT
*/;
 /*!40101 SET
@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
 /*!40101 SET
@OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
 /*!40101 SET NAMES utf8 */;

******ebook converter DEMO Watermarks*******

--
 -- Database: 'haio'
 --

-- --

--
 -- Table structure for table 'contact'
 --

DROP TABLE IF EXISTS contact;
 CREATE TABLE IF NOT EXISTS contact (
 contactID int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(50) DEFAULT NULL,
 company varchar(30) DEFAULT NULL,
 email varchar(50) DEFAULT NULL,
 PRIMARY KEY (contactID)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=5 ;

--
 -- Dumping data for table 'contact'
 --

INSERT INTO contact (contactID, `name`, company, email) VALUES
 (1, 'Bill Gates', 'Microsoft', 'bill@XBoxOneRocks.com'),
 (2, 'Steve Jobs', 'Apple', 'steve@rememberNewton.com'),
 (3, 'Linus Torvalds', 'Linux Foundation',
'linus@gnuWho.org'),
 (4, 'Andy Harris', 'Wiley Press',
'andy@aharrisBooks.net');

You can see that phpMyAdmin made a pretty decent script that you can
use to re-create this database. You can easily use this script to rebuild the
database if it gets corrupted or to copy the data structure to a different
implementation of MySQL.
Generally, you use this feature for both purposes. Copy your data structure
and data every once in a while (just in case Godzilla attacks your server or
something).
Typically, you build your data on one server and want to migrate it to
another server. The easiest way to do so is by building the database on one
server. You can then export the script for building the SQL file and load it
into the second server.

******ebook converter DEMO Watermarks*******

Creating XML data
One more approach to saving data is through XML. phpMyAdmin creates
a standard form of XML encapsulating the data. The XML output looks
like this:

<<?xml version="1.0" encoding="US-ASCII"?>
<!--
- phpMyAdmin XML Dump
- version 3.3.9
- http://www.phpmyadmin.net
-
- Host: localhost
- Generation Time: Jul 10, 2013 at 08:32 PM
- Server version: 5.5.8
- PHP Version: 5.3.5
-->

<pma_xml_export version="1.0"
xmlns:pma="http://www.phpmyadmin.net/some_doc_url/">
 <!--
 - Structure schemas
 -->
 <pma:structure_schemas>
 <pma:database name="haio" collation="latin1_swedish_ci"
charset="latin1">
 <pma:table name="contact">
 CREATE TABLE `contact` (
 `contactID` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(50) DEFAULT NULL,
 `company` varchar(30) DEFAULT NULL,
 `email` varchar(50) DEFAULT NULL,
 PRIMARY KEY (`contactID`)
) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT
CHARSET=latin1;
 </pma:table>
 </pma:database>
 </pma:structure_schemas>

<!--
 - Database: 'haio'
 -->
 <database name="haio">
 <!-- Table contact -->
 <table name="contact">
 <column name="contactID">1</column>
 <column name="name">Bill Gates</column>
 <column name="company">Microsoft</column>

******ebook converter DEMO Watermarks*******

 <column name="email">bill@XBoxOneRocks.com</column>
 </table>
 <table name="contact">
 <column name="contactID">2</column>
 <column name="name">Steve Jobs</column>
 <column name="company">Apple</column>
 <column
name="email">steve@rememberNewton.com</column>
 </table>
 <table name="contact">
 <column name="contactID">3</column>
 <column name="name">Linus Torvalds</column>
 <column name="company">Linux Foundation</column>
 <column name="email">linus@gnuWho.org</column>
 </table>
 <table name="contact">
 <column name="contactID">4</column>
 <column name="name">Andy Harris</column>
 <column name="company">Wiley Press</column>
 <column name="email">andy@aharrisBooks.net</column>
 </table>
 </database>
</pma_xml_export>

XML is commonly used as a common data language, especially in AJAX
applications.

******ebook converter DEMO Watermarks*******

Chapter 3
Normalizing Your Data

In This Chapter
 Understanding why single-table databases are inadequate
 Recognizing common data anomalies
 Creating entity-relationship diagrams
 Using MySQL Workbench to create data diagrams
 Understanding the first three normal forms
 Defining data relationships

Databases can be deceptive. Even though databases are pretty easy to
create, beginners usually run into problems as soon as they start working
with actual data.
Computer scientists (particularly a gentleman named E. F. Codd in the
1970s) have studied potential data problems and defined techniques for
organizing data. This scheme is called data normalization. In this chapter,
you discover why single-table databases rarely work for real-world data
and how to create a well-defined data structure according to basic
normalization rules.

 On the website, I include a script called buildHero.sql that builds
all the tables in this chapter. Feel free to load that script into your
MySQL environment to see all these tables for yourself.

Recognizing Problems with Single-
Table Data

Packing everything you've got into a single table is tempting. Although you

******ebook converter DEMO Watermarks*******

can do it pretty easily (especially with SQL), and it seems like a good
solution, things can go wrong pretty quickly.
Table 3-1 shows a seemingly simple database describing some
superheroes.

It seems that not much can go wrong here because the database is only
three records and six fields. The data is simple, and there isn't that much of
it. Still, a lot of trouble is lurking just under the surface. The following
sections outline potential problems.

The identity crisis
What's Table 3-1 about? At first, it seems to be about superheroes, but
some of the information is really about things related to the superhero, such
as villains and missions. This issue may not seem like a big deal, but it
causes all kinds of practical problems later on. A table should be about
only one thing. When it tries to be about more than that, it can't do its job
as well.
Every time a beginner (and, often, an advanced data developer) creates a

******ebook converter DEMO Watermarks*******

table, the table usually contains fields that don't belong there. You have to
break things up into multiple tables so that each table is really about only
one thing. The process for doing so solves a bunch of other problems, as
well.

The listed powers
Take a look at the powers field. Each superhero can have more than one
power. Some heroes have tons of powers. The problem is, how do you
handle a situation where one field can have a lot of values? You frequently
see the following solutions:

One large text field: That's what I did in this case. I built a massive
(255 character) VARCHAR field and hoped it would be enough. The
user just has to type all the possible skills.
Multiple fields: Sometimes, a data designer just makes a bunch of
fields, such as power1, power2, and so on.

Both these solutions have the same general flaw. You never know how
much room to designate because you never know exactly how many items
will be in the list. Say that you choose the large text field approach. You
may have a really clever hero with a lot of powers, so you fill up the entire
field with a list of powers. What happens if your hero learns one more
power? Should you delete something just to make things fit? Should you
abbreviate?
If you choose to have multiple power fields, the problem doesn't go away.
You still have to determine how many skills the hero can have. If you
designate ten skill fields and one of your heroes learns an eleventh power,
you've got a problem.
The obvious solution is to provide far more room than anybody needs. If
it's a text field, make it huge; and if it's multiple fields, make hundreds of
them. Both solutions are wasteful. Remember, a database can often have
hundreds or thousands of records, and each one has to be the same size. If
you make your record definition bigger than it needs to be, this waste is
multiplied hundreds or thousands of times.

******ebook converter DEMO Watermarks*******

 You may argue that this is not the 1970s. Processor power and
storage space are really cheap today, so why am I worrying about
saving a few bytes here and there? Well, cheap is still not free.
Programmers tend to be working with much larger data sets than they
did in the early days, so efficiency still matters. And here's another
important change. Today, data is much more likely to be transmitted
over the Internet. The big deal today isn't really processor or storage
efficiency. Today's problem is transmission efficiency, which comes
down to the same principle: Don't store unnecessary data.

When databases have listed fields, you tend to see other problems. If the
field doesn't have enough room for all the data, people will start
abbreviating. If you're looking for a hero with invisibility, you can't simply
search for “invisibility” in the powers field because it may be “inv,” “in,”
or “invis” (or even “can't see”). If you desperately need an invisible hero,
the search can be frustrating, and you may miss a result because you didn't
guess all the possible abbreviations. (I guess you can't see the invisible
hero.)
If the database uses the listed fields model, you have another problem.
Now, your search has to look through all ten (or hundreds of) power fields
because you don't know which one holds the “invisible” power. This
problem makes your search queries far more complicated and slower than
they would have been otherwise.

 Another so-called solution you sometimes see is to have a whole
bunch of Boolean fields: Invisibility, Super-speed, X-ray vision, and so
on. This fix solves part of the problem because Boolean data is small.
It's still troublesome, though, because now the data developer has to
anticipate every possible power. You may have an other field, but it
then reintroduces the problem of listed fields.

Listed fields are a nightmare.

******ebook converter DEMO Watermarks*******

Repetition and reliability
Another common problem with data comes with repetition. If you allow
data to be repeated in your database, you can have some really challenging
side effects. Refer to Table 3-1, earlier in this chapter, and get ready to
answer some questions about it. . . .
What is the Slime Master's evil plot?
This question seems simple enough, but Table 3-1 provides an ambiguous
response. If you look at the first row (The Plumber), the plot is Overcome
Chicago with slime. If you look at The Janitor, you see that the plot is to
Overcome New York with slime. Which is it? Presumably, it's the same
plot, but in one part of the database, New York is the target, and elsewhere,
it's Chicago. From the database, you can't really tell which is correct or if it
could be both. I was required to type in the plot in two different records.
It's supposed to be the same plot, but I typed it differently. Now, the data
has a conflict, and you don't know which record to trust.

 Is it possible the plots were supposed to be different? Sure, but
you don't want to leave that assumption to chance. The point of data
design is to ask exactly these questions and to design your data scheme
to reinforce the rules of your organization.

Here's a related question. What if you needed to get urgent information to
any hero fighting the Septic Slime Master? You'd probably write a query
like

SELECT * FROM hero WHERE villain = 'Septic Slime Master'

That query is a pretty reasonable request, but it wouldn't work. The villain
in The Janitor record is the Septic Slim Master. Somebody mistyped
something in the database, and now The Janitor doesn't know how to defeat
the Slime Master.

 If your database allows duplication, this type of mistake will
happen all the time.

******ebook converter DEMO Watermarks*******

In general, you don't want to enter anything into a database more than
once. If you have a way to enter the Septic Slime Master one time, that
should eliminate this type of problem.

Fields with changeable data
Another kind of problem is evident in the Age field. (See, even
superheroes have a mandatory retirement age.) Age is a good example of a
field that shouldn't really be in a database because it changes all the time. If
you have age in your database, how are you going to account for people
getting older? Do you update the age on each hero's birthday? (If so, you
need to store that birthday, and you need to run a script every day to see
whether it's somebody's birthday.) You could just age everybody once a
year, but this solution doesn't seem like a good option, either.

 Whenever possible, you want to avoid fields that change
regularly and instead use a formula to generate the appropriate results
when you need them.

Deletion problems
Another kind of problem is lurking right under the surface. Say that you
have to fire the Binary Boy. (With him, everything is black and white. You
just can't compromise with that guy.) You delete his record, and then you
want to assign another hero to fight Octal. When you delete Binary Boy,
you also delete all the information about Octal and his nefarious scheme
because the only place Octal's information was stored was in Binary Boy's
record.
In a related problem, what if you encounter a new villain and you haven't
yet assigned a hero to this villain? The current data design doesn't allow
you to add villains without heroes. You have to make up a fake hero, and
that just doesn't seem right. Villains deserve their own table, and that's
exactly what they will get.

Introducing Entity-Relationship
******ebook converter DEMO Watermarks*******

Diagrams
You can solve all the problems with the database shown in Table 3-1 by
breaking the single table into a series of smaller, more specialized tables.
The typical way of working with data design is to use a concept called an
Entity-Relationship (ER) diagram. This form of diagram usually includes
the following:

Entities: Typically, a table is an entity, but you see other kinds of
entities, too. An entity is usually drawn as a box with each field listed
inside.
Relationships: Relationships are drawn as lines between the boxes. As
you find out about various forms of relationships, I show you the
particular symbols used to describe these relationship types.

Using MySQL Workbench to draw ER
diagrams
You can create ER diagrams with anything (I typically use a whiteboard),
but some very nice free software can help. One particularly nice program is
called MySQL Workbench
(http://dev.mysql.com/downloads/tools/). This software
has a number of really handy features:

Visual representation of database design: MySQL Workbench
allows you to define a table easily and then see how it looks in ER
form. You can create several tables and manipulate them visually to
see how they relate.
An understanding of ER rules: MySQL Workbench is not simply a
drawing program. It's specialized for drawing ER diagrams, so it
creates a standard design for each table and relationship. Other data
administrators can understand the ER diagrams you create with this
tool.
Integration with MySQL: After you've created a data design you like,
you can have MySQL Workbench create a MySQL script to create the

******ebook converter DEMO Watermarks*******

http://dev.mysql.com/downloads/tools/

databases you've defined. In fact, you can even have Workbench look
at an existing MySQL database and create an ER diagram from it.

Creating a table definition in Workbench
Creating your tables in MySQL Workbench is a fairly easy task:

1. Create a new model.

Choose File ⇒ New to create a new model. Figure 3-1 shows the
MySQL Workbench model screen.

Figure 3-1: MySQL Workbench main screen.

2. Create a new table.

Use the Add Table icon (near the top of the screen) to create a new
table. A new dialog box opens at the bottom of the screen, allowing
you to change the table name. You see a new table form like the one in
Figure 3-2. Change the table name to hero but leave the other values
blank for now.

******ebook converter DEMO Watermarks*******

Figure 3-2: Now your model has a table in it.

3. Edit the columns.

Select the Columns tab at the bottom of the screen to edit the table's
fields. You can add field names and types here. Create a table that
looks like the hero table shown in Figure 3-3. You can use the tab key
to add a new field.

Figure 3-3: Editing the table definition.

4. Make a diagram of the table.

******ebook converter DEMO Watermarks*******

So far, MySQL Workbench seems a lot like phpMyAdmin. The most
useful feature of Workbench is the way it lets you view your tables in
diagram form. You can view tables in a couple of ways, but the easiest
way is to select Create Diagram from Catalog Objects from the Model
menu. When you do so, you'll see a screen, as shown in Figure 3-4.

Figure 3-4: Now you have a diagram of your table.

The diagram doesn't show the contents of the table, just the design. In
fact, MySQL Workbench doesn't really care that much about what is in
the database. The key idea here is how the data is organized. This
matters because you will be creating several tables to manage your
superheroes.

5. Extract the code.

If you want, you can see the SQL code used to create the table you just
designed. Simply right-click the table and choose Copy SQL to
Clipboard. The CREATE statement for this table is copied to the
Clipboard, and you can paste it to your script. Here's the code created
by Workbench:

CREATE TABLE IF NOT EXISTS 'mydb'.'hero' (
 'heroID' INT NOT NULL ,
 'name' VARCHAR(50) NULL ,
 'birthDate' DATE NULL ,

******ebook converter DEMO Watermarks*******

 'missionID' INT NULL ,
 PRIMARY KEY (heroID))
ENGINE = InnoDB

The code generated is similar to the code described in Chapter 2 of this
minibook, with a few variations:

Default NULL values are indicated: Most fields are defined with a
default value of NULL. (Of course, the primary key can't be NULL,
and it's defined that way.)
Field and table names are quoted: The auto-generated code uses
single quotes around all field and table names. Single quotes are
needed when identifiers have spaces in them. Because I rarely use
spaces in the name of anything, I tend not to use quotes because they
complicate the code.
The primary key notation is different: Rather than defining the
primary key in the field definition, the primary key is set up as a
separate entry in the table definition. This is simply a matter of style.

This is great and all . . .
But how do I work with an actual database? MySQL Workbench is used to help you design
and understand complex databases. So far, you've been working in a local system that isn't
attached to a particular database. This is actually a pretty good way to work. Eventually,
though, you'll be settled on a design, and you'll want to build a real database from the
model. MySQL Workbench has a number of tools to help you with this. First, use the
Database – Manage Connections dialog box to create a connection to your database. Then
you can use the Forward Engineering option to commit your design to the database, or the
Reverse Engineering option to extract a database you've already created and build a
diagram from it.

While these options can be handy, they aren't really critical. To be honest, I don't generally
use the code engineering features in MySQL Workbench. In fact, I (like a lot of data
developers) do most of my initial data design on a white board and then make cleaner
versions of the design with tools like MySQL Workbench. I'm showing you the tool here
because it may be helpful to you, and it produces prettier artwork than my white board
scribblings.

The hard work is organizing the data. It's pretty easy to convert a diagram to SQL code.
Use a tool like MySQL to see how your data fits together. Then if you want, you can either
let it build the code for you or simply use it as a starting place to build the code by hand.

As you've seen with other languages, visual tools can help you build code, but they don't

******ebook converter DEMO Watermarks*******

absolve you of responsibility. If the code has your name on it, you need to understand how
it works. That's most easily done when you write it by hand.

Introducing Normalization
Trying to cram all your data into a single table usually causes problems.
The process for solving these problems is called data normalization.
Normalization is really a set of rules. When your database follows the first
rule, it's said to be in first normal form. For this introductory book, you get
to the third normal form, which is suitable for most applications.

First normal form
The official definitions of the normal forms sound like the offspring of a
lawyer and a mathematician. Here's an official definition of the first normal
form:

A table is in first normal form if and only if it represents a
relation. It does not allow nulls or duplicate rows.

Yeah, whatever.
Here's what it means in practical terms:

Eliminate listed fields.

A database is in first normal form if

It has no repeating fields. Take any data that would be in a repeating
field and make it into a new table.
It has a primary key. Add a primary key to each table. (Some would
argue that this requirement isn't necessarily part of first normal form,
but it'll be necessary in the next step, anyway.)

In a practical sense, the first normal form means getting rid of listed fields
and making a new table to contain powers. You'll need to go back to the
model view to create a new table and then create the diagram again.
Figure 3-5 shows an ER diagram of the data in first normal form.

******ebook converter DEMO Watermarks*******

Figure 3-5: Now I have two tables.

A couple of things happen here:

1. Make a new table called power.

This table contains nothing but a key and the power name.

2. Take the power field away from the hero table.

The hero table no longer has a power field.

3. Add a primary key to both tables.

Both tables now have an integer primary key. Looking over my tables,
there are no longer any listed fields, so I'm in first normal form.

 All this is well and good, but the user really wants this data
connected, so how do you join it back together? For that answer, see
Chapter 4 of this minibook.

Second normal form
******ebook converter DEMO Watermarks*******

The official terminology for the second normal form is just as baffling as
the first normal form:

A table is in second normal form (2NF) only if it is in 1NF and
all nonkey fields are dependant entirely on the entire candidate
key, not just part of it.

Huh? You've gotta love these computer scientists.
In practical terms, second normal form is pretty easy, too. It really means

Eliminate repetition.

Look at all those places where you've got duplicated data and create new
tables to take care of them.
In the hero data (shown in Table 3-1, earlier in this chapter), you can
eliminate a lot of problems by breaking the hero data into three tables.
Figure 3-6 illustrates one way to break up the data.
Many of the problems in the badHero design happen because apparently
more than one hero can be on a particular mission, and thus the mission
data gets repeated. By separating mission data into another table, I've
guaranteed that the data for a mission is entered only once.
Note that each table has a primary key, and none of them has listed fields.
The same data won't ever be entered twice. The solution is looking pretty
good!
Notice that everything related to the mission has been moved to the
mission table. I added one field to the hero table, which contains an
integer. This field is called a foreign key reference. You can find out much
more about how foreign key references work in Chapter 4 of this
minibook.

******ebook converter DEMO Watermarks*******

Figure 3-6: Now I have three tables: hero, power, and mission.

Third normal form
The third normal form adds one more requirement. Here is the official
definition:

A table is in 3NF if it is in 2NF and has no transitive
dependencies on the candidate key.

Wow! These definitions get better and better. Once again, it's really a lot
easier than it sounds:

Ensure functional dependency.

In other words, check each field of each table and ensure that it really
describes what the table is about. For example, is the plot related to the
mission or the hero? What about the villain?

 The tricky thing about functional dependency is that you often
don't really know how the data is supposed to be connected. Only the
person who uses the data really knows how it's supposed to work.
(Often, they don't know, either, as it turns out.) You have to work with
the client to figure out exactly what the business rules (the rules that
describe how the data really works) are. You can't really tell from the

******ebook converter DEMO Watermarks*******

data itself.
The good news is that, for simple structures like the hero data, you're often
already in third normal form by the time you get to second normal form.
Still, you should check. After a database is in third normal form, you've
reduced the possibility of several kinds of anomalies, so your data is far
more reliable than it was in the past. Several other forms of normalization
exist, but third normal form is enough for most applications.

Identifying Relationships in Your
Data

After you normalize the data (see the preceding section), you've created the
entities (tables). Now, you need to investigate the relationships among
these entities.
Three main types of data relationships exist (and of these, only two are
common):

One-to-one relationship: Each element of table A is related to exactly
one element of table B. This type of relationship isn't common because
if a one-to-one relationship exists between two tables, the information
can be combined safely into one table.
One-to-many relationship: For each element of table A, there could
be many possible elements in table B. The relationship between
mission and hero is a one-to-many relationship, as each mission can
have many heroes, but each hero has only one mission. (My heroes
have attention issues and can't multitask very well.) Note that hero and
mission are not a one-to-many relationship, but a many-to-one. The
order matters.
Many-to-many relationship: This type of relationship happens when
an element of A may have many values from B, and B may also have
many values of A. Usually, listed fields turn out to be many-to-many
relationships. In the hero data, the relationship between hero and power
is a many-to-many relationship because each hero can have many
powers, and each power can belong to multiple heroes.

******ebook converter DEMO Watermarks*******

You can use an ER tool to diagram the various relationship types. Figure 3-
7 shows this addition to the hero design.

Figure 3-7: Now I've added relationships.

 Note that MySQL Workbench doesn't actually allow you to draw
many-to-many joins. I drew that into Figure 3-7 to illustrate the point.
In the next chapter, I show how to emulate many-to-many relationships
with a special trick called a link table.

ER diagrams use special symbols to represent different kinds of
relationships. The line between tables indicates a join, or relationship, but
the type of join is indicated by the markings on the ends of the lines. In
general, the crow's feet or filled-in circle indicate many, and the double
lines indicate one.

 ER diagrams get much more complex than the simple ones I
show here, but for this introduction, the one and many symbols are
enough to get you started.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 4
Putting Data Together with

Joins
In This Chapter

 Using SQL functions
 Creating calculated fields
 Working with date values
 Building views
 Creating inner joins and link tables

Single tables aren't sufficient for most data. If you understand the rules of
data normalization (see Chapter 3 of this minibook), you know how to
break your data into a series of smaller tables. The question remains,
though: How do you recombine all these broken-up tables to make
something the user can actually use?
In this chapter, you discover several techniques for combining the data in
your tables to create useful results.

 I wrote a quick PHP script to help me with most of the figures in
this chapter. Each SQL query I intend to look at is stored in a separate
SQL file, and I can load up the file and look at it with the PHP code.
Feel free to look over the code for showQuery on the companion
website. If you want to run this code yourself, be sure to change the
username and password to reflect your data settings. Use
queryDemo.html to see all the queries in action. I also include a script
called buildHero.sql that creates a database with all the tables and
views I mention in this chapter. Feel free to load that script into your
database so that you can play along at home. You learn more about
writing your own PHP code for reading SQL data in Chapter 5 of this

******ebook converter DEMO Watermarks*******

minibook.

Calculating Virtual Fields
Part of data normalization means that you eliminate fields that can be
calculated. In the hero database described in Chapter 3 of this minibook,
data normalization meant that you don't store the hero's age, but his or her
birthday instead. Of course, if you really want the age, you should be able
to find some way to calculate it. SQL includes support for calculating
results right in the query.
Begin by looking over the improved hero table in Figure 4-1.

Figure 4-1: The hero table after normalization.

The original idea for the database, introduced in Table 3-1 in Chapter 3 of
this minibook, was to keep track of each hero's age. This idea was bad
because the age changes every year. Instead, I stored the hero's birthday.
But what if you really do want the age?

Introducing SQL functions
It turns out SQL supports a number of useful functions that you can use to
manipulate date and time data. Table 4-1 shows especially useful MySQL
functions. Many more functions are available, but these functions are the
most frequently used.

******ebook converter DEMO Watermarks*******

Table 4-1 Useful MySQL Functions
Function Description

CONCAT(A, B)
Concatenates two string results. Can be used to create a single
entry from two or more fields. For example, combine firstName and
lastName fields.

FORMAT(X, D) Formats the number X to the number of digits D.

CURRDATE(),
CURRTIME() Returns the current date or time.

NOW() Returns the current date and time.

MONTH(), DAY(),
YEAR(), WEEK(),
WEEKDAY()

Extracts the particular value from a date value.

HOUR(), MINUTE(),
SECOND() Extracts the particular value from a time value.

DATEDIFF(A, B) Frequently used to find the time difference between two events
(age).

SUBTIMES(A, B) Determines the difference between two times.

FROMDAYS(INT) Converts an integer number of days into a date value.

Typically, you use a programming language, such as PHP, to manage what
the user sees, and programming languages tend to have a much richer set of
functions than the database. Still, it's often useful to do certain kinds of
functionality at the database level.

Knowing when to calculate virtual fields
You calculate data in these situations:

You need to create a single field from multiple text fields. You
might need to combine first, middle, and last name fields to create a
single name value. You can also combine all the elements of an address
to create a single output.
You want to do a mathematical operation on your data. Imagine
that you're writing a database for a vegetable market and you want to
calculate the value from the costPerPound field plus the pounds-
Purchased field. You can include the mathematical operation in
your query.
You need to convert data. Perhaps you stored weight information in

******ebook converter DEMO Watermarks*******

pounds and you want a query to return data in kilograms.
You want to do date calculations. Often, you need to calculate ages
from specific days. Date calculations are especially useful on the data
side because databases and other languages often have different date
formats.

Calculating Date Values
The birthday value is stored in the hero table, but what you really
want to know is the hero's age. It's very common to have a date stored in a
database. You often need to calculate the time from that date to the current
date in years, or perhaps in years and months. Functions can help you do
these calculations.
Begin by looking at a simple function that tells you the current date and
time, as I do in Figure 4-2.

Figure 4-2: The NOW() function returns the current date and time.

The current date and time by themselves aren't that important, but you can
combine this information with other functions, described in the following
sections, to do some very interesting things.

******ebook converter DEMO Watermarks*******

Using DATEDIFF to determine age
The NOW() function is very handy when you combine it with the
DATEDIFF() function, as shown in Figure 4-3.

Figure 4-3: The DATEDIFF() function determines the difference between dates.

This query calculates the difference between the current date, NOW(), and
each hero's birthday. The DATEDIFF() function works by converting
both dates into integers. It can then subtract the two integers, giving you
the result in number of days.

 You normally name the fields you calculate because otherwise,
the formula used to calculate the results becomes the virtual field's
name. The user doesn't care about the formula, so use the AS feature to
give the virtual field a more useful name.

Adding a calculation to get years
Of course, most people don't think about age in terms of days. Age (unless
you're talking about fruit flies or something) is typically measured in years.
One simple solution is to divide the age in days by 365 (the number of days
in a year). Figure 4-4 shows this type of query.

******ebook converter DEMO Watermarks*******

Figure 4-4: You can divide by 365 to determine the number of years.

This code is almost like the query shown in Figure 4-3, except it uses a
mathematical operator. You can use most of the math operators in queries
to do quick conversions. Now, the age is specified in years, but the decimal
part is a bit odd. Normally, you either go with entire year measurements or
work with months, weeks, and days.

Converting the days integer into a date
The YEAR() function extracts only the years from a date, and the
MONTH() function pulls out the months, but both these functions require a
date value. The DATEDIFF() function creates an integer. Somehow, you
need to convert the integer value produced by DATEDIFF() back into a
date value. (For more on this function, see the section “Using
DATEDIFF to determine age,” earlier in this chapter.)
Figure 4-5 is another version of a query that expresses age in terms of years
and months.

******ebook converter DEMO Watermarks*******

Figure 4-5: The age is now converted back to a date.

This query takes the DATEDIFF() value and converts it back to a date.
The actual date is useful, but it has some strange formatting. If you look
carefully at the dates, you'll see that they have the age of each hero, but it's
coded as if it were a particular date in the ancient world.

Using YEAR() and MONTH() to get
readable values
After you've determined the age in days, you can use the YEAR() and
MONTH() functions to pull out the hero's age in a more readable way, as
illustrated by Figure 4-6.

******ebook converter DEMO Watermarks*******

Figure 4-6: The YEAR(), MONTH(), and DAY() functions return parts of a date.

The query is beginning to look complex, but it's producing some really nice
output. Still, it's kind of awkward to have separate fields for year, month,
and day.

Concatenating to make one field
If you have year, month, and day values, it would be nice to combine some
of this information to get a custom field, as you can see in Figure 4-7.

Figure 4-7: Now, the age is back in one field, as originally intended.

******ebook converter DEMO Watermarks*******

This query uses the CONCAT() function to combine calculations and
literal values to make exactly the output the user is expecting. Even though
the birthday is the stored value, the output can be the age.

There's no way I'm writing that every time . . .
I know what you're thinking. All this fancy function stuff is well and good, but there's no
stinkin’ way you're going to do all those function gymnastics every time you want to extract
an age out of the database. Here's the good news: You don't have to. It's okay that the
queries are getting a little tricky because you'll write code to do all the work for you. You
write it only once, and then your code does all the heavy lifting. Generally, you write PHP
code to manage each query inside a function. After you've tested it, you run that function
and off you go. . . . You can also use a little gem called the view, described in the “Creating
a View” section. Views allow you to store complex queries right in your database.

Creating a View
The query that converts a birthday into a formatted age is admittedly
complex. Normally, you'll have this query predefined in your PHP code so
that you don't have to think about it anymore. If you have MySQL 5.0 or
later, though, you have access to a wonderful tool called the VIEW. A view
is something like a virtual table.
The best way to understand a view is to see a sample of it in action. Take a
look at this SQL code:

CREATE VIEW heroAgeView AS
 SELECT
 name as 'hero',
 CONCAT(
 YEAR(FROM_DAYS(DATEDIFF(NOW(), birthday))),
 ' years, ',
 MONTH(FROM_DAYS(DATEDIFF(NOW(), birthday))),
 ' months'
) AS 'age'
 FROM
 hero;

If you look closely, it's exactly the same query used to generate the age
from the birth date, just with a CREATE VIEW statement added. When
you run this code, nothing overt happens, but the database stores the query

******ebook converter DEMO Watermarks*******

as a view called heroView. Figure 4-8 shows the cool part.

Figure 4-8: This simple query hides a lot of complexity.

This code doesn't look really fancy, but look at the output. It's just like you
had a table with all the information you wanted, but now the data is
guaranteed to be in a decent format.
After you create a view, you can use it in subsequent SELECT statements
as if it were a table! Here are a couple of important things to know about
views:

They aren't stored in the database. The view isn't really data; it's just
a predefined query. It looks and feels like a table, but it's created in real
time from the tables.
You can't write to a view. Because views don't contain data (they
reflect data from other tables), you can't write directly to them. You
don't use the INSERT or UPDATE commands on views, as you do
ordinary tables.
They're a relatively new feature of MySQL. Useful as they are,
views weren't added to MySQL until Version 5.0. If your server uses
an earlier version, you'll have to do some workarounds, described in
the sidebar “So what if I'm stuck with MySQL 4.0?”
You can treat views as tables in SELECT statements. You can build

******ebook converter DEMO Watermarks*******

SELECT statements using views as if they were regular tables.

 Some database packages make it appear as though you can
update a view, but that's really an illusion. Such programs reverse-
engineer views to update each table. This approach is far from
foolproof, and you should probably avoid it.

So what if I'm stuck with MySQL 4.0?
Views are so great that it's hard to imagine working with data without them. However, your
hosting service may not have MySQL 5.0 or later installed, which means you aren't able to
use views. All is not lost. You can handle this issue in two ways.

The most common approach is to store all the queries you're likely to need (the ones that
would be views) as strings in your PHP code. Execute the query from PHP, and you've
essentially executed the view. This method is how most programmers did it before views
were available in MySQL.

Another approach is to create a new table called something like storeQuery in your
database. Put the text of all your views inside this table, and then you can extract the view
code from the database and execute it using a second pass at the data server.

Using an Inner Join to Combine
Tables

When I normalized the hero database in Chapter 3 of this minibook, I
broke it up into several tables. Take a quick look at the hero table in
Figure 4-9.

******ebook converter DEMO Watermarks*******

Figure 4-9: The hero table has a link to the mission table.

You probably noticed that most of the mission information is now gone
from this table, except one important field. The missionID field is an
integer field that contains the primary key of the mission table. A
foreign key is a field that contains the primary key of another table. Foreign
keys are used to reconnect tables that have been broken apart by
normalization.
Look at the mission table in Figure 4-10, and the relationship between
the mission and hero tables begins to make sense.

******ebook converter DEMO Watermarks*******

Figure 4-10: The mission table handles mission data but has no link to the hero.

The mission table doesn't have a link back to the hero. It can't, because any
mission can be connected to any number of heroes, and you can't have a
listed field.

Building a Cartesian join and an inner join
Compare the hero and mission tables, and you see how they fit
together. The missionID field in the hero table identifies which
mission the hero is on. None of the actual mission data is in the hero
field, just a link to which mission the player is on.
Creating a query with both tables, as in Figure 4-11, is tempting. This
query appears to join the tables, but it obviously isn't doing the right thing.
You have only three heroes and two missions, yet this query returns six
rows! What's happened here is called a Cartesian join. It's a combination of
all the possible values of hero and mission, which is obviously not what
you want.

******ebook converter DEMO Watermarks*******

Figure 4-11: This query joins both tables, but it doesn't seem right.

You don't really want all these values to appear; you want to see only the
ones where the hero table's missionID matches up to the missionID
field in the mission table. In other words, you want a query that says
only return rows where the two values of missionID are the same. That
query may look like Figure 4-12. It's almost identical to the last query,
except this time, a WHERE clause indicates that the foreign key and primary
key should match up.

Figure 4-12: Now, you have an inner join.

******ebook converter DEMO Watermarks*******

This particular setup (using a foreign key reference to join up two tables) is
called an inner join. Sometimes, you see the syntax like

SELECT
 hero.name AS 'hero',
 hero.missionID AS 'heroMID',
 mission.missionID AS 'missMID',
 mission.description AS 'mission'
FROM
 hero INNER JOIN mission
ON
 hero.missionID = mission.missionID;

Some of Microsoft's database offerings prefer this syntax, but it really does
the same thing: join up two tables.

Enforcing one-to-many relationships
Whenever your ER diagram indicates a many-to-one (or one-to-many)
relationship, you generally use an inner join (see the preceding section).
Here's how you do it:

1. Start with the ER diagram.

No way are you going to get this right in your head! Make a diagram.
Use a tool like MySQL Workbench, some other software, pencil and
paper, lipstick on a mirror, whatever. You need a sketch.

2. Identify one-to-many relationships.

You may have to talk with people who use the data to determine which
relationships are one-to-many. In the hero data, a hero can have only
one mission, but each mission can have many heroes. Thus, the hero is
the many side, and the mission is the one side.

3. Find the primary key of the one table and the many table.

Every table should have a primary key. (You'll sometimes see
advanced alternatives like multifield keys, but wait until you're a bit
more advanced for that stuff.)

4. Make a foreign key reference to the one table in the many table.

******ebook converter DEMO Watermarks*******

Add a field to the table on the many side of the relationship that
contains only the key to the table on the one side.

 You don't need a foreign key in the table on the one side of the
relationship. This concept confuses most beginners. You don't need (or
want) a link back to the many table because you don't know how many
links you'll need. Multiple links would be a listed field, which is
exactly what you're trying to avoid.

If the preceding steps are hard for you to understand, think back to the hero
example. Each hero (according to the business rules) can be on only one
mission. Thus, it makes sense to put a link to the mission in the hero table
because you have only one mission. Each mission can be related to many
heroes, so if you try to link missions to heroes, you have listed fields in the
mission table, violating the first normal form. (For information on the
types of normal forms, see Chapter 3 of this minibook.) Figure 4-13 shows
how it works in action. The result of this join looks a lot like the original
intention of the database, but now it's normalized.

Figure 4-13: Here's a nice join of the hero and mission tables.

******ebook converter DEMO Watermarks*******

 I've had people write to me about this example, saying heroes
should be allowed to go on multiple missions, or they're not very good
heroes. That's a great point, and it brings up one of the most significant
issues in data development. The data programmer's job is to reflect the
business rules in place. I deliberately made up the business rules in this
example to simplify explaining things, so I've got a business rule in
place (one mission per hero) that may not be the best from a “saving the
world” perspective. However, if that's the business rule you've got, your
job is to implement it. There is a time and place for changing the
business rules, and a data developer can help with this, but that's a
decision that really belongs to the client. For a few companies I've
worked with, perhaps the most useful thing I did for them was help
them understand their data better and recognize when some of their
business rules could be improved. When the client changes the rules,
you can implement the new ones, but you shouldn't change the business
rules yourself.

Counting the advantages of inner joins
Even though the table in Figure 4-13 contains everything in the original
non-normalized data set (except for the repeated field — that's coming up
soon), the new version is considerably better for several reasons:

No data is repeated. The plot is stored only one time in the database.
Even though it may appear several times in this output, each value is
stored only once.
Searching is much more efficient. Because the data is stored only one
time, you no longer have to worry about spelling and typing errors. If
the entry is wrong, it is universally wrong, and you can repair it in only
one place.
The data is organized correctly. Although the user can't see it from
this output, the tables are now separated so that each type of data goes
where it belongs.
The output still looks like what the user wants. Users don't care
about the third normal form. (For more on normalization, see Chapter 3

******ebook converter DEMO Watermarks*******

of this minibook.) They just want to get to their data. This table gives
them a query that returns the data they're looking for, even though the
underlying data structure has changed dramatically.

Building a view to encapsulate the join
The inner join query is so useful, it's a dandy place for a view. I created a
view from it:

CREATE VIEW heroMissionView AS
 SELECT
 hero.name AS 'hero',
 mission.description AS 'mission',
 mission.villain AS 'villain',
 mission.plot AS 'plot'
 FROM hero, mission
 WHERE
 hero.missionID = mission.missionID;

Having a view means that you don't have to re-create the query each time.
You can treat the view as a virtual table for new queries:

SELECT * FROM heroMissionView;

Managing Many-to-Many Joins
Inner joins are a perfect way to implement one-to-many relationships. If
you look at ER diagrams, you often see many-to-many relationships, too.
Of course, you also need to model them. Here's the secret: You can't really
do it. It's true. The relational data model doesn't really have a good way to
do many-to-many joins. Instead, you fake it out. It isn't hard, but it's a little
bit sneaky.

 You use many-to-many joins to handle listed data, such as the
relationship between hero and power. Each hero can have any number
of powers, and each power can belong to any number of heroes (see the
table in Figure 4-14).

******ebook converter DEMO Watermarks*******

Figure 4-14: The hero table has no reference to powers.

The inner join was easy because you just put a foreign key reference to the
one side of the relationship in the many table. (See the section “Using an
Inner Join to Combine Tables,” earlier in this chapter.) In a many-to-many
join, there is no “one” side, so where do you put the reference? Leave it to
computer scientists to come up with a sneaky solution.
First, review the hero table in Figure 4-14.

Note that this table contains no reference to powers. Now, look at the
power table in Figure 4-15. You see a lot of powers, but no reference to
heroes.

******ebook converter DEMO Watermarks*******

Figure 4-15: The power table has no reference to heroes.

Here's the tricky part. Take a look at a new table in Figure 4-16.

Figure 4-16: This new table contains only foreign keys!

The results of this query may surprise you. The new table contains nothing
but foreign keys. It doesn't make a lot of sense on its own, yet it represents
one of the most important ideas in data.

Understanding link tables
******ebook converter DEMO Watermarks*******

The hero_power table shown in Figure 4-16 is a brand new table, and
it's admittedly an odd little duck:

It contains no data of its own. Very little appears inside the table.
It isn't about an entity. All the tables shown earlier in this chapter are
about entities in your data. This one isn't.
It's about a relationship. This table is actually about relationships
between hero and power. Each entry of this table is a link between hero
and power.
It contains two foreign key references. Each record in this table links
an entry in the hero table with one in the power table.
It has a many-to-one join with each of the other two tables. This
table has a many-to-one relationship with the hero table. Each record
of hero_power connects to one record of hero. Likewise, each
record of hero_power connects to one record of power.
The two many-to-one joins create a many-to-many join. Here's the
magical part: By creating a table with two many-to-one joins, you
create a many-to-many join between the original tables!
This type of structure is called a link table. Link tables are used to
create many-to-many relationships among entities.

Using link tables to make many-to-many
joins
Figure 4-17 displays a full-blown ER diagram of the hero data.

******ebook converter DEMO Watermarks*******

Figure 4-17: Here's the ER diagram of the hero data.

Link tables aren't really useful on their own because they contain no actual
data. Generally, you use a link table inside a query or view:

SELECT
 hero.name AS 'hero',
 power.name AS 'power'
FROM
 hero, power, hero_power
WHERE
 hero.heroID = hero_power.heroID
AND
 power.powerID = hero_power.powerID;

Here are some thoughts about this type of query:

It combines three tables. That complexity seems scary at first, but it's
really fine. The point of this query is to use the hero_power table to
identify relationships between hero and power. Note that the FROM
clause lists all three tables.
The WHERE clause has two links. The first part of the WHERE clause
links up the hero_power table with the hero table with an inner
join. The second part links up the power table with another inner join.
You can use another AND clause to further limit the results. Of
course, you can still add other parts to the AND clause to make the

******ebook converter DEMO Watermarks*******

results solve a particular problem, but I leave that alone for now.

Figure 4-18 shows the result of this query. Now you have results you can
use.

Figure 4-18: The Link Query joins up heroes and powers.

Once again, this query is an obvious place for a view:
CREATE VIEW heroPowerView AS
 SELECT
 hero.name AS 'hero',
 power.name AS 'power'
 FROM
 hero, power, hero_power
 WHERE
 hero.heroID = hero_power.heroID
 AND
 power.powerID = hero_power.powerID;

 Typically, you won't do your results exactly like this view.
Instead, you display information for, say, Binary Boy, and you want a
list of his powers. It isn't necessary to say Binary Boy three times, so
you tend to use two queries (both from views, if possible) to simplify
the task. For example, look at these two queries:

******ebook converter DEMO Watermarks*******

SELECT * FROM heroMissionView WHERE hero = 'binary boy';
SELECT power FROM heroPowerView WHERE hero = 'binary boy';

The combination of these queries gives you enough data to describe
everything in the original table. Typically, you attach all this data together
in your PHP code.
The code is standard PHP data access, except it makes two passes to the
database:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>showDetails.php</title>
 <style type = "text/css">
 dt {
 float: left;
 width: 4em;
 clear: left;
 }

dd {
 float: left;
 width: 20em;
 }
 </style>
</head>

<body>
<?php
//connect

try {
 $con= new PDO('mysql:host=localhost;dbname=haio', "haio",
"haio");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

//get most information for requested hero
 $hero = "binary boy";

$query = <<<HERE
SELECT
 *
FROM

******ebook converter DEMO Watermarks*******

 heroMissionView
WHERE
 hero = '$hero'

HERE;

print "<dl> \n";
 $result = $con->query($query);
 $result->setFetchMode(PDO::FETCH_ASSOC);
 foreach ($result as $row){
 foreach ($row as $field => $value){
 print <<<HERE
 <dt>$field</dt>
 <dd>$value</dd>

HERE;

} // end field foreach
 } // end row foreach
 print " <dt>powers</dt> \n";
 print " <dd> \n";

//create another query to grab the powers
 $query = <<<HERE
SELECT
 power
FROM
 heroPowerView
WHERE hero = '$hero'
HERE;

//put powers in an unordered list
 $result = $con->query($query);
 print " \n";
 foreach ($result as $row){
 foreach ($row as $field => $value){
 print " $value \n";
 } // end foreach
 } // end while loop
 print " \n";
 print "</dd> \n";
 print "</dl> \n";

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();

******ebook converter DEMO Watermarks*******

} // end try

?>
</body>
</html>

Refer to Chapter 5 of this minibook to read more on PHP and how it's used
to access databases.

******ebook converter DEMO Watermarks*******

Chapter 5
Connecting PHP to a MySQL

Database
In This Chapter

 Building the connection string
 Sending queries to a database
 Retrieving data results
 Formatting data output
 Allowing user queries
 Cleaning user-submitted data requests

Data has become the prominent feature of the web. As you build more
sophisticated sites using HTML and CSS, you will eventually feel the need
to incorporate data into your websites. You can do a certain amount of data
work with the basic data structures built into PHP, but more sophisticated
data problems require more sophisticated tools. Likewise, MySQL is great
at data, but is not perfect for getting input from users or preparing HTML
output. PHP and MySQL are perfect partners, with very compatible
strengths and weaknesses.

 This chapter assumes you have a database available and also that
you have some basic knowledge of how SQL (Structured Query
Language; the language of databases) works. It also assumes you're
comfortable with PHP. If you need a refresher on PHP, please check
Book V. Book VI covers MySQL in detail.

PHP and MySQL: A Perfect (but
******ebook converter DEMO Watermarks*******

Geeky) Romance
PHP programmers frequently use MySQL as their preferred data back end
for a number of good reasons:

MySQL is open source and free. Like PHP, MySQL is open source,
so PHP and MySQL can be used together (with Apache) to build a very
powerful low-cost data solution.
MySQL is very powerful. MySQL's capability as a data program has
improved steadily, and it is now nearly as capable as commercial tools
costing thousands of dollars. (And it is better than many that cost
hundreds of dollars.)
PHP has built-in support for MySQL. PHP includes a number of
functions specifically designed to help programmers maintain MySQL
databases.
You probably already have MySQL. If you installed XAMPP, you
probably already have an installation of MySQL ready to go. Check
Book VIII, Chapter 1 for installation details.
MySQL was designed with remote control in mind. MySQL is
meant to be managed from some other program (like the code you
write in PHP). It's not designed with a user interface (like Access has),
but it's designed from the beginning to be controlled through a
programming language like PHP.

Before diving into details, here's an overview of how you get information
to and from a MySQL database:

1. Establish a connection.

Before you can work with a database, you must establish a relationship
between your PHP program and the database. This process involves
identifying where the database is and passing it a username and
password.

2. Formulate a query.

******ebook converter DEMO Watermarks*******

Most of the time, you'll have some sort of query or request you want to
pass to the database. For example, you may want to see all the data in a
particular table, or you may want to update a record. In either case, you
use SQL to prepare a request to pass to the database.

3. Submit the query.

After you build the query, you pass it (through the connection) to the
database. Assuming that the query is properly formatted, the database
processes the request and returns a result.

4. Process the result.

The database returns a special variable containing the results of your
query. You'll generally need to pick through this complex variable to
find all the data it contains. For example, it can contain hundreds of
records. (For more on records, see the upcoming section “Retrieving
data from the database.”)

5. Display output to the user.

Most of the time, you'll process the query results and convert them to
some sort of HTML display that the user can view.

As an example, take a look at contact.php in Figure 5-1.

******ebook converter DEMO Watermarks*******

Figure 5-1: This program gets all the contact data from a database.

The contact.php program contains none of the actual contact information.
All the data was extracted from a database. Here's an overview of the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>contact.php</title>
 </head>
 <body>
 <p>
 <?php
 try {
 $con= new PDO('mysql:host=localhost;dbname=dbName',
"user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

$result = $con->query('SELECT * FROM contact');
 $result->setFetchMode(PDO::FETCH_ASSOC);

foreach($result as $row){
 foreach ($row as $name=>$value){
 print "$name: $value
";
 } // end field loop
 print "
";

******ebook converter DEMO Watermarks*******

 } // end record loop

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 }

?>
 </p>
 </body>
</html>

 If you want to try this program at home, begin by running the
buildContactAutoIncrement.sql script (available in Book VI, Chapter 2)
in your copy of MySQL. Note that you'll probably have to change the
database, username, and password values to make your examples work.
This will ensure you have the database created. See Book VI, Chapter 2
if you need more information on creating databases.

Understanding data connections
The key to all database work is the connection. Database connections
remind me of the pneumatic tubes at some bank drive-through locations.
There's a little container you can stick your request into. You press a
button, and the container shoots through a tube to the teller, who processes
your request and sends you the results back through the tube.
In data programming, the connection is like that tube: It's the pipeline
between your program (your car) and the data (the bank). To establish a
data connection, you need to know four things:

The hostname (where the server is): Often, the data server will be
housed on the same physical machine as the web server and PHP
program. In these cases, you can use localhost as the server name.
Test servers using XAMPP almost always use localhost
connections. If you're working in a production environment, you may
need to ask your service provider for the server address of your
database.
Your database username: Database programs should always have

******ebook converter DEMO Watermarks*******

some type of security enabled. (See Book VI, Chapter 1 for
information on setting up database users and passwords.) Your
program needs to know the username it should use for accessing the
data. (I often create a special username simply for my programs. Book
VI, Chapter 1 outlines this process.)

 When you first install MySQL through XAMPP, it allows
root access with no password. These settings allow anybody to do
anything with your data. Obviously, that's not a good solution,
security-wise. Be sure to set up at least one username and password
combination for your database. If you're using an online hosting
service, you probably don't have root access. In this case, you typically
have a new user created for each database you build. Book VI explains
all.

A password for the database: The username isn't secure without a
password. Your PHP program also needs a password. This is
established when you create the database.

 If you're going to make your source code available (as I do
on the companion website), be sure to change the username and
password so people can't use this information to hack your live data.

The database name: A single installation of MySQL can have many
databases available. You'll typically have a separate database designed
for each project you build. MySQL needs to know which particular
database houses the information you're seeking.

Introducing PDO
PHP has used a number of mechanisms for connecting to databases over
the years. For a long time, the standard was a series of libraries for the

******ebook converter DEMO Watermarks*******

various database types. Many people used the mysql library, which was
(stay with me here) a library of functions for working with mySQL. If you
wanted to use a different database, you'd need a different library with
different functions.
The other problem with the mysql library was security. The techniques
used in that library opened up a number of security holes. There are
techniques for closing these holes, but not every programmer used them.
The mysqli library (mysql improved) fixed a number of these problems,
but was still specific to a single database, and a bit more complex to use
than the older library.
PHP5.1 and later now includes a library called PDO (PHP Data Objects)
and it's a significant improvement over the mysql library. Here are a few
key features:

It works with multiple backends: In the old days, changing a
database engine meant re-writing all your code. With PDO, you use
exactly the same mechanism with all databases, so it's much easier to
change data engines.
It uses object-oriented syntax: PHP supports object-oriented
programming, but it uses a slightly different syntax than JavaScript.
Object-oriented programming adds some nice features to data access,
so this is generally a good thing.
It's provides safer access to data: PDO uses a mechanism called
prepared statements which prevent the most challenging kinds of data
errors. More about this in the section called “Allowing User
Interaction” later in this chapter.

Building a connection
With PDO, the connection is an instance of the PDO object. When you
make a PDO object, you're making a connection to the database. The data
connection command is chock-full of details:

$con = new PDO('mysql:host=localhost;dbname=dbname', "username",
"password");

There's a lot of important stuff happening in this line:
******ebook converter DEMO Watermarks*******

1. Set up a variable to hold the connection.

The entire point of creating a PDO object is to have a connection
object, with various methods for modifying the data and making
queries. So the first part of the data connection process is to make a
connection object. I call mine $con.

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

2. Build a new PDO object.

Because PDO is object-oriented, use the new keyword to call the PDO
object constructor. (See Book V, Chapter 7 for more on objects and
constructors in PHP.)

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

3. Specify the database type.

MySQL is the most commonly used database system for PHP
programmers, so that's what I specify. However, one of the advantages
of PDO is its flexibility. If you change to a different RDBMS, you
(theoretically, at least) only need to make one tiny change and the code
will still work.

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

4. Indicate the host.

When you're working on a local XAMPP installation, the host will
often be localhost. If you're on a remote server, you may need to
investigate where your databases are hosted. They may be on a
completely different machine with its own address.

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

5. Specify the database name.

******ebook converter DEMO Watermarks*******

Within a connection, you might have several databases. Use this part of
the connection to determine which database you're using.

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

6. Indicate the username.

Each database will likely have a specific user determined to be that
database's administrator. (See Chapter 1 of this mini-book for
instructions on setting up users and databases.)

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

7. Provide the password.

Your program is essentially logging in as the user. This is why it's good
to build a specific user for each application. This allows you to tightly
control access to your database.

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"username", "password");

 If you are using the root user with no password, you're setting up
your computer to be hacked. Please see my instructions in Chapter 1 of
minibook VII to set up a more secure installation.

Retrieving data from the database
After a PDO connection is set up, it's pretty easy to use. Here's the overall
plan for retrieving data from the PDO connection:

1. Put all PDO code in an exception-handler.

Data access is inherently dangerous. It's a perfect place for things to go
wrong, so use an exception-handler to protect from potential errors.
Use the try clause to begin your exception-handler. You can learn
more about exceptions in Book V, Chapter 7.

******ebook converter DEMO Watermarks*******

 try {

2. Set up your data connection.

Create a PDO object, setting up your data connection.

 $con = new PDO('mysql:host=localhost;dbname=dbname',
"userName", "password");

3. Turn on error-tracking.

PDO has some features for tracking errors. These are especially useful
because the ordinary PHP error codes don't help with PHP problems.
Turn on the PDO error-reporting mechanism with the
setAttribute() method of the PDO object.

 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

4. Execute a query.

The PDO object's query() method allows you to apply a query to the
database and returns the result in a special variable.

 $result = $con->query('SELECT * FROM contact');

 The query() method is one of several techniques for
getting data from the database. It's a shortcut meant to be used when
you're sending an SQL request that's expected to return a result (like a
SELECT) statement. Use execute() when you want to pass a
command that will not return a result (like a CREATE TABLE or
UPDATE) statement.

5. Set the fetch mode.

You can tell PDO to return data in a number of formats. For now,
choose FETCH_ASSOC. This format returns each record as an
associative array. This is the easiest fetch mode to work with. (You can

******ebook converter DEMO Watermarks*******

also return each record as a numerically indexed array, both numeric
and associative arrays, and as a special object.)

$result->setFetchMode(PDO::FETCH_ASSOC);

6. Read the data a row at a time.

The results of a data query are typically a table, so read the table one
row (record) at a time. The $result variable is an ordinary array, so
you can easily use a foreach loop to separate the data into rows.

 foreach($result as $row){

7. Each row is an associative array.

Each row can also be thought of as an array. PDO has a number of
ways to extract the data, but you set the fetch mode to associative array
in Step 5. This means you can use the associative variant of the
foreach loop to very easily separate each row into its name/value
pairs.

foreach ($row as $name=>$value){

8. Print the field's name and value.

Now you can simply print out the name and value of the field. Recall
you are building HTML output, so you can go with something simple
(as I'm doing in this example) or encode your output in something
more sophisticated like a definition list or a table.

print "$name: $value
";

9. End all your structures.

This is a complicated set of instructions. It's really easy to forget a
closing structure. Be sure to indent properly and label all your closing
braces.

} // end field loop
 print "
";
 } // end record loop

******ebook converter DEMO Watermarks*******

10. Catch exceptions.

Because all this code happens inside a try block, you need some sort
of catch mechanism. Mine simply reports errors.

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

Using HTML tables for output
The basic unit of structure in SQL is called a table because it's usually
displayed in a tabular format. HTML also has a table structure, which is
ideal for outputting SQL data. Figure 5-2 shows contactTable.php, which
displays the contact information inside an HTML table.

Figure 5-2: The contact information displayed in an HTML table.

Tables are a very common way to output SQL results. There's one big
difference between table output and the basic version shown elsewhere in
this chapter. In a table, you have a separate row containing field names.
Here's the code:

<!DOCTYPE html>
<html lang = "en-US">

******ebook converter DEMO Watermarks*******

<head>
 <meta charset = "UTF-8">
 <title>contact.php</title>
 <style type = "text/css">
 table, th, td {border: 1px solid black};
 </style>
 </head>
 <body>
 <p>
 <?php
 try {
 $con= new PDO('mysql:host=localhost;dbname=dbName',
"user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

$query = "SELECT * FROM contact";

//first pass just gets the column names
 print "<table> \n";

$result = $con->query($query);
 //return only the first row (we only need field names)
 $row = $result->fetch(PDO::FETCH_ASSOC);

print " <tr> \n";
 foreach ($row as $field => $value){
 print " <th>$field</th> \n";
 } // end foreach
 print " </tr> \n";

//second query gets the data
 $data = $con->query($query);
 $data->setFetchMode(PDO::FETCH_ASSOC);

foreach($data as $row){
 print " <tr> \n";
 foreach ($row as $name=>$value){
 print " <td>$value</td> \n";
 } // end field loop
 print " </tr> \n";
 } // end record loop

print "</table> \n";

******ebook converter DEMO Watermarks*******

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

?>
 </p>
 </body>
</html>

 You might be confused that I'm using a table here, seeing as how
I argue pretty strongly against use of tables for page layout in the
HTML and CSS minibooks. Tables aren't evil: They just aren't
designed to be a page layout mechanism. Tables, however, are
designed to display tabular data, and the result of a data query is pretty
much the definition of tabular data. You can (and should) still use CSS
for specific layout details of the table. Tables are fine when used to
present data, which is what I'm doing here.

This code is still very similar to the basic contact.php program. It extracts
data from the database exactly the same way. The main difference is how
field names are treated. The field names will go in table headings, and only
the values are printed from each row. To make this work, follow these
steps:

1. Build a normal MySQL connection.

Begin with the standard connection. Don't worry about formatting until
you're reasonably certain that you can read data from the database.

 $con = new
PDO('mysql:host=localhost;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

2. Determine your query.

Create a query that will produce a table, view, or search result. Store it
in a variable so you can use it. (You'll use the same query twice in this
exercise.)

******ebook converter DEMO Watermarks*******

$query = "SELECT * FROM contact";

3. Print the table tag before extracting any results.

All the query data will be displayed inside the table, so print the
table tag before you start printing anything that should go inside the
table.

print "<table> \n";

4. Make a first pass to extract field names.

You're actually going to query the database twice. The first time, you
simply want the field names, which you'll use to build the table
headers, so it only needs one row.

$result = $con->query($query);
 //return only the first row (we only need field
names))
 $row = $result->fetch(PDO::FETCH_ASSOC);

The fetch method pulls the next available record from the $result
variable. You want the record data in associative array format, so pass
the PDO::FETCH_ASSOC constant to indicate this.

5. Print the field names as table headers.

Now that you have a single record, walk through that record as an
associative array and use the $field values to print out field names.

print " <tr> \n";
 foreach ($row as $field => $value){
 print " <th>$field</th> \n";
 } // end foreach
 print " </tr> \n";

6. Make a second query.

Now execute the query again with the $con->query() method.
This time, you're doing an ordinary query with multiple results. Don't
forget to set the fetch mode to associative array.

******ebook converter DEMO Watermarks*******

//second query gets the data
 $data = $con->query($query);
 $data->setFetchMode(PDO::FETCH_ASSOC);

7. Use nested loops to print out data elements.

Use the ordinary nested-loops trick to print out all of the data elements
with each record taking up one row of the HTML table.

foreach($data as $row){
 print " <tr> \n";
 foreach ($row as $name=>$value){
 print " <td>$value</td> \n";
 } // end field loop
 print " </tr> \n";
 } // end record loop

Allowing User Interaction
If you have a large database, you probably want to allow users to search
the database. For example, the form in Figure 5-3 allows the user to search
the My Contacts database.

Figure 5-3: The user can check for any value in any field.

Here are a couple of interesting things about the form in Figure 5-3:

******ebook converter DEMO Watermarks*******

The search value can be anything. The first field is an ordinary text
field. The user can type absolutely anything here, so you should expect
some surprises.
The user selects a field with a drop-down menu. You don't expect
the user to know exactly what field names you are using in your
database. Whenever possible, supply this type of information in a
format that's easier for the user and less prone to error.
This form is built to fill in a query. The back-end program
(search.php) will be constructing a query from data gathered from this
form. The point of the form is to request two pieces of information
from the user: a field to search in and a value to look for in that field.
search.php uses the data gleaned from this form to construct and
submit that query to the database.
The user doesn't know SQL. Even if the user does know SQL, don't
let him use it. The SQL query should always be built on the server side.
Get enough information to build an SQL query, but don't send a query
to the PHP. Doing so exposes your database to significant abuse, such
as the SQL injection attack described later in this chapter.
The form uses the post mechanism. From the HTML perspective, it
isn't important whether the form uses get or post, but when you're
using forms to construct SQL queries, using post is a bit safer
because it makes the bad guys work a little bit harder to spoof your site
and send bogus requests to your database.

Building an HTML search form
This is what the HTML code for search.html looks like:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>search.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "search.css" />
 </head>

******ebook converter DEMO Watermarks*******

 <body>
 <h1>Search my contacts</h1>
 <form action = "search.php"
 method = "post">
 <fieldset>
 <label>Search for</label>
 <input type = "text"
 name = "srchVal" />
 <label>in</label>
 <select name = "srchField">
 <option value = "contactID">ID</option>
 <option value = "name">contact name</option>
 <option value = "company">company name</option>
 <option value = "email">email address</option>
 </select>
 <button type = "submit">submit request</button>
 </fieldset>
 </form>
 </body>
</html>

This is really a pretty basic form. The interesting stuff happens in the
search.php program that's triggered when the user submits this form.

Responding to the search request
When the user submits search.html, a page like Figure 5-4 appears, created
by search.php.
The search.php program isn't really terribly different from
contactTable.php. It takes an SQL query, sends it to a database, and returns
the result as an HTML table. The only new idea is how the SQL query is
built. Rather than preloading the entire query into a string variable, as I did
in all other examples in this chapter, I used input from the form to inform
the query.
At one level, this seems pretty easy because an SQL query is just a string,
and it's easy to build strings based on input data. However, you should
never interpolate user input into an SQL string. If you directly include data
from a form into an SQL query, you're opening yourself up to a nefarious
type of attack called SQL injection. Imagine somebody entering Andy;
DROP TABLE contact as the search value. This fake name could
destroy parts of the database if the programmer is unwary.

******ebook converter DEMO Watermarks*******

Figure 5-4: The program searches the database according to the parameters in search.html.

 Never directly interpolate user input into an SQL statement. Use
the sanitizing mechanisms described in the next section instead.

You can use input data to build custom queries, but you must do one of two
things first:

Sanitize the data to ensure it's legit: There's a couple of ways to do
this, including the PDO::quote() method. I show another technique
in the next section that ensures the data is in a very specific pre-
arranged set of values.
Use a prepared statement: Prepared statements are a powerful tool.
They not only sanitize your data, they can speed up data requests quite
a bit. Prepared statements are described in the next section.

Before going through all the details, here's the general plan.

1. Ensure the field name is a legitimate value.

The user can enter a field name through a drop-down list. Theoretically
that should only allow legitimate field names (if I built the form

******ebook converter DEMO Watermarks*******

correctly), but an evildoer could build a spoof form with any values in
there they wanted. So I'll ensure the field name value matches against a
list of fields I know are legit, and quit if they entered something that
isn't in my list.

2. Build a prepared statement.

A prepared statement is a special database structure. It's like a query,
but it has some placeholders in it. For example, you could create the
following line:

$stmt = $con->prepare("SELECT * FROM contact WHERE
$field LIKE ?");

The database will compile the statement as-is, but will not execute it
yet. The question marks indicate values that will be provided later, and
you can have as many as you wish.

3. Execute the prepared statement.

When you have a prepared statement, you can execute it by sending it
an array of values (one per question mark in the prepared statement). I
still need an array even though it has only one value in it.

$stmt->execute(array("j%"));

4. The values are not considered SQL.

One advantage to a prepared statement is the values passed (in this case
j%, which looks for a value beginning with J) are never compiled as
SQL, so most SQL injection attacks are prevented with this technique.

5. The prepared statement can be reused.

Although it's not needed for this particular application, you can reuse a
prepared statement many times, and it's only compiled by the database
the first time. This can be very useful because many web applications
involve reading data from a form and passing the results into queries.

******ebook converter DEMO Watermarks*******

Theory is good, but an actual example is needed. As usual, I provide the
code in its entirety here, and then I point out specific features. Look at the
big picture first:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>search.php</title>
 </head>
 <body>
 <h1>My Contacts</h1>
 <?php
 try {
 $fieldName = array("contactID", "name", "company",
"email");
 //get values from form

$srchField = filter_input(INPUT_POST, "srchField");
 $srchValue = filter_input(INPUT_POST, "srchVal");

//don't proceed unless it's a valid field name
 if (in_array($srchField, $fieldName)){
 $field = $srchField;
 //put value inside %% structure
 $value = "%$srchValue%";

$con= new PDO('mysql:host=localhost;dbname=dbName', "user",
"pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

$stmt = $con->prepare("SELECT * FROM contact WHERE $field
LIKE ?");
 $stmt->execute(array($value));

$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

if (empty($result)){
 print "No matches found";
 } else {
 foreach($result as $row){
 foreach ($row as $field => $value){

******ebook converter DEMO Watermarks*******

 print "$field: $value
";
 } // end field loop
 print "
";
 } // end row loop
 } // end 'empty results' if

} else {
 print "That is not a valid field name";
 } // end if
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try
 ?>
 </body>
</html>

There's quite a bit going on in this program, but most of it isn't new.

1. Enclose the whole thing in a try block.

As usual, exception-handling is a big part of data access, so be sure to
add the standard try-catch block.

try {
 ...
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

2. Create an array for the valid field names.

The easiest way to check if something is within a range of values is to
build an array of the legitimate values. I use this array to check to see
that the field is legit in Step 4.

$fieldName = array("contactID", "name", "company",
"email");

3. Get input from the user.

Grab user input from the form using the normal filter_input
mechanism. Note that you won't trust the data (yet) in your SQL, but
you'll still need to extract the data.

******ebook converter DEMO Watermarks*******

$srchField = filter_input(INPUT_POST, "srchField");
 $srchValue = filter_input(INPUT_POST, "srchVal");

4. See if the field name is in your list.

The in_array() function is really useful. If you feed it a value and
an array, it will return true if the value appears in the array and false if
it does not. (It's kind of like a bouncer for the nightclub of SQL
requests.) If the field name is not on the “cool list,” code execution
jumps to an error message and nothing bad ever gets near the database.

if (in_array($srchField, $fieldName)){
 ..
 } else {
 print "That is not a valid field name";
 } // end if

5. Create variables for $field and $value.

The $field value is copied directly from the form (because you've
already established that it's legitimate). The $value variable will be
protected with a different mechanism, so I simply add % to the
beginning and end. (Because this value will be used in a LIKE clause,
the % symbols indicate that the position of the search string doesn't
matter.)

$field = $srchField;
 //put value inside %% structure
 $value = "%$srchValue%";

6. Set up a PDO connection.

Set up the PDO connection in the typical way.

$con= new PDO('mysql:host=localhost;dbname=dbName',
"user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

7. Prepare a statement.

The main query will be a prepared statement, so set it up with the
question mark placeholder. You can include the $field variable

******ebook converter DEMO Watermarks*******

directly in the query because it's already been validated.

$stmt = $con->prepare("SELECT * FROM contact WHERE
$field LIKE ?");

8. Execute the statement.

Send an array of values to the execute() method to execute the
prepared statement. The array should have the same number of entries
as question marks in the prepared statement.

$stmt->execute(array($value));

9. Fetch the results.

Use the fetchAll() method to retrieve all the results from the
query. Set the result set to associative arrays with the familiar
FETCH_ASSOC constant.

$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

10. Test for an empty result set.

If the results of the fetchAll() method are empty, there was no
match to the query. Send some sort of message to the user so they
know what happened.

if (empty($result)){
 print "No matches found";
 } else {
 ...
 } // end if

11. Print out results on success.

If the result has a value in it, parse it for all the data and print it out as
usual.

foreach($result as $row){
 foreach ($row as $field => $value){
 print "$field: $value
";
 } // end field loop

******ebook converter DEMO Watermarks*******

 print "
";
 } // end row loop

So why not put the field name in the
prepared statement?

If you've been following this example, you can see that you should never directly include
content from user input into an SQL query. Prepared statements are the best way to
protect your database. So why didn't I just do something like this?

$stmt = $con->prepare("SELECT * FROM contact WHERE ? LIKE
?");
$stmt->execute(array($field, $value));

In fact, I tried to do exactly that, but prepared statements expect the placeholders to be
field values, not field names. So I went ahead and interpolated the field name into the SQL,
but not until I had ensured it's of a legal value. There are other ways, but the key warning
stays in place: Be very careful not to use unsanitized form input in SQL statements.

You can use the same general techniques to control all SQL statements
needed to create and modify a database. In fact, this is exactly how most
data programs work on the Internet, maintaining databases and allowing
the user to indirectly modify the data.

******ebook converter DEMO Watermarks*******

Book VII
Integrating the Client and Server

with AJAX

 Visit www.dummies.com/extras/html5css3aio for
more on fun with jQuery plug-ins.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: AJAX Essentials
Chapter 2: Improving JavaScript and AJAX with
jQuery
Chapter 3: Animating jQuery
Chapter 4: Using the jQuery User Interface Toolkit
Chapter 5: Improving Usability with jQuery
Chapter 6: Working with AJAX Data
Chapter 7: Going Mobile

******ebook converter DEMO Watermarks*******

Chapter 1
AJAX Essentials

In This Chapter
 Understanding AJAX
 Using JavaScript to manage HTTP requests
 Creating an XMLHttpRequest object
 Building a synchronous AJAX request
 Retrieving data from an AJAX request
 Managing asynchronous AJAX requests

If you've been following web trends, you've no doubt heard of AJAX. This
technology has generated a lot of interest. In this chapter, I show you what
AJAX really is, how to use it, and how to use a particular AJAX library to
supercharge your web pages.
The first thing is to figure out exactly what AJAX is and what it isn't. It
isn't

A programming language: It isn't one more language to learn along
with the many others you encounter.
New: Most of the technology used in AJAX isn't really all that new; it's
the way the technology is being used that's different.
Remarkably different: For the most part, AJAX is about the same
things you'll see in the rest of this book: building compliant web pages
that interact with the user.

So you have to be wondering why people are so excited about AJAX. It's a
relatively simple thing, but it has the potential to change the way people
think about Internet development. Here's what it really is:

Direct control of client-server communication: Rather than the
automatic communication between client and server that happens with

******ebook converter DEMO Watermarks*******

web forms and server-side programs, AJAX is about managing this
relationship more directly.
Use of the XMLHttpRequest object: This is a special object that's
been built into the DOM of all major browsers for some time, but it
wasn't used heavily. The real innovation of AJAX was finding creative
(and perhaps unintentional) uses for this heretofore virtually unknown
utility.
A closer relationship between client-side and server-side
programming: Up to now, client-side programs (usually JavaScript)
did their own thing, and server-side programs (PHP) operated without
too much knowledge of each other. AJAX helps these two types of
programming work together better.
A series of libraries that facilitate this communication: AJAX isn't
that hard, but it does have a lot of details. Several great libraries have
sprung up to simplify using AJAX technologies. You can find AJAX
libraries for both client-side languages, like JavaScript, and server-side
languages, like PHP.

Perhaps you're making an online purchase with a shopping-cart
mechanism.
In a typical (pre-AJAX) system, an entire web page is downloaded to the
user's computer. There may be a limited amount of JavaScript-based
interactivity, but anything that requires a data request needs to be sent back
to the server. For example, if you're on a shopping site and you want more
information about that fur-lined fishbowl you've had your eye on, you
might click the More Information button. This causes a request to be sent
to the server, which builds an entirely new web page for you containing
your new request.
Every time you make a request, the system builds a whole new page on the
fly. The client and server have a long-distance relationship.
In the old days when you wanted to manage your website's content, you
had to refresh each web page — time-consuming to say the least. But with
AJAX, you can update the content on a page without refreshing the page.
Instead of the server sending an entire page response just to update a few
words on the page, the server just sends the content you want to update and

******ebook converter DEMO Watermarks*******

nothing else.
If you're using an AJAX-enabled shopping cart, you might still click the
fishbowl image. An AJAX request goes to the server and gets information
about the fishbowl, which is immediately placed on the current page,
without requiring a complete page refresh.
AJAX technology allows you to send a request to the server, which can
then change just a small part of the page. With AJAX, you can have a
whole bunch of smaller requests happening all the time, rather than a few
big ones that rebuild the page in large, distracting flurries of activity.

 To the user, this makes the web page look more like traditional
applications. This is the big appeal of AJAX: It allows web applications
to act more like desktop applications, even if these web applications
have complicated features like remote database access.

Google's Gmail was the first major application to use AJAX, and it blew
people away because it felt so much like a regular application inside a web
browser.

AJAX Spelled Out
Technical people love snappy acronyms. Nothing is more intoxicating than
inventing a term. AJAX is one term that has taken on a life of its own. Like
many computing acronyms, it may be fun to say, but it doesn't really mean
much. AJAX stands for Asynchronous JavaScript And XML. Truthfully,
these terms were probably chosen to make a pronounceable acronym rather
than for their accuracy or relevance to how AJAX works.

A is for asynchronous
An asynchronous transaction (at least in AJAX terms) is one in which
more than one thing can happen at once. For example, you can make an
AJAX call process a request while the rest of your form is being processed.
AJAX requests do not absolutely have to be asynchronous, but they usually
are.

******ebook converter DEMO Watermarks*******

When it comes to web design, asynchronous means that you can
independently send and receive as many different requests as you want.
Data may start transmitting at any time without having any effect on other
data transmissions. You could have a form that saves each field to the
database as soon as it's filled out, or perhaps a series of drop-down lists that
generate the next drop-down list based on the value you just selected. (It's
okay if this doesn't make sense right now. It's not an important part of
understanding AJAX, but vowels are always nice in an acronym.)
In this chapter, I show you how to do both synchronous and asynchronous
versions of AJAX.

J is for JavaScript
If you want to make an AJAX call, you simply write some JavaScript code
that simulates a form. You can then access a special object hidden in the
DOM (the XMLHttpRequest object) and use its methods to send that
request to the user. Your program acts like a form, even if there was no
form there. In that sense, when you're writing AJAX code, you're really
using JavaScript. Of course, you can also use any other client-side
programming language that can speak with the DOM, including Flash and
(to a lesser extent) Java. JavaScript is the dominant technology, so it's in
the acronym.
A lot of times, you also use JavaScript to decode the response from the
AJAX request.

A is for . . . and?
I think it's a stretch to use And in an acronym, but AJX just isn't as cool as
AJAX. They didn't ask me.

And X is for . . . data
The X is for XML, which is one way to send the data back and forth from
the server. Because the object you're using is the XMLHttpRequest
object, it makes sense that it requests XML. It can do that, but it can also
get any kind of text data. You can use AJAX to retrieve all kinds of things:

Plain old text: Sometimes you just want to grab some text from the
server. Maybe you have a text file with a daily quote in it or something.

******ebook converter DEMO Watermarks*******

Formatted HTML: You can have text stored on the server as a
snippet of HTML/XHTML code and use AJAX to load this page
snippet into your browser. This gives you a powerful way to build a
page from a series of smaller segments. You can use this to reuse parts
of your page (say, headings or menus) without duplicating them on the
server.
XML data: XML is a great way to pass data around. (That's what it
was invented for.) You might send a request to a program that goes to a
database, makes a request, and returns the result as XML.
JSON data: A newer standard called JSON (JavaScript Object
Notation) is emerging as an alternative to XML for formatted data
transfer. It has some interesting advantages. You might have already
built JSON objects in Book IV, Chapter 4. You can read in a text file
already formatted as a JavaScript object.

Making a Basic AJAX Connection

 AJAX uses some pretty technical parts of the web in ways that
may be unfamiliar to you. Read through the rest of this chapter so that
you know what AJAX is doing, but don't get bogged down in the
details. Nobody does it by hand! (Except people who write AJAX
libraries or books about using AJAX.) In Chapter 2 of this minibook, I
show a library that does all the work for you. If all these details are
making you misty-eyed, just skip ahead to the next chapter and come
back here when you're ready to see how all the magic works.

The basicAJax.html program shown in Figure 1-1 illustrates AJAX at
work.

******ebook converter DEMO Watermarks*******

Figure 1-1: Click the button and you'll see some AJAX magic.

When the user clicks the link, the small pop-up shown in Figure 1-2
appears.

Figure 1-2: This text came from the server.

 If you don't get the joke, you need to go rent Monty Python and
the Holy Grail. It's part of the geek culture. Trust me. In fact, you
should really own a copy.

It's very easy to make JavaScript pop up a dialog box, but the interesting
thing here is where that text comes from. The data is stored on a text file on
the server. Without AJAX, you don't have an easy way to get data from the
server without reloading the entire page.

******ebook converter DEMO Watermarks*******

 You might claim that HTML frames allow you to pull data from
the server, but frames have been deprecated in modern versions of
HTML because they cause a lot of other problems. You can use a frame
to load data from the server, but you can't do all the other cool things
with frame-based data that you can with AJAX. Even if frames were
allowed, AJAX is a much better solution most of the time.

 You may not be able to run this program without a web server.
Like PHP, AJAX requires a server to work properly. If you want to run
this program, put it in a subdirectory of your server and run it through
localhost as you do for PHP programs.

This particular example uses a couple of shortcuts to make it easier to
understand:

The program isn't fully asynchronous. The program pauses while it
retrieves data. As a user, you probably won't even notice this, but as
you'll see, this can have a serious drawback. But the synchronous
approach is a bit simpler, so I start with this example and then extend it
to make the asynchronous version.
This example isn't completely cross-browser compatible. The
AJAX technique I use in this program works fine for IE 7 and later and
all versions of Firefox (and most other standards-compliant browsers).
It does not work correctly in IE 6 and earlier. I recommend that you use
jQuery or another library (described in Chapter 2 of this minibook) for
cross-browser compatibility.

Look over the following code, and you'll find it reasonable enough:
<!DOCTYPE HTML>
<html lang="en";>
<head>
 <meta charset="UTF-8">
 <title>basicAJAX.html</title>
 <script type = "text/javascript">
 function getAJAX(){

******ebook converter DEMO Watermarks*******

 var request = new XMLHttpRequest();
 request.open("GET", "beast.txt", false);
 request.send(null);
 if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert(“Error- " + request.status + ": " +
request.statusText);
 } // end if
 } // end function
 </script>
</head>
<body>
<h1>Basic AJAX</h1>
<form action = "">
 <p>
 <button type = "button"
 onclick = "getAJAX()">
 Summon the vicious beast of Caerbannog
 </button>
 </p>
</form>
</body>
</html>

 Throughout this chapter, I explain exactly how to build an
AJAX-enabled web page by hand. It's good to know how this works,
but almost nobody does it this way in the real world. Read this chapter
to get the basic understanding, but don't worry if the details are a little
foggy. The other chapters in this minibook describe a powerful library
that greatly simplifies AJAX programming. Feel free to skip ahead if
this chapter is too technical. Just come back when you're ready.

Building the HTML form
You don't absolutely need an HTML form for AJAX, but I have a simple
one here. Note that the form is not attached to the server in any way.

<form action = "">
 <p>
 <button type = "button"
 onclick = "getAJAX()">
 Summon the vicious beast of Caerbannog

******ebook converter DEMO Watermarks*******

 </button>
 </p>
</form>

This page is set up like a client-side (JavaScript) interaction. The form has
an empty action element. The code uses a button (not a submit element),
and the button is attached to a JavaScript function called getAJAX().

All you really need is some kind of structure that can trigger a JavaScript
function.

 AJAX isn't a complex technology, but it does draw on several
other technologies. You may need to look over the JavaScript chapters
in Book IV if this material is unfamiliar to you. Although these
examples don't require PHP, they do involve server-side responses like
PHP does, so AJAX is usually studied by people who are already
familiar with both JavaScript and PHP as well as the foundational
XHTML and CSS environments. AJAX is most useful when it also
incorporates PHP, usually involving a database. So AJAX is one of
those tools that's really best at integrating your other tools, and is best
studied after you have a basic grasp of these other technologies.

Creating an XMLHttpRequest object
The key to AJAX is a special object called XMLHttpRequest. All the
major browsers have it, and knowing how to use it in code is what makes
AJAX work. It's pretty easy to create:

var request = new XMLHttpRequest();

 Internet Explorer 5 and 6 had an entirely different way of
invoking the XMLHttpRequest object that involved a technology
called ActiveX. If you want to support these older browsers, use one of
the libraries that I mention in Chapter 2 of this minibook. I've decided
not to worry about them in this introductory chapter.

This line makes an instance of the XMLHttpRequest object. You use

******ebook converter DEMO Watermarks*******

methods and properties of this object to control a request to the server.
AJAX is really nothing more than HTTP, the protocol that your browser
and server quietly use all the time to communicate with each other. You
can think of an AJAX request like this: Imagine that you have a basket
with a balloon tied to the handle and a long string. As you walk around the
city, you can release the basket under a particular window and let it rise.
The window (server) puts something in the basket, and you can then wind
the string to bring the basket back down and retrieve the contents. The
various characteristics of the XMLHttpRequest object are described in
Table 1-1.

Table 1-1 Useful Members of the XMLHttpRequest
Object
Member Description Basket Analogy

open(protocol, URL,
synchronization)

Opens a connection to the
indicated file on the server. Stand under a particular window.

send(parameters) Initiates the transaction with
given parameters (or null).

Release the basket but hang on
to the string.

status
Returns the HTTP status code
returned by the server (200 is
success).

Check for error codes (“window
closed,” “balloon popped,” “string
broken,” or “everything's great”).

statusText Text form of HTTP status. Text form of status code.

responseText Text of the transaction's
response. Get the contents of the basket.

readyState Describes the current status of
the transaction (4 is complete).

Is the basket empty, going up,
coming down, or here and ready
to get contents?

onReadyStateChange

Event handler. Attach a function
to this parameter, and when the
readyState changes, the function
will be called automatically.

What should I do when the state
of the basket changes? For
example, should I do something
when I've gotten the basket
back?

 Don't worry about all the details in Table 1-1. I describe these
things as you need them in the text. Also, some of these elements only
pertain to asynchronous connections, so you won't always need them

******ebook converter DEMO Watermarks*******

all.

Opening a connection to the server
The XMLHttpRequest object has several useful methods. One of the
most important is the open() method:

request.open("GET", "beast.txt", false);

The open() method opens a connection to the server. As far as the server
is concerned, this connection is identical to the connection made when the
user clicks a link or submits a form. The open() method takes the
following three parameters:

Request method: The request method describes how the server should
process the request. The values are identical to the form method values
described in Book V, Chapter 3. Typical values are GET and POST.
A file or program name: The second parameter is the name of a file
or program on the server. This is usually a program or file in the same
directory as the current page.
A synchronization trigger: AJAX can be done in synchronous or
asynchronous mode. (Yeah, I know, then it would just be JAX, but stay
with me here.) The synchronous form is easier to understand, so I use it
first. The next example (and all the others in this book) uses the
asynchronous approach.

For this example, I use the GET mechanism to file called beast.txt from the
server in synchronized mode.

Sending the request and parameters
After you've opened a request, you need to pass that request to the server.
The send() method performs this task. It also provides you with a
mechanism for sending data to the server. This only makes sense if the
request is going to a PHP program (or some other program on the server).
Because I'm just requesting a regular text document, I send the value null
to the server. Chapter 6 of this minibook describes how to work with other
kinds of data.

request.send(null);

******ebook converter DEMO Watermarks*******

This is a synchronous connection, so the program pauses here until the
server sends the requested file. If the server never responds, the page will
hang. (This is exactly why you usually use asynchronous connections.)
Because this is just a test program, assume that everything will work okay
and motor on.
Returning to the basket analogy, the send() method releases the basket,
which floats up to the window. In a synchronous connection, you assume
that the basket is filled and comes down automatically. The next step
doesn't happen until the basket is back on earth. (But if something went
wrong, the next step may never happen because the basket will never come
back.)

Checking the status

 The next line of code doesn't happen until the server passes some
sort of response. Any HTTP request is followed by a numeric code.
Normally, your browser checks these codes automatically, and you
don't see them. Occasionally, you run across an HTTP error code, like
404 (file not found) or 500 (internal server error). If the server was able
to respond to the request, it passes a status code of 200.

The XMLHttpRequest object has a property called status that returns
the HTTP status code. If the status is 200, everything went fine and you
can proceed. If the status is some other value, some type of error occurred.

Fun with HTTP response codes
Just like the post office stamping success/error messages on your envelope, the server
sends back status messages with your request. You can see all the possible status codes
on the World Wide Web Consortium's website at
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html, but the important ones to
get you started are as follows:

200 = OK: This is a success code. Everything went okay, and your response has
been returned.
400 = Bad Request: This is a client error code. It means that something went
wrong on the user side. The request was poorly formed and couldn’t be

******ebook converter DEMO Watermarks*******

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

understood.

404 = Not Found: This is a client error code. The page the user requested
doesn’t exist or couldn’t be found.
408 = Request Timeout: This is a client error code. The server gave up on
waiting for the user’s computer to finish making its request.
500 = Internal Server Error: This is a server error code. It means that the
server had an error and couldn’t fill the request.

 Make sure that the status of the request is successful before you
run the code that depends on the request. (Don't get anything out of the
basket unless the entire process worked.)

You can check for all the various status codes if you want, but for this
simple example, I'm just ensuring that the status is 200:

if (request.status == 200){
 //we got a response
 alert(request.responseText);
 } else {
 //something went wrong
 alert("Error- " + request.status + ": " + request.statusText);
 } // end if

 The request.status property contains the server response.
If this value is 200, I want to do something with the results. In this case,
I simply display the text in an alert box. If the request is anything but
200, I use the statusText property to determine what went wrong
and pass that information to the user in an alert.

The status property is like looking at the basket after it returns. It might
have the requested data in it, or it might have some sort of note. (“Sorry,
the window was closed. I couldn't fulfill your request.”) There's not much
point in processing the data if it didn't return successfully.
Of course, I could do a lot more with the data. If it's already formatted as
HTML code, I can use the innerHTML DOM tricks described in Book IV

******ebook converter DEMO Watermarks*******

to display the code on any part of my page. It might also be some other
type of formatted data (XML or JSON) that I can manipulate with
JavaScript and do whatever I want with.

All Together Now — Making the
Connection Asynchronous

The synchronous AJAX connection described in the previous section is
easy to understand, but it has one major drawback: The client's page stops
processing while waiting for a response from the server. This doesn't seem
like a big problem, but it is. If aliens attack the web server, it won't make
the connection, and the rest of the page will never be activated. The user's
browser hangs indefinitely. In most cases, the user will have to shut down
the browser process by pressing Ctrl+Alt+Delete (or the similar procedure
on other OSs). Obviously, it would be best to prevent this kind of error.

 That's why most AJAX calls use the asynchronous technique.
Here's the big difference: When you send an asynchronous request, the
client keeps on processing the rest of the page. When the request is
complete, an event handler processes the event. If the server goes
down, the browser will not hang (although the page probably won't do
what you want).

In other words, the readyState property is like looking at the basket's
progress. The basket could be sitting there empty because you haven't
begun the process. It could be going up to the window, being filled, coming
back down, or it could be down and ready to use. You're only concerned
with the last state because that means the data is ready.

 I didn't include a figure of the asynchronous version because to
the user, it looks exactly the same as the synchronous connection. Be
sure to put this code on your own server and check it out for yourself.

******ebook converter DEMO Watermarks*******

The asynchronous version looks exactly the same on the front end, but the
code is structured a little differently:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>asynch.html</title>
 <script type = "text/javascript">
 var request; //make request object a global variable
 function getAJAX(){
 request = new XMLHttpRequest();
 request.open("GET", "beast.txt");
 request.onreadystatechange = checkData;
 request.send(null);
 } // end function
 function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
 } // end checkData
 </script>
</head>
<body>
<h1>Asynchronous AJAX transmission</h1>
<form action = "">
 <p>
 <button type = "button"
 onclick = "getAJAX()">
 Summon the beast of Caerbannogh
 </button>
 </p>
</form>
</body>
</html>

Setting up the program
The general setup of this program is just like the earlier AJAX example.
The HTML is a simple button that calls the getAJAX() function.

 The JavaScript code now has two functions. The getAJAX()
******ebook converter DEMO Watermarks*******

function sets up the request, but a separate function (checkData())
responds to the request. In an asynchronous AJAX model, you typically
separate the request and the response in different functions.

Note that in the JavaScript code, I made the XMLHttpRequest object
(request) a global variable by declaring it outside any functions. I
generally avoid making global variables, but it makes sense in this case
because I have two different functions that require the request object.

Building the getAJAX() function
The getAJAX() function sets up and executes the communication with
the server:

function getAJAX(){
 request = new XMLHttpRequest();
 request.open("GET", "beast.txt");
 request.onreadystatechange = checkData;
 request.send(null);
} // end function

The code in this function is pretty straightforward:

1. Create the request object.

The request object is created exactly as it was in the first example in
the section “Creating an XMLHttpRequest object,” earlier in this
chapter.

2. Call request's open()method to open a connection.

Note that this time I left the synchronous parameter out, which creates
the (default) asynchronous connection.

3. Assign an event handler to catch responses.

You can use event handlers much like the ones in the DOM. In this
particular case, I'm telling the request object to call a function called
checkData whenever the state of the request changes.

******ebook converter DEMO Watermarks*******

 You can't easily send a parameter to a function when you call
it using this particular mechanism. That's why I made request a global
variable.

4. Send the request.

As before, the send() method begins the process. Because this is
now an asynchronous connection, the rest of the page continues to
process. As soon as the request's state changes (hopefully because a
successful transfer has occurred), the checkData function is
activated.

Reading the response
Of course, you now need a function to handle the response when it comes
back from the server. This works by checking the ready state of the
response. Any HTTP request has a ready state, which is a simple integer
value that describes what state the request is currently in. You find many
ready states, but the only one you're concerned with is 4, meaning that the
request is finished and ready to process.

Ready, set, ready state!
The readyState property of the request object indicates the ready state of the request.
It has five possible values:

0 = Uninitialized: The request object has been created, but the open() method
hasn't been called on.
1 = Loading: The request object has been created, the open() method has
been called, but the send() method hasn't been called.

2 = Loaded: The request object has been created, the open() method has been
called, the send() method has been called, but the response isn't yet available
from the server.
3 = Interactive: The request object has been created, the open() method has
been called, the send() method has been called, the response has started

******ebook converter DEMO Watermarks*******

trickling back from the server, but not everything has been received yet.

4 = Completed: The request object has been created, the open() method has
been called, the send() method has been called, the response has been fully
received, and the request object is finished with all its request/response tasks.

Each time the readyState property of the request changes, the function you map to
readyStateChanged is called. In a typical AJAX program, this happens four times per
transaction. There's no point in reading the data until the transaction is completed, which
will happen when readyState is equal to 4.

 The basic strategy for checking a response is to check the ready
state in the aptly named request.readyState property. If the ready state
is 4, check the status code to ensure that no error exists. If the ready
state is 4 and the status is 200, you're in business, so you can process
the form. Here's the code:
function checkData(){
 if (request.readyState == 4) {
 // if state is finished
 if (request.status == 200) {
 // and if attempt was successful
 alert(request.responseText);
 } // end if
 } // end if
} // end checkData

Once again, you can do anything you want with the text you receive. I'm
just alerting it, but the data can be incorporated into the page or processed
in any way you want.

******ebook converter DEMO Watermarks*******

Chapter 2
Improving JavaScript and AJAX

with jQuery
In This Chapter

 Downloading and including the jQuery library
 Making an AJAX request with jQuery
 Using component selectors
 Adding events to components
 Creating a simple content management system with jQuery

JavaScript has amazing capabilities. It's useful on its own, and when you
add AJAX, it becomes incredibly powerful. However, JavaScript can be
tedious. You have a lot to remember, and it can be a real pain to handle
multiplatform issues. Some tasks (like AJAX) are a bit complex and
require a lot of steps. Regardless of the task, you always have browser-
compatibility issues to deal with.
For these reasons, web programmers began to compile commonly used
functions into reusable libraries. These libraries became more powerful
over time, and some of them have now become fundamental to web
development.
As these libraries became more powerful, they not only added AJAX
capabilities, but many of them also added features to JavaScript/DOM
programming that were once available only in traditional programming
languages. Many of these libraries allow a new visual aesthetic as well as
enhanced technical capabilities.
A number of very powerful JavaScript/AJAX libraries are available. All
make basic JavaScript easier, and each has its own learning curve. No
library writes code for you, but a good library can handle some of the
drudgery and let you work instead on the creative aspects of your program.
JavaScript libraries can let you work at a higher level than plain JavaScript,

******ebook converter DEMO Watermarks*******

writing more elaborate pages in less time.
Several important JavaScript/AJAX libraries are available. Here are a few
of the most prominent:

DOJO: A very powerful library that includes a series of user interface
widgets (like those in Visual Basic and Java) as well as AJAX features.
Prototype: One of the first AJAX libraries to become popular. It
includes great support for AJAX and extensions for user interface
objects (through the scriptaculous extension).
Yahoo User Interface (YUI): This is used by Yahoo! for all its AJAX
applications. Yahoo! has released this impressive library as open
source.
jQuery: This has emerged as one of the more popular JavaScript and
AJAX libraries. It is the library emphasized in this book.

Introducing jQuery
This book focuses on the jQuery library. Although many outstanding
AJAX/JavaScript libraries are available, jQuery has quickly become one of
the most prominent. Here are some reasons for the popularity of jQuery:

It's a powerful library. The jQuery system is incredibly powerful. It
can do all kinds of impressive things to make your JavaScript easier to
write.
It's lightweight. You need to include a reference to your library in
every file that needs it. The entire jQuery library fits in 55K, which is
smaller than many image files. It won't have a significant impact on
download speed.
It supports a flexible selection mechanism. jQuery greatly simplifies
and expands the document.getElementById mechanism that's
central to DOM manipulation.
It has great animation support. You can use jQuery to make
elements appear and fade, move and slide.
It makes AJAX queries trivial. You'll be shocked at how easy AJAX

******ebook converter DEMO Watermarks*******

is with jQuery.
It has an enhanced event mechanism. JavaScript has very limited
support for events. jQuery adds a very powerful tool for adding event
handlers to nearly any element.
It provides cross-platform support. The jQuery library tries to
manage browser-compatibility issues for you, so you don't have to
stress so much about exactly which browser is being used.
It supports user interface widgets. jQuery comes with a powerful
user interface library, including tools HTML doesn't have, like drag-
and-drop controls, sliders, and date pickers.
It's highly extensible. jQuery has a plug-in library that supports all
kinds of optional features, including new widgets and tools like audio
integration, image galleries, menus, and much more.
It introduces powerful new programming ideas. jQuery is a great
tool for learning about some really interesting ideas like functional
programming and chainable objects. I explain these as you encounter
them, mainly in Chapter 4 of this minibook.
It's free and open source. It's available under an open-source license,
which means it costs nothing to use, and you can look it over and
change it if you wish.
It's reasonably typical. If you choose to use a different AJAX library,
you can still transfer the ideas you learned in jQuery.

Installing jQuery
The jQuery library is easy to install and use. Follow these steps:

1. Go tojquery.com.
2. Download the current version.

As of this writing, the most current version is 1.10.2. There is a 2.X
series, but these versions do not support older browsers, so will not be
adopted until the older browsers (particularly IE 6 and less) are no
longer used at all.

******ebook converter DEMO Watermarks*******

http://jquery.com

 You may be able to choose from a number of versions of the
file. I recommend the minimized version for actual use. To make this
file as small as possible, every unnecessary character (including spaces
and carriage returns) was removed. This file is very compact but
difficult to read. Download the nonminimized version if you want to
actually read the code, but it's generally better to include the minimized
version in your programs.

3. Store the resulting .js file to your working directory.

jQuery-1.10.2.min.js is the current file.

To incorporate the library in your pages, simply link to it as an external
JavaScript file:

<script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>

 Be sure to include the preceding code before you write or include
other code that refers to jQuery.

Importing jQuery from Google

 Easy as it is to add jQuery support, you have another great way to
add jQuery (and other AJAX library) support to your pages without
downloading anything. Google has a publicly available version of
several important libraries (including jQuery) that you can download
from its servers.

This has a couple of interesting advantages:

You don't have to install any libraries. All the library files stay on
the Google server.

******ebook converter DEMO Watermarks*******

The library is automatically updated. You always have access to the
latest version of the library without making any changes to your code.
The library may load faster. The first time one of your pages reads
the library from Google's servers, you have to wait for the full
download, but then the library is stored in a cache (a form of browser
memory) so that subsequent requests are essentially immediate.

Here's how you do it:
<script type = "text/javascript"
 src="http://www.google.com/jsapi"></script>
<script type = "text/javacript">
 // Load jQuery
 google.load("jquery", "1");

//your code here

</script>

Essentially, loading jQuery from Google is a two-step process:

1. Load the Google API from Google.

Use the first <script> tag to refer to the Google AJAX API server.
This gives you access to the google.load() function.

2. Invoke google.load()to load jQuery.
The first parameter is the name of the library you want to load.
The second parameter is the version number. If you leave this
parameter blank, you get the latest version. If you specify a
number, Google gives you the latest variation of that version. In
my example, I want the latest variation of version 1, but not
version 2.

Note that you don't need to install any files locally to use the Google
approach.

******ebook converter DEMO Watermarks*******

 All these options for managing jQuery can be dizzying. Use
whichever technique works best for you. I prefer using the local code
rather than the Google solution because I find it easier, and this method
works even if I'm offline. For smaller projects (like the demonstrations
in this chapter), I don't like the online requirement of Google. In this
chapter, I simply refer to a local copy of the jQuery file.

Your First jQuery App
As an introduction to jQuery, build an application that you can already
create in JavaScript/DOM. This introduces you to some powerful features
of jQuery. Figure 2-1 illustrates the change.html page at work, but the
interesting stuff (as usual) is under the hood.

Figure 2-1: The content of this page is modified with jQuery.

Setting up the page
At first, the jQuery app doesn't look much different than any other
HTML/JavaScript code you've already written, but the JavaScript code is a
bit different:

<!DOCTYPE html>

******ebook converter DEMO Watermarks*******

<html lang = "en-US">

<head>
 <title>change.html</title>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 function changeMe(){
 $("#output").html("I changed");
 }
 </script>
</head>
<body onload = "changeMe()">
 <h1>Basic jQuery demo</h1>
 <div id = "output">
 Did this change?
 </div>
</body>
</html>

 If you're already knowledgeable about jQuery, you may be
horrified at my use of body onload in this example. jQuery provides
a wonderful alternative to the onload mechanism, but I want to
introduce only one big, new idea at a time. The next example illustrates
the jQuery alternative to body onload and explains why it is such an
improvement.

The basic features of changeme.html are utterly unsurprising:

The HTML has a div named output. This div initially says, “Did
this change?” The code should change the content to something else.
The HTML calls a function called changeMe()when the body
finishes loading. This is a mechanism used frequently in DOM
programming, although you see a new way to call an initial function in
the next section.
There is a reference to the jQuery library. Any page that uses
jQuery must load it using one of the mechanisms described earlier in
this chapter.
The changeMe()function looks really crazy. When you run the
program, you can tell what it does. The code gets a reference to the

******ebook converter DEMO Watermarks*******

output div and changes its innerHTML property to reflect a new
value (“I've changed.”). However, the syntax is really new. All that
functionality got packed into one line of (funky-looking) code.

$("#output").html("I changed");

Meet the jQuery node object
The secret behind jQuery's power is the underlying data model. jQuery has
a unique way of looking at the DOM that's more powerful than the
standard object model. Understanding the way this works is the key to
powerful programming with jQuery.

 The jQuery node is a special object that adds a lot of
functionality to the ordinary DOM element. Any element on the web
page (any link, div, heading, or whatever) can be defined as a jQuery
node. You can also make a list of jQuery nodes based on tag types, so
you can have a jQuery object that stores a list of all the paragraphs on
the page or all the objects with a particular class name. The jQuery
object has very useful methods like html(), which is used to change
the innerHTML property of an element.

 The jQuery node is based on the basic DOM node, so it can be
created from any DOM element. However, it also adds significant new
features. This is a good example of the object-oriented philosophy.

Creating a jQuery object
You have many ways to create a jQuery object, but the simplest is through
the special $() function. You can place an identifier (very similar to CSS
identifiers) inside the function to build a jQuery object based on an
element. For example,

var jQoutput = $("#output");

creates a variable called jQoutput, which contains a jQuery object-based
on the output element. It's similar to the following:

******ebook converter DEMO Watermarks*******

var DOMoutput = document.getElementById("output");

The jQuery approach is a little cleaner, and it doesn't get a reference to a
DOM object (as the getElementById technique does), but it makes a
new jQuery object that is based on the DOM element. Don't worry if this is
a little hard to understand. It gets easier as you get used to it.

Enjoying your new jQuery node object
Because jQoutput is a jQuery object, it has some powerful methods. For
example, you can change the content of the object with the html()
method. The following two lines are equivalent:

jQoutput.html("I've changed"); //jQuery version
DOMoutput.innerHTML = "I've changed"; //ordinary JS / DOM

jQuery doesn't require you to create variables for each object, so the code
in the changeMe() function can look like this:

//build a variable and then modify it
var jQoutput = $("#output");
jQoutput.html("I've changed");

Or you can shorten it like this:
$("#output").html("I've changed");

This last version is how the program is actually written. It's very common
to refer to an object with the $() mechanism and immediately perform a
method on that object as I've done here.

Creating an Initialization Function
Many pages require an initialization function. This is a function that's run
early to set up the rest of the page. The body onload mechanism is
frequently used in DOM/JavaScript to make pages load as soon as the
document has begun loading. This technique is described in Book IV,
Chapter 7. While body onload does this job well, a couple of problems
exist with the traditional technique:

It requires making a change to the HTML. The JavaScript code
should be completely separated from HTML. You shouldn't have to
change your HTML to make it work with JavaScript.

******ebook converter DEMO Watermarks*******

The timing still isn't quite right. The code specified in body
onload doesn't execute until after the entire page is displayed. It
would be better if the code was registered after the DOM is loaded but
before the page displays.

Using $(document).ready()
jQuery has a great alternative to body onload that overcomes these
shortcomings. Take a look at the code for ready.html to see how it works:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>ready.html</title>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(changeMe);
 function changeMe(){
 $("#output").html("I changed");
 }
 </script>
</head>
<body>
 <h1>Using the document.ready mechanism</h1>
 <div id = "output">
 Did this change?
 </div>
</body>
</html>

This code is much like change.html, but it uses the jQuery technique for
running initialization code:

The body tag no longer has an onload attribute. This is a common
feature of jQuery programming. The HTML no longer has direct links
to the JavaScript because jQuery lets the JavaScript code attach itself to
the web page.
The initialization function is created with the
$(document).ready()function. This technique tells the browser
to execute a function when the DOM has finished loading (so that it
has access to all elements of the form) but before the page is displayed

******ebook converter DEMO Watermarks*******

(so that any effects of the form appear instantaneous to the user).
$(document)makes a jQuery object from the whole document.
The entire document can be turned into a jQuery object by specifying
document inside the $() function. Note that you don't use quotation
marks in this case.
The function specified is automatically run. In this particular case, I
want to run the changeMe() function, so I place it in the parameter
of the ready() method. Note that I'm referring to changeMe as a
variable, so it has no quotation marks or parentheses. (Look at Book
IV, Chapter 7 for more discussion of referring to functions as
variables.)

 You see several other places (particularly in event handling)
where jQuery expects a function as a parameter. Such a function is
frequently referred to as a callback function because it's called after
some sort of event has occurred. You also see callback functions that
respond to keyboard events, mouse motion, and the completion of an
AJAX request.

Alternatives to document.ready
You sometimes see a couple of shortcuts because it's so common to run
initialization code. You can shorten

$(document).ready(changeMe);

to the following code:
$(changeMe);

If this code is not defined inside a function and changeMe is a function
defined on the page, jQuery automatically runs the function directly just
like the document.ready approach.

You can also create an anonymous function directly:
$(document).ready(function(){

 $("#output").html("I changed");
 });

******ebook converter DEMO Watermarks*******

 I think this (anonymous function) method is cumbersome, but
you frequently see jQuery code using this technique. Personally, I tend
to create a function called init() and call it with a line like this:
$(init);

I think this technique is simple and easy to understand but you may
encounter the other variations as you examine code on the web.

Investigating the jQuery Object
The jQuery object is interesting because it is easy to create from a variety
of DOM elements, and because it adds wonderful, new features to these
elements.

Changing the style of an element
If you can dynamically change the CSS of an element, you can do quite a
lot to it. jQuery makes this process quite easy. After you have a jQuery
object, you can use the css() method to add or change any CSS attributes
of the object. Take a look at styleElements.html, shown in Figure 2-2, as an
example.

Figure 2-2: All the styles here are applied dynamically by jQuery functions.
******ebook converter DEMO Watermarks*******

The code displays a terseness common to jQuery code:
 <!DOCTYPE html>
 <title>styleElements.html</title>
 <meta charset="UTF-8">
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("h1").css("backgroundColor", "yellow");
 $("#myParagraph").css({"backgroundColor":"black",
 "color":"white"});
 $(".bordered").css("border", "1px solid black");
 }
 </script>
</head>
<body>
 <h1>I'm a level one heading</h1>
 <p id = "myParagraph">
 I'm a paragraph with the id "myParagraph."
 </p>
 <h2 class = "bordered">
 I have a border.
 </h2>
 <p class = "bordered">
 I have a border too.
 </p>
</body>
</html>

You find a few interesting things in this program. First, take a look at the
HTML:

It contains an H1 tag. I'm aware that's not too exciting, but I use it to
show how to target elements by DOM type.
There's a paragraph with the ID myParagraph. This will be used
to illustrate how to target an element by ID.
There are two elements with the class bordered. You have no easy
way in ordinary DOM work to apply code to all elements of a
particular class, but jQuery makes it easy.
Several elements have custom CSS, but no CSS is defined. The
jQuery code changes all the CSS dynamically.

The init() function is identified as the function to be run when the
******ebook converter DEMO Watermarks*******

document is ready. In this function, I use the powerful CSS method to
change each element's CSS dynamically. I come back to the CSS in a
moment, but first notice how the various elements are targeted.

Selecting jQuery objects
jQuery gives you several alternatives for creating jQuery objects from the
DOM elements. In general, you use the same rules to select objects in
jQuery as you do in CSS:

DOM elements are targeted as is. You can include any DOM element
inside the $(““) mechanism to target all similar elements. For
example, use $(“h1”) to refer to all H1 objects or $(“p”) to refer
to all paragraphs.
Use the # identifier to target a particular ID. This works exactly the
same as in CSS. If you have an element with the ID myThing, use the
code $(“#myThing”).
Use the . identifier to target members of a class. Again, this is the
same mechanism that you use in CSS, so all elements with the class
bordered attached to them can be modified with the code
$(“.bordered”).
You can even use complex identifiers. You can even use complex
CSS identifiers like $(“li img”);. This identifier only targets
images inside a list item.

These selection methods (all borrowed from familiar CSS notation) add
incredible flexibility to your code. You can now easily select elements in
your JavaScript code according to the same rules you use to identify
elements in CSS.

Modifying the style

 After you've identified an object or a set of objects, you can
apply jQuery methods. One very powerful and easy method is the
css() method. The basic form of this method takes two parameters: a

******ebook converter DEMO Watermarks*******

style rule and value.

For example, to make the background color of all H1 objects yellow, I use
the following code:

$("h1").css("backgroundColor", "yellow");

If you apply a style rule to a collection of objects (like all H1 objects or all
objects with the bordered class), the same rule is instantly applied to all
the objects.
A more powerful variation of the style rule exists that allows you to apply
several CSS styles at once. It takes a single object in JSON notation as its
argument:

$("#myParagraph").css({"backgroundColor":"black",
 "color":"white"});

This example uses a JSON object defined as a series of rule/value pairs. If
you need a refresher on how JSON objects work, look at Book IV, Chapter
4.

Adding Events to Objects
The jQuery library adds another extremely powerful capability to
JavaScript. It allows you to easily attach events to any jQuery object. As an
example, take a look at hover.html, as shown in Figure 2-3.

******ebook converter DEMO Watermarks*******

Figure 2-3: A border appears around each list item when your cursor is over it.

When you move your cursor over any list item, a border appears around the
item. This isn't a difficult effect to achieve in ordinary CSS but it's even
easier in jQuery.

Adding a hover event
Look at the code to see how it works:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>hover.html</title>
 <meta charset="UTF-8">
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);

function init(){
 $("li").hover(border, noBorder);
 } // end init

function border(){
 $(this).css("border", "1px solid black");
 }
 function noBorder(){
 $(this).css("border", "0px none black");
 }
 </script>
</head>
<body>
 <h1>Hover Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

The HTML couldn't be simpler. It's simply an unordered list. The
JavaScript isn't much more complex. It consists of three one-line functions:

init()is called when the document is ready. It makes jQuery
******ebook converter DEMO Watermarks*******

objects of all list items and attaches the hover event to them. The
hover() function accepts two parameters:

The first is a function to be called when the cursor hovers over
the object.
The second is a function to be called when the cursor leaves the
object.

border()draws a border around the current element. The
$(this) identifier is used to specify the current object. In this
example, I use the css function to draw a border around the object.
noBorder()is a function that is very similar to the
border()function, but it removes a border from the current
object.

In this example, I used three different functions. Many jQuery
programmers prefer to use anonymous functions (sometimes called lambda
functions) to enclose the entire functionality in one long line:

$("li").hover(
 function(){
 $(this).css("border", "1px solid black");
 },
 function(){
 $(this).css("border", "0px none black");
 }
);

Note that this is still technically a single line of code. Instead of referencing
two functions that have already been created, I build the functions
immediately where they are needed. Each function definition is a parameter
to the hover() method.

 If you're a computer scientist, you might argue that this is not a
perfect example of a lambda function, and you would be correct. The
important thing is to notice that some ideas of functional programming
(such as lambda functions) are creeping into mainstream AJAX
programming, and that's an exciting development. If you just mutter
“lambda” and then walk away, people will assume that you're some

******ebook converter DEMO Watermarks*******

kind of geeky computer scientist. What could be more fun than that?
Although I'm perfectly comfortable with anonymous functions, I often find
the named-function approach easier to read, so I tend to use complete
named functions more often. All those braces inside parentheses make me
dizzy.

Changing classes on the fly
jQuery supports another wonderful feature. You can define a CSS style and
then add or remove that style from an element dynamically. Figure 2-4
shows a page that can dynamically modify the border of any list item.

Figure 2-4: Click list items, and their borders toggle on and off.

The code shows how easy this kind of feature is to add:
<!DOCTYPE html>
<html lang="en">
<head>
 <title>class.html</title>
 <meta charset="UTF-8">
 <style type = "text/css">
 .bordered {
 border: 1px solid black;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">

******ebook converter DEMO Watermarks*******

 $(init);
 function init(){
 $("li").click(toggleBorder);
 } // end init
 function toggleBorder(){
 $(this).toggleClass("bordered");
 }
 </script>
</head>
<body>
 <h1>Class Demo</h1>

 alpha
 beta
 gamma
 delta

</body>
</html>

Here's how to make this program:

1. Begin with a basic HTML page.

All the interesting stuff happens in CSS and JavaScript, so the actual
contents of the page aren't that critical.

2. Create a class you want to add and remove.

I build a CSS class called bordered that simply draws a border
around the element. Of course, you can make a much more
sophisticated CSS class with all kinds of formatting if you prefer.

3. Link an init()method.

As you're beginning to see, most jQuery applications require some sort
of initialization. I normally call the first function init().

4. Call the toggleBorder()function whenever the user clicks a list
item.

The init() method simply sets up an event handler. Whenever a list
item receives the click event (that is, it is clicked) the

******ebook converter DEMO Watermarks*******

toggleBorder() function should be activated. The
toggleBorder() function, well, toggles the border.

jQuery has several methods for manipulating the class of an element:

addClass() assigns a class to the element.
removeClass() removes a class definition from an element.
toggleClass() switches the class (adds it if it isn't currently
attached or removes it otherwise).

jQuery events
jQuery supports a number of other events. Any jQuery node can read any of the following
events:

change: The content of the element changes.

click: The user clicks the element.

dblClick: The user double-clicks the element.

focus: The user has selected the element.

keydown: The user presses a key while the element has the focus.

hover: The cursor is over the element; a second function is called when the cursor
leaves the element.
mouseDown: A mouse button is clicked over the element.

select: The user has selected text in a text-style input.

Making an AJAX Request with
jQuery

The primary purpose of an AJAX library like jQuery is to simplify AJAX
requests. It's hard to believe how easy this can be with jQuery. Figure 2-5
shows ajax.html, a page with a basic AJAX query.

******ebook converter DEMO Watermarks*******

Figure 2-5: The text file is requested with an AJAX call.

Including a text file with AJAX
This program is very similar in function to the asynch.html program
described in Chapter 1 of this minibook, but the code is much cleaner:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>ajax.html</title>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(getAJAX);
 function getAJAX(){
 $("#output").load("hello.txt");
 }
 </script>
 </head>
 <body>
 <div id = "output"></div>
 </body>
</html>

The HTML is very clean (as you should be expecting from jQuery
examples). It simply creates an empty div called output.
The JavaScript code isn't much more complex. A standard
$(document).ready function calls the getAJAX() function as soon

******ebook converter DEMO Watermarks*******

as the document is ready. The getAJAX() function simply creates a
jQuery node based on the output div and loads the hello.txt file through a
basic AJAX request.

 This example does use AJAX, so if it isn't working, you might
need to remember some details about how AJAX works. A program
using AJAX should be run through a web server, not just from a local
file. Also, the file being read should be on the same server as the
program making the AJAX request.

The load() mechanism described here is suitable for a basic situation
where you want to load a plain-text or HTML code snippet into your pages.
You read about much more sophisticated AJAX techniques in Chapter 6 of
this minibook.

Building a poor man's CMS with AJAX
AJAX and jQuery can be a very useful way to build efficient websites,
even without server-side programming. Frequently a website is based on a
series of smaller elements that can be swapped and reused. You can use
AJAX to build a framework that allows easy reuse and modification of web
content.
As an example, take a look at cmsAJAX, shown in Figure 2-6.

******ebook converter DEMO Watermarks*******

Figure 2-6: This page is created dynamically with AJAX and jQuery.

Although nothing is all that shocking about the page from the user's
perspective, a look at the code can show some surprises:

<!DOCTYPE html>
<html lang = "en">
 <head>
 <meta charset = "UTF-8">
 <title>CMS Using AJAX</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "cmsStd.css" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#heading").load("head.html");
 $("#menu").load("menu.html");
 $("#content1").load("story1.html");
 $("#content2").load("story2.html");
 $("#footer").load("footer.html");
 };
 </script>
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 </div><!-- end heading div -->
 <div id = "menu">

******ebook converter DEMO Watermarks*******

 </div> <!-- end menu div -->
 <div class = "content"
 id = "content1">
 </div> <!-- end content div -->
 <div class = "content"
 id = "content2">
 </div> <!-- end content div -->
 <div id = "footer">
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Look over the code, and you can see these interesting features:

The page has no content! All the divs are empty. None of the text
shown in the screen shot is present in this document, but all is pulled
from smaller files dynamically.
The page consists of empty named divs. Rather than any particular
content, the page consists of placeholders with IDs.
It uses jQuery. The jQuery library is used to vastly simplify loading
data through AJAX calls.
All contents are in separate files. Look through the directory, and you
can see very simple HTML files that contain small parts of the page.
For example, story1.html looks like this:

<h2>Book I - Creating the HTML Foundation</h3>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

The init()method runs on document.ready. When the
document is ready, the page runs the init() method.
The init()method uses AJAX calls to dynamically load content.
It's nothing more than a series of jQuery load() methods.

This approach may seem like a lot of work, but it has some very interesting

******ebook converter DEMO Watermarks*******

characteristics:

If you're building a large site with several pages, you usually want to
design the visual appearance once and reuse the same general template
repeatedly.
Also, you'll probably have some elements (such as the menu and
heading) that will be consistent over several pages. You could simply
create a default document and copy and paste it for each page, but this
approach gets messy. What happens if you have created 100 pages
according to a template and then need to add something to the menu or
change the header? You need to make the change on 100 different
pages. (In fact, this happened. This is the third edition of this book, and
the title has changed slightly in each edition. I only needed to change
the title one time.)

The advantage of the template-style approach is code reuse. Just like the
use of an external style allows you to multiply a style sheet across
hundreds of documents, designing a template without content allows you to
store code snippets in smaller files and reuse them. All 100 pages point to
the same menu file, so if you want to change the menu, you change one file
and everything changes with it.
Here's how you use this sort of approach:

1. Create a single template for your entire site.

Build basic HTML and CSS to manage the overall look and feel for
your entire site. Don't worry about content yet. Just build placeholders
for all the components of your page. Be sure to give each element an
ID and write the CSS to get things positioned as you want.

2. Add jQuery support.

Make a link to the jQuery library, and make a default init() method.
Put in code to handle populating those parts of the page that will
always be consistent. (I use the template shown here exactly as it is.)

3. Duplicate the template.

******ebook converter DEMO Watermarks*******

After you have a sense of how the template will work, make a copy for
each page of your site.

4. Customize each page by changing the init()function.

The only part of the template that changes is the init() function. All
your pages will be identical, except they have customized init()
functions that load different content.

5. Load custom content into the divs with AJAX.

Use the init() function to load content into each div. Build more
content as small files to create new pages.

 This is a great way to manage content, but it isn't quite a full-
blown content-management system. Even AJAX can't quite allow you
to store content on the web. More complex content management
systems also use databases rather than files to handle content. You'll
need some sort of server-side programming (like PHP, covered
throughout Book V) and usually a database (like mySQL, covered in
Book VI) to handle this sort of work. Content-management systems and
complex site design are covered in Book VIII.

******ebook converter DEMO Watermarks*******

Chapter 3
Animating jQuery

In This Chapter
 Hiding and showing elements with jQuery
 Fading elements in and out
 Adding a callback function to a transition
 Element animation
 Object chaining
 Using selection filters
 Adding and removing elements

The jQuery library simplifies a lot of JavaScript coding. One of its best
features is how it adds features that would be difficult to achieve in
ordinary JavaScript and DOM programming. This chapter teaches you to
shake and bake your programs by identifying specific objects, moving
them around, and making them appear, slide, and fade.

Playing Hide and Seek
To get it all started, take a look at hideShow.html shown in Figure 3-1.

******ebook converter DEMO Watermarks*******

Figure 3-1: This page allows you to hide and show elements. At first, it reveals nothing much.

The hideShow program looks simple at first, but it does some quite
interesting things. All of the level-two headings are actually buttons, so
when you click them, interesting things happen:

The show button displays a previously hidden element. Figure 3-2
demonstrates the revealed content.

Figure 3-2: The content element is now visible.

******ebook converter DEMO Watermarks*******

The hide button hides the content. The behavior of the hide button
is pretty obvious. If the content is showing, it disappears instantly.
The toggle button swaps the visibility of the content. If the
content is currently visible, it is hidden. If it is hidden, it appears.
The slide down button makes the content transition in. The slide
down transition acts like a window shade being pulled down to make
the content visible through a basic animation.
The slide up button transitions the content out. This animation
looks like a window shade being pulled up to hide the content.
The speed of the animation can be controlled. It's possible to adjust
how quickly the transition animation plays. This example plays the
slide down animation slowly, and the slide up animation more quickly.
It's possible to specify exactly how long the transition takes in
milliseconds (1/1000ths of a second).
The fade in button allows the element to dissolve into visibility.
This looks much like a fade effect used in video. As in the sliding
animations, the speed of the animation can be controlled.
The fade out button fades the element to the background color.
This technique gradually modifies the opacity of the element so that it
eventually disappears.

You can adjust how quickly the transition animation plays. You can
specify exactly how long the transition takes in milliseconds (1/1000 of a
second). Also, any transition can have a callback function attached.

 Of course, this example relies on animation, which you can't see
in a static book. Be sure to look at this and all other example pages on
my website: www.aharrisbooks.net. Better yet, install them on
your own machine and play around with my code until they make sense
to you.

The animations shown in this example are useful when you want to
selectively hide and display parts of your page:

******ebook converter DEMO Watermarks*******

http://www.aharrisbooks.net

Menus are one obvious use. You might choose to store your menu
structure as a series of nested lists and only display parts of the menu
when the parent is activated.
Small teaser sentences expand to show more information when the
user clicks or hovers over them. This technique is commonly used on
blog and news sites to let users preview a large number of topics, kind
of like a text-based thumbnail image.

Getting transition support
The jQuery library has built-in support for transitions that make these
effects pretty easy to produce. Look over the entire program before digging
into the details:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>hideShow.html</title>
 <meta charset = "UTF-8">
 <style type = "text/css">
 #content {
 width: 400px;
 height: 200px;
 font-size: 200%;
 padding-left:1em;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 }
 h2 {
 width: 10em;
 border: 3px outset black;
 background-color: lightgray;
 text-align: center;
 font-family: sans-serif;
 border-radius: 5px;
 box-shadow: 5px 5px 5px gray;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);

******ebook converter DEMO Watermarks*******

 function init(){
 //styleContent();
 $("#content").hide();
 $("#show").click(showContent);
 $("#hide").click(hideContent);
 $("#toggle").click(toggleContent);
 $("#slideDown").click(slideDown);
 $("#slideUp").click(slideUp);
 $("#fadeIn").click(fadeIn);
 $("#fadeOut").click(fadeOut);
 } // end init
 function showContent(){
 $("#content").show();
 } // end showContent
 function hideContent(){
 $("#content").hide();
 } // end hideContent
 function toggleContent(){
 $("#content").toggle();
 } // end toggleContent
 function slideDown(){
 $("#content").slideDown("medium");
 } // end slideDown
 function slideUp(){
 $("#content").slideUp(500);
 } // end slideUp
 function fadeIn(){
 $("#content").fadeIn("slow", present);
 } // end fadeIn
 function fadeOut(){
 $("#content").fadeOut("fast");
 } // end fadeOut.
 function present(){
 alert("I'm here");
 } // end present
 </script>
</head>
<body>
 <h1>Hide and show</h1>
 <h2 id = "show">Show</h2>
 <h2 id = "hide">Hide</h2>
 <h2 id = "toggle">Toggle</h2>
 <h2 id = "slideDown">Slide Down</h2>
 <h2 id = "slideUp">Slide Up</h2>
 <h2 id = "fadeIn">Fade In</h2>
 <h2 id = "fadeOut">Fade Out</h2>
 <p id = "content">
 This is the content. It is hidden at first, but it is hidden
and
 shown with jQuery techniques.

******ebook converter DEMO Watermarks*******

 </p>
</body>
</html>

This example may look long and complicated when you view it all at once,
but it really isn't hard to understand when you break it into pieces.

Writing the HTML and CSS foundation
The HTML used in this example is minimal, as is common in jQuery
development:

A single level-one heading
A series of level-two headings
A paragraph

The level-two headings will be used as buttons in this example. I use a CSS
style to make the H2 tags look more like buttons (adding a border and
background color). I added an ID attribute to every button so that I can add
jQuery events later.

 If I wanted the H2 elements to look and act like buttons, why
didn't I just make them with button tags in the first place? In this
example, I wanted to focus on the jQuery and keep the HTML as
simple as possible. jQuery helps make any element act like a button
easily, so that's what I did. Users don't expect H2 elements to be
clickable, so you need to do some styling (as I did) to help them
understand that the element can be clicked. For comparison purposes,
the other two examples in this chapter use actual HTML buttons.

 Well-rounded buttons
I used some sneaky CSS tricks to make the H2 elements look like buttons. First, I made
them gray (like most buttons are). I also gave them an outset border to make them appear
in 3D. I added the border-radius element to get rounded corners, and box shadow to

******ebook converter DEMO Watermarks*******

add a little depth.

The other interesting part of the HTML is the content div. In this
example, the actual content isn't really important, but I did add some CSS
to make the content easy to see when it pops up.

 The most critical part of the HTML from a programming
perspective is the inclusion of the ID attribute. This makes it easy for a
jQuery script to manipulate the component, making it hide and reappear
in various ways. Note that the HTML and CSS do nothing to hide the
content. It will be hidden (and revealed) entirely through jQuery code.

Initializing the page
The initialization sequence simply sets the stage and assigns a series of
event handlers:

$(init);

function init(){
 //styleContent();
 $("#content").hide();
 $("#show").click(showContent);
 $("#hide").click(hideContent);
 $("#toggle").click(toggleContent);
 $("#slideDown").click(slideDown);
 $("#slideUp").click(slideUp);
 $("#fadeIn").click(fadeIn);
 $("#fadeOut").click(fadeOut);
 } // end init

 The pattern for working with jQuery should be familiar:

1. Set up an initialization function.

Use the $(document).ready() mechanism (described in Chapter
2 of this minibook) or this cleaner shortcut to specify an initialization

******ebook converter DEMO Watermarks*******

function.

2. Hide the content div.

When the user first encounters the page, the content div should be
hidden.

3. Attach event handlers to each H2 button.

This program is a series of small functions. The init() function
attaches each function to the corresponding button. Note how I
carefully named the functions and buttons to make all the connections
easy to understand.

Hiding and showing the content
All the effects on this page are based on hiding and showing the content
div. The hide() and show() methods illustrate how jQuery animation
works:

function showContent(){
 $("#content").show();
 } // end showContent

function hideContent(){
 $("#content").hide();
 } // end hideContent

Each of these functions works in the same basic manner:

Identifies the content div: Creates a jQuery node based on the
content div.
Hides or shows the node: The jQuery object has built-in methods for
hiding and showing.

The hide and show methods act instantly. If the element is currently
visible, the show() method has no effect. Likewise, hide() has no
effect on an element that's already hidden.

******ebook converter DEMO Watermarks*******

Toggling visibility
In addition to hide() and show(), the jQuery object supports a
toggle() method. This method takes a look at the current status of the
element and changes it. If the element is currently hidden, it becomes
visible. If it's currently visible, it is hidden. The toggleContent()
function illustrates how to use this method:

function toggleContent(){
 $("#content").toggle();
 } // end toggleContent

Sliding an element
jQuery supports effects that allow you to animate the appearance and
disappearance of your element. The general approach is very similar to
hide() and show(), but you find one additional twist:

function slideDown(){
 $("#content").slideDown("medium");
 } // end slideDown

function slideUp(){
 $("#content").slideUp(500);
 } // end slideUp

The slideDown() method makes an element appear like a window
shade being pulled down. The slideUp() method makes an element
disappear in a similar manner.
These functions take a speed parameter that indicates how quickly the
animation occurs. If you omit the speed parameter, the default value is
medium. The speed can be these string values:

Fast
Medium
Slow
A numeric value in milliseconds (1/1000 of a second; the value 500
means 500 milliseconds, or half a second)

******ebook converter DEMO Watermarks*******

 The show(), hide(), and toggle() methods also accept a
speed parameter. In these functions, the object shrinks and grows at the
indicated speed.

A slideToggle() function is also available that toggles the visibility of
the element, but using the sliding animation technique.

Fading an element in and out
A third type of “now you see it” animation is provided by the fade
methods. These techniques adjust the opacity of the element. The code
should look quite familiar by now:

function fadeIn(){
 $("#content").fadeIn("slow", present);
 } // end fadeIn

function fadeOut(){
 $("#content").fadeOut("fast");
 } // end fadeOut.

function present(){
 alert("I'm here");
 } // end present

fadeIn() and fadeout() work just like the hide() and slide()
techniques. The fading techniques adjust the opacity of the element and
then remove it, rather than dynamically changing the size of the element as
the slide and show techniques do.

 I've added one more element to the fadeIn() function. If you
supply the fadeIn() method (or indeed any of the animation
methods described in this section) with a function name as a second
parameter, that function is called upon completion of the animation.
When you click the fade-in button, the content div slowly fades in,
and then when it is completely visible, the present() function gets
called. This function doesn't do a lot in this example but simply pops up

******ebook converter DEMO Watermarks*******

an alert, but it could be used to handle some sort of instructions after
the element is visible. A function used in this way is a callback
function.

If the element is already visible, the callback method is triggered
immediately.

Changing Position with jQuery
The jQuery library also has interesting features for changing any of an
element's characteristics, including its position. The animate.html page
featured in Figure 3-3 illustrates a number of interesting animation
techniques.

 You know what I'm going to say, right? This program moves
things around. You can't see that in a book. Be sure to look at the actual
page. Trust me, it's a lot more fun than it looks in this screen shot.

This page illustrates how to move a jQuery element by modifying its CSS.
It also illustrates an important jQuery technique called object chaining and
a very useful animation method that allows you to create smooth motion
over time. As usual, look over the entire code first; I break it into sections
for more careful review.

******ebook converter DEMO Watermarks*******

Figure 3-3: Click the buttons, and the element moves.

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>Animate.html</title>
 <meta charset="UTF-8">
 <style type = "text/css">
 #content {
 width: 300px;
 height: 200px;
 font-size: 200%;
 background-color: yellow;
 position: absolute;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#move").click(move2);
 $("#glide").click(glide);
 $("#left").click(left);
 $("#right").click(right);
 } // end init
 function move2(){

******ebook converter DEMO Watermarks*******

 $("#content").css("left", "50px");
 $("#content").css("top", "100px");
 } // end move2
 function move(){
 $("#content").css("left", "50px")
 .css("top", "100px");
 } // end move
 function glide(){
 //move to initial spot
 $("#content").css("left", "50px")
 .css("top", "100px");
 //slide to new spot
 $("#content").animate({
 "left": "400px",
 "top": "200px"
 }, 2000);
 } // end glide
 function left(){
 $("#content").animate({"left": "-=10px"}, 100);
 } // end left
 function right(){
 $("#content").animate({"left": "+=10px"}, 100);
 } // end left
 </script>
</head>
<body>
<h1>Animation Demo</h1>
<form action = "">
 <fieldset>
 <button type = "button"
 id = "move">
 move
 </button>
 <button type = "button"
 id = "glide">
 glide
 </button>
 <button type = "button"
 id = "left">
 <--
 </button>
 <button type = "button"
 id = "right">
 -->
 </button>
 </fieldset>
</form>
<p id = "content">
 This content will move in response to the controls.
</p>

******ebook converter DEMO Watermarks*******

</body>
</html>

Creating the framework
The HTML always forms the foundation. This page is similar to the
hideShow page, but I decided to use a real form with buttons as the
control panel. Buttons are not difficult to use, but they are a little more
tedious to code because they must be inside a form element as well as a
block-level element, and they require more coding to produce than H2
elements.
Note that I used < in one of the button captions. This HTML attribute
displays the less-than symbol. Had I used the actual symbol (<), the
browser would have thought I was beginning a new HTML tag and would
have been confused.
The buttons all have id attributes, but I didn't attach functions to them
with the onclick attribute. After you're using jQuery, it makes sense to
commit to a jQuery approach and use the jQuery event techniques.

 The only other important HTML element is the content div.
Once again, this element is simply a placeholder, but I added CSS
styling to make it obvious when it moves around. This element must be
set to be absolutely positioned because the position will be changed
dynamically in the code.

Setting up the events
The initialization is all about setting up the event handlers for the various
buttons. An init() function is called when the document is ready. That
function contains function pointers for the various events, directing traffic
to the right functions when a button is pressed:

function init(){
 $("#move").click(move);
 $("#glide").click(glide);
 $("#left").click(left);
 $("#right").click(right);
 } // end init

******ebook converter DEMO Watermarks*******

As usual, naming conventions makes it easy to see what's going on.

Don't go chaining . . . okay, do it all you want
The move() function isn't really that radical. All it does is use the css()
method described in Book VII, Chapter 2 to alter the position of the
element. After all, position is just a CSS attribute, right? Well, it's a little
more complex than that.

 The position of an element is actually stored in two attributes,
top and left.

Your first attempt at a move() function would probably look like this:
function move(){

 $("#content").css("left", "50px");
 $("#content").css("top", "100px");
 } // end move

 Although this approach certainly works, it has a subtle problem.
It moves the element in two separate steps. Although most browsers are
fast enough to avoid making this an issue, jQuery supports a really neat
feature called node chaining that allows you to combine many jQuery
steps into a single line.

Almost all jQuery methods return a jQuery object as a side effect. So, the
line

$("#content").text("changed");

not only changes the text of the content node but also makes a new node.
You can attach that node to a variable like this if you want:

var newNode = $("#content").text("changed");

However, what most jQuery programmers do is simply attach new
functionality onto the end of the previously defined node, like this:

$("#content").text("changed").click(hiThere);

This new line takes the node created by $(“#content”) and changes its

******ebook converter DEMO Watermarks*******

text value. It then takes this new node (the one with changed text) and adds
a click event to it, calling the hiThere() function when the content
element is clicked. In this way, you build an ever-more complex node by
chaining nodes on top of each other.

 These node chains can be hard to read because they can result in
a lot of code on one physical line. JavaScript doesn't care about carriage
returns, though, because it uses the semicolon to determine the end of a
logical line. You can change the complex chained line so that it fits on
several lines of the text editor like this:

$("#content")
 .text("changed")
 .click(hiThere);

Note that only the last line has a semicolon because it's all one line of logic
even though it occurs on three lines in the editor.

Building the move() function with chaining
Object chaining makes it easy to build the move() function so that it
shifts the content's left and top properties simultaneously:

function move(){
 $("#content").css("left", "50px")
 .css("top", "100px");
 } // end move

This function uses the css() method to change the left property to
50px. The resulting object is given a second css() method call to change
the top property to 100px. The top and left elements are changed at the
same time as far as the user is concerned.

Building time-based animation with
animate()
Using the css() method is a great way to move an element around on the
screen, but the motion is instantaneous. jQuery supports a powerful method
called animate() that allows you to change any DOM characteristics
over a specified span of time. The glide button on animate.html

******ebook converter DEMO Watermarks*******

smoothly moves the content div from (50, 100) to (400, 200) over two
seconds:

function glide(){
 //move to initial spot
 $("#content").css("left", "50px")
 .css("top", "100px");

//slide to new spot
 $("#content").animate({
 "left": "400px",
 "top": "200px"
 }, 2000);
 } // end glide

The function begins by moving the element immediately to its initial spot
with chained css() methods. It then uses the animate() method to
control the animation. This method can have up to three parameters:

A JSON object describing attributes to animate: The first parameter
is an object in JSON notation describing name/value attribute pairs. In
this example, I'm telling jQuery to change the left attribute from its
current value to 400px, and the top value to 200px. Any numeric
value that you can change through the DOM can be included in this
JSON object. Instead of a numerical value, you can use “hide,”
“show,” or “toggle” to specify an action. Review Book IV, Chapter 4
for more details on JSON objects.
A speed attribute: The speed parameter is defined in the same way as
the speed for fade and slide animations. You find three predefined
speeds: slow, medium, and fast. You can also indicate speed in
milliseconds; for example, 2000 means two seconds.
A callback function: This optional parameter describes a function to
be called when the animation is complete. The use of callback
functions is described earlier in this chapter in the section “Fading an
element in and out.”

Couldn't we just use CSS3?
If you recall from Book III, CSS3 has terrific position and animation tools, so why bother

******ebook converter DEMO Watermarks*******

with jQuery if it can be done in plain CSS? That's a really good question. jQuery is actually
using CSS3 when it can, and defaulting to another technique when it encounters a browser
that cannot use jQuery. There's another advantage to the jQuery approach: Because
jQuery is really JavaScript code, when you move stuff around with jQuery, you've got all
the flexibility of a real programming language, with variables, loops, functions, and all that
powerful stuff that a markup language like CSS just doesn't have.

Move a little bit: Relative motion
You can also use the animation mechanism to move an object relative to its
current position. The arrow buttons and their associated functions perform
this task:

function left(){
 $("#content").animate({"left": "-=10px"}, 100);
 } // end left

function right(){
 $("#content").animate({"left": "+=10px"}, 100);
 } // end left

These functions also use the animate() method, but you see a small
difference in the position parameters. The += and –= modifiers indicate
that I want to add to or subtract from (respectively) the value rather than
indicating an absolute position. Of course, you can add as many parameters
to the JSON object as you want, but these are a good start.
Note that because I'm moving a small amount (10 pixels), I want the
motion to be relatively quick. Each motion lasts 100 milliseconds, or 1/10
of a second.

 Easing on down
The jQuery animation() method supports one more option: easing. The term refers to
the relative speed of the animation throughout its lifespan. If you watch the animations on
the animate.html page carefully, you can see that the motion begins slowly, builds speed,
and slows again at the end. This provides a natural-feeling animation. By default, jQuery
animations use what's called a swing easing style (slow on the ends and fast in the
middle, like a child on a swing). If you want to have a more consistent speed, you can

******ebook converter DEMO Watermarks*******

specify “linear” as the fourth parameter, and the animation works at a constant speed. You
can also install plug-ins for more advanced easing techniques.

Modifying Elements on the Fly
The jQuery library supports a third major way of modifying the page: the
ability to add and remove contents dynamically. This is a powerful way to
work with a page. The key to this feature is another of jQuery's most
capable tools — its flexible selection engine. You can also use numerous
attributes to modify nodes. The changeContent.html page, shown in
Figure 3-4, demonstrates some of the power of these tools.

Figure 3-4: The default state of change-Content is a little dull.

Of course, the buttons allow the user to make changes to the page
dynamically. Clicking the Add Text button adds more text to the content
area, as you can see in Figure 3-5.

******ebook converter DEMO Watermarks*******

Figure 3-5: More text can be appended inside any content area.

The clone button is interesting because it allows you to make a copy of
an element and place it somewhere else in the document hierarchy.
Clicking the clone button a few times can give you a page like that
shown in Figure 3-6.

Figure 3-6: I've made several clones of the original content.

The Wrap in Div button lets you wrap an HTML element around any
existing element. The Wrap in Div button puts a div (with a red border)
around every cloned element. You can click this button multiple times

******ebook converter DEMO Watermarks*******

to add multiple wrappings to any element. Figure 3-7 shows what
happens after I wrap a few times.

Figure 3-7: Now you see a red-bordered div around all the cloned elements.

The Change Alternate Paragraphs button increases readability;
Sometimes you want to be able to alternate styles of lists and tables.
jQuery has an easy way to select every other element in a group and
give it a style. The Change Alternate Paragraphs button activates some
code that turns all odd-numbered paragraphs into white text with a
green background. Look at Figure 3-8 for a demonstration.

Figure 3-8: All odd-numbered paragraphs have a new style.

******ebook converter DEMO Watermarks*******

The Reset button resets all the changes you made with the other
buttons.

The code for changeDocument.html seems complex, but it follows the
same general patterns you've seen in jQuery programming. As always, look
over the entire code first and then read how it breaks down:

<!DOCTYPE html>
<html lang = "en-US">
<head>
 <title>changeContent.html</title>
 <meta charset = "UTF-8">
 <style type = "text/css">
 #content {
 width: 300px;
 background-color: yellow;
 left: 300px;
 top: 100px;
 padding-left: .5em;
 border: 0px none black;
 }
 div {
 border: 3px solid red;
 padding: 2px;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#reset").click(reset);
 $("#addText").click(addText);
 $("#wrap").click(wrap);
 $("#clone").click(clone);
 $("#oddGreen").click(oddGreen);
 } // end init
 function reset(){
 //remove all but the original content
 $("p:gt(0)").remove();
 $("div:not(#content)").remove();
 //reset the text of the original content
 $("#content").html("<p>This is the original
content</p>");
 } // end reset
 function addText(){
 $("p:first").append(" …and this was added later.");
 } // end addContent
 function wrap(){

******ebook converter DEMO Watermarks*******

 $("p:gt(0)").wrap("<div></div>");
 } // end wrap
 function clone(){
 $("p:first").clone()
 .insertAfter("p:last")
 .css("backgroundColor", "lightblue");
 } // end clone
 function oddGreen(){
 //turn alternate (odd numbered) paragraph elements green
 $("p:odd").css("backgroundColor", "green")
 .css("color", "white");
 } // end oddGreen
 </script>
</head>
<body>
 <h1>Adding Content Demo</h1>
 <form action = "">
 <fieldset>
 <button type = "button"
 id = "reset">
 reset
 </button>
 <button type = "button"
 id = "addText">
 add text
 </button>
 <button type = "button"
 id = "clone">
 clone
 </button>
 <button type = "button"
 id = "wrap">
 wrap in div
 </button>
 <button type = "button"
 id = "oddGreen">
 change alternate paragraphs
 </button>
 </fieldset>
 </form>
 <div id = "content">
 <p>
 This is the original content
 </p>
 </div>
</body>
</html>

Admittedly you see a lot of code here, but when you consider how much
functionality this page has, it really isn't too bad. Look at it in smaller

******ebook converter DEMO Watermarks*******

pieces, and it all makes sense.

Building the basic page
As usual, begin by inspecting the HTML. The basic code for this page sets
up the playground:

1. Create a form with buttons.

This form will become the control panel. Add a button for each
function you want to add. Make sure that each button has an ID, but
you don't need to specify an onclick() function because the
init() function takes care of that.

2. Build a prototype content div.

Build a div called content, and add a paragraph to the div.

 Be careful with your initial HTML structure. The manipulation
and selection tricks you experiment with in this chapter rely on a
thorough understanding of the beginning page structure. Be sure that
you understand exactly how the page is set up so that you understand
how to manipulate it. If your standard HTML page (before any
JavaScript/jQuery code is added) doesn't validate, it's unlikely your
code will work as expected.

Initializing the code
The initialization section is pretty straightforward. Set up an init()
function, and use it to assign event handlers to all the buttons:

$(init);

function init(){
 $("#reset").click(reset);
 $("#addText").click(addText);
 $("#wrap").click(wrap);
 $("#clone").click(clone);
 $("#oddGreen").click(oddGreen);

******ebook converter DEMO Watermarks*******

 } // end init

Adding text
It's pretty easy to add text to a component. The append() method
attaches text to the end of a jQuery node. Table 3-1 shows a number of
other methods for adding text to a node.

Table 3-1 Methods That Add Text to a Node
Method Description

append(text) Adds the text (or HTML) to the end of the selected element(s)

prepend(text) Adds the content at the beginning of the selected element(s)

insertAfter(text) Adds the text after the selected element (outside the element)

insertBefore(text) Adds the text before the selected element (outside the element)

 More methods are available, but these are the ones I find most
useful. Be sure to check out the official documentation at
http://docs.jquery.com to see the other options.
function addText(){

 $("p:first").append(" …and this was added later.");
 } // end addContent

The append() method adds text to the end of the element, but inside the
element (rather than after the end of the element). In this example, the text
will become part of the paragraph contained inside the content div. The
more interesting part of this code is the selector. It could read like this:

$("p").append(" …and this was added later.");

That would add the text to the end of the paragraph. The default text has
only one paragraph, so that makes lots of sense. If there are more
paragraphs (and there will be), the p selector can select them all, adding the
text to all the paragraphs simultaneously. By specifying p:first, I'm
using a special filter to determine exactly which paragraph should be
affected.
Many of the examples on this page use jQuery filters, so I describe them
elsewhere in the following sections. For now, note that p:first means

******ebook converter DEMO Watermarks*******

http://docs.jquery.com

the first paragraph. Of course, you also see p:last and many more. Read
on. . . .

Attack of the clones
You can clone (copy) anything you can identify as a jQuery node. This
makes a copy of the node without changing the original. The cloned node
isn't immediately visible on the screen. You need to place it somewhere,
usually with an append(), prepend(), insertBefore(), or
insertAfter() method.
Take a look at the clone() function to see how it works:

function clone(){
 $("p:first").clone()
 .insertAfter("p:last")
 .css("backgroundColor", "lightblue");
 } // end clone

1. Select the first paragraph.

The first paragraph is the one I want to copy. (In the beginning, only
one exists, but that will change soon.)

2. Use the clone()method to make a copy.

Now you've made a copy, but it still isn't visible. Use chaining to do
some interesting things to this copy.

3. Add the new element to the page after the last paragraph.

The p:last identifier is the last paragraph, so
insertAfter(“p:last”) means put the new paragraph after the
last paragraph available in the document.

4. Change the CSS.

Just for grins, chain the css() method onto the new element and
change the background color to light blue. This just reinforces the fact
that you can continue adding commands to a node through chaining.

******ebook converter DEMO Watermarks*******

 Note that the paragraphs are inside content. Of course, I
could have put them elsewhere with careful use of selectors, but I put
them where I want them.

It's hard to keep track of changes to the page because a standard view
source command shows you the original source code, not the code that's
been changed by your jQuery magic. jQuery changes the HTML of your
page in memory but doesn't change the text file that contains your page. If
your page is not doing what you expect, you need to look at the script-
generated source code to see what's really going on.

 The debugger tools in Chrome or Firebug are the key to
debugging all kinds of web coding, especially as things get complex
with JavaScript and jQuery. Use the Inspect Element tool to see the
actual content of the page. If your jQuery isn't working, be sure to
check the console to see if it has sent any error messages. Debugging
with the debug tool is described in Book IV, Chapter 3.

Note that the content of the first paragraph is cloned with its current
content and style information copied to the new element. If you clone the
paragraph and then add content to it and clone it again, the first clone has
the default text and the second clone will contain the additional text. If you
modify the CSS style of an element and then clone it, the clone also
inherits any of the style characteristics of the original node.

It's a wrap
Sometimes you want to embed an object inside another element (or two).
For example, the wrap button on the changeContent page surrounds
each cloned paragraph with a <div></div> pair. I've defined the div
tag in my CSS to include a red border. Repeatedly clicking the wrap
button surrounds all cloned paragraphs with red borders. This would be a
very tedious effect to achieve in ordinary DOM and JavaScript, but jQuery
makes it pretty easy to do:

******ebook converter DEMO Watermarks*******

function wrap(){
 $("p:gt(0)").wrap("<div></div>");
 } // end wrap

The wrap() method is pretty easy to understand. If you feed it any
container tag, it wraps that container around the selected node. You can
also use multiple elements, so if you wanted to enclose a paragraph in a
single item list, you could do something like this:

$("p").wrap("");

The resulting code would surround each paragraph with an unordered list
and list item.
Returning to the wrap() function, I've decided not to wrap every
paragraph with a div, just the ones that have been cloned. (Mainly I'm
doing this so that I can show you some other cool selection filters.) The
p:gt(0) selector means to select all paragraphs with an index greater
than 0. In other words, ignore the first paragraph, but apply the following
methods to all other paragraphs. You also find these filters:

Less-than (:lt) isolates elements before a certain index.
Equals (:eq) isolates an element with a certain index.

Alternating styles
It's a common effect to alternate background colors on long lists or tables
of data, but this can be a tedious effect to achieve in ordinary CSS and
JavaScript. Not surprisingly, jQuery selectors make this a pretty easy job:

function oddGreen(){
 //turn alternate (odd numbered) paragraph elements green
 $("p:odd").css("backgroundColor", "green")
 .css("color", "white");
 } // end oddGreen

The :odd selector only chooses elements with an odd index and returns a
jQuery node that can be further manipulated with chaining. Of course, you
also see an :even selector for handling the even-numbered nodes. The
rest of this code is simply CSS styling.

Resetting the page
******ebook converter DEMO Watermarks*******

You need to be able to restore the page to its pristine state. A quick jQuery
function can easily do the trick:

function reset(){
 //remove all but the original content
 $("p:gt(0)").remove();
 $("div:not(#content)").remove();
 //reset the text of the original content
 $("#content").html("<p>This is the original content</p>");
 } // end reset

This function reviews many of the jQuery and selection tricks shown in
this chapter:

1. Remove all but the first paragraph.

Any paragraph with an index greater than 0 is a clone, so it needs to go
away. The remove() method removes all jQuery nodes associated
with the current selector.

2. Remove all divs but the original content.

I could have used the :gt selector again, but instead I use another
interesting selector — :not. This removes every div that isn't the
primary content div. This removes all divs added through the
wrap() function.

3. Reset the original content div to its default text.

Set the default text back to its original status so that the page is reset.

 All I really need here is the last line of code. Changing the
HTML of the content div replaces the current contents with
whatever is included, so the first two lines aren't entirely necessary in
this particular context. Still, it's useful to know how to remove elements
when you need to do so.

More fun with selectors and filters
******ebook converter DEMO Watermarks*******

The jQuery selectors and filters are really fun and powerful. Table 3-2
describes a few more filters and indicates how they might be used.

 Note that this is a representative list. Be sure to check out the
official documentation at http://docs.jquery.com for a more
complete list of filters.

Table 3-2 Selected jQuery Filters
Filter Description

:header Any header tag (H1, H2, H3).

:animated Any element that is currently being animated.

:contains(text) Any element that contains the indicated text.

:empty The element is empty.

:parent This element contains some other element.

:attribute=value The element has an attribute with the specified value.

******ebook converter DEMO Watermarks*******

http://docs.jquery.com

Chapter 4
Using the jQuery User Interface

Toolkit
In This Chapter

 Exploring the jQuery UI
 Installing the UI and templates
 Using UI template classes
 Dragging and dropping
 Binding events
 Resizing elements

The jQuery library is an incredible tool for simplifying JavaScript
programming. It's so popular and powerful that developers began adding
new features to make it even more useful. Among the most important of
these is a framework called jQuery UI (User Interface), sometimes also
called the UI toolkit. That's what this chapter's all about.

What the jQuery User Interface
Brings to the Table

This tool adds some very welcome features to web development, including
new visual elements (widgets), a uniform icon set, and a mechanism for
easily generating attractive CSS styles:

New user interface elements: As a modern user interface tool, HTML
is missing some important tools. Most modern visual languages include
built-in support for such devices as scroll bars, dedicated datepickers,
and multiple tab tools. Although HTML5 does promise some of these
features, support varies greatly by browser. jQuery UI adds versions of
these features that work on older and newer browsers in a consistent

******ebook converter DEMO Watermarks*******

way.
Advanced user interaction: The jQuery widgets allow new and
exciting ways for the user to interact with your page. With the UI
toolkit, you can easily let users make selections by dragging and
dropping elements, and expand and contract parts of the page.
Flexible theme templates: jQuery UI includes a template mechanism
that controls the visual look and feel of your elements. You can choose
from dozens of prebuilt themes or use a tool to build your own
particular look. You can reuse this template library to manage the look
of your other page elements, too (not just the ones defined by the
library).
A complete icon library: The jQuery UI has a library of icons for use
in your web development. It has arrows, buttons, and plenty of other
doodads that can be easily changed to fit your template.
A very clean, modern look: It's very easy to build forward-looking
visual designs with jQuery UI. It supports patterns, shadows, and
plenty of special visual effects.
The power of jQuery: Because jQuery UI is an extension of jQuery, it
adds on to the incredible features of the jQuery language.
Open-source values: The jQuery UI (like jQuery itself) is an open-
source project with a very active community. This means the library is
free to use and can be modified to suit your needs.

 The jQuery toolkit is pretty exciting. The best way to get an
overview of it is to see an example online. The jQuery website
(http://jqueryui.com) is a great place to get the latest
information about jQuery.

It's a theme park
One of the coolest tools in jQuery UI is a concept called a theme, which is
simply a visual rule-set. The theme is essentially a complex CSS document
designed to be used with the UI library.

******ebook converter DEMO Watermarks*******

http://jqueryui.com

Using the themeRoller to get an overview of
jQuery
The jQuery website also features a marvelous tool called the themeRoller.
The themeRoller allows you to select and modify themes, so it's a great
place to preview how themes work, as well as see the key features of the
UI extension. Figure 4-1 shows this web page, which demonstrates many
of the great features of jQuery UI.

Figure 4-1: The themeRoller lets you review many jQuery UI elements and modify their look.

Before you use themeRoller to change themes, use it to get acquainted with
the UI elements. Several useful tools are visible in Figure 4-1:

Accordion: The upper-middle segment of the page has three segments
(section 1, section 2, and section 3). By clicking a section heading, the
user can expand that section and collapse the others.
Slider: Sliders (or scroll bars) are an essential user interface element.
They allow the user to choose a numeric value with an easy visual tool.
jQuery sliders can be adjusted in many ways to allow easy and error-
free input.
Datepicker: It's very difficult to ensure that users enter dates properly.
The datepicker control automatically pops up a calendar into the page

******ebook converter DEMO Watermarks*******

and lets the user manipulate the calendar to pick a date. It's a
phenomenally useful tool.
Tabs: It's common to have a mechanism for hiding and showing parts
of your page. The accordion technique is one way to do so, but tabs are
another very popular technique. This mechanism allows you to build a
very powerful multitab document without much work.

Scrolling down the page, you see even more interesting tools. Figure 4-2
shows some of these widgets in action.

Figure 4-2: Even more exciting widgets.

These widgets demonstrate even more of the power of the jQuery UI
library:

Progress bar: It's always best to design your code so that little delay
exists, but if part of your program is taking some time, a progress bar is
a great reminder that something is happening.
Dialog: The open dialog button pops up what appears to be a
dialog box. It acts much like the JavaScript alert, but it's much nicer
looking, and it has features that make it much more advanced. In
Figure 4-2, the dialog box has a clever title: Dialog Title.
Formatting tools: The jQuery UI includes special tools for setting
apart certain parts of your page as warnings, as highlighted text, or

******ebook converter DEMO Watermarks*******

with added shadows and transparency. If you look carefully at
Figure 4-2, you'll see several examples of special formatting, including
the red alert box, drop shadows, and the UI-highlight style.
Icons: jQuery UI ships with a large collection of icons that you can use
on your page. Hover over each of the icons on the themeRoller to see a
description of the icon. These can be easily used to allow various user
interactions.

 This is just a quick preview of the visual elements. Read more
about how to implement the various elements in Chapter 5 of this
minibook after you understand the basics of how to install and work
with jQuery UI in this chapter.

Look at the left column on the themeRoller page. If you click the gallery
tab (yep, it's using a jQuery UI tab interface), you can see a list of prebuilt
themes. Figure 4-3 shows the themeRoller page with an entirely different
theme in place.

Figure 4-3: Now themeRoller is using the Le Frog theme.

The built-in themes are pretty impressive, but of course, you can make
your own. Although you're always free to edit the CSS manually, the whole

******ebook converter DEMO Watermarks*******

point of the themeRoller application is to make this process easier.
If you go back to the Roll Your Own tab, you can see an accordion
selection that you can use to pick various theme options. You can change
fonts, add rounded corners, pick various color schemes, and much more.
You can mess around with these options all you want and create your own
visual style. You can then save that theme and use it in your own projects.

The themeRoller example
themeRoller is a great example for a number of reasons. It offers a pretty good overview of
the jQuery UI library, but it's also a great example of where the web is going. It's not really
a web page as much as an application that happens to be written in web technologies.
Notice that the functionality of the page (the ability to change styles dynamically) uses
many jQuery and jQuery UI tricks: tabs, accordions, dialog boxes, and so on. This kind of
programming is almost certainly the direction web development is heading, and may
indeed be the primary form of application in the future. Certainly it appears that applications
using this style of user interface and AJAX for data communication and storage are going
to be important for some time to come.

The themes and widgets are obvious features of the jQuery user interface
library, but they aren't the only features. In addition to these more visible
tools, jQuery UI adds a number of new behaviors to jQuery nodes. These
new behaviors (drag and drop, resize, and more) are used to add
functionality to a web page, which is quite difficult to achieve in more
traditional programming.

Wanna drag? Making components
draggable
The basic idea of this program is completely consistent with the jQuery
concepts described in Chapters 2 and 3 of this minibook. The page has very
simple HTML code. An initialization function creates a special jQuery
node and gives it functionality. That's all there is to it.
Your first building example is a simple application that allows the user to
pick up a page element and move it with the mouse. While you do this with
JavaScript and DOM in Book IV, Chapter 7, you'll find it's quite easy to
get the same effect with jQuery UI. Figure 4-4 shows this page in action.

******ebook converter DEMO Watermarks*******

Figure 4-4: The user can simply drag the box anywhere on the page.

This example is a good starting place because it's pretty easy. Often, the
hardest part of jQuery UI applications is attaching to the library. After
that's done (and it's not that hard), the rest of the programming is
ridiculously easy. Take a look at the code, and you can see what I'm talking
about:

<!DOCTYPE html>
<html lang = "en">

<head>
 <title>drag.html</title>
 <meta charset= "UTF-8" />
 <style type = "text/css">
 #dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 }
 </style>
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $("#dragMe").draggable();

******ebook converter DEMO Watermarks*******

 }
 </script>
</head>
<body>
 <h1>Drag Demo</h1>
 <div id = "dragMe">
 Drag me
 </div>
</body>
</html>

Downloading the library

 Writing jQuery UI code isn't difficult, but getting the right parts
of the library can be a bit confusing. The jQuery UI library is much
larger than the standard jQuery package, so you may not want to
include the entire thing if you don't need it.

 Previous versions of jQuery UI allowed you to download the
entire package but stored each of the various elements in a separate
JavaScript file. It was common to have a half-dozen different script
tags active just to get the various elements in place. Worse, some
dependency issues existed, so you needed to make sure that you had
certain packages installed before you used other packages. This made a
simple library quite complex to actually use.

Fortunately, the latest versions of the jQuery UI make this process quite a
bit simpler:

1. Pick (or create) your theme.

Use the themeRoller site to pick a starting place from the template
library. You can then customize your theme exactly to make whatever
you want (changing colors, fonts, and other elements).

2. Download the theme.

******ebook converter DEMO Watermarks*******

The themeRoller has a download button. Click this when you're ready
to download your theme.

3. Pick the elements you want.

When you're first starting on a project, you'll probably pick all the
elements. If you find that the page is loading too slowly, you might
build a smaller version that contains only those elements you need. For
now, pick everything.

4. Download the file.

After you've chosen the elements you want, you can download them in
a zip file.

5. Install the contents of the zip file to your working directory.

 The zip file contains a number of files and directories. Copy
the css and js directories into the directory where your web pages
will be (often the public_html or htdocs directory). You do not
need to copy the development-bundle directory or the index.html
page.

6. If you install multiple themes, copy only the theme information
from additional themes.

All themes use the same JavaScript. Only the CSS (and related image
files) changes. If you want to have multiple themes in your project,
simply copy the CSS contents. Each theme will be a different
subdirectory of the main CSS directory.

7. Link to the CSS files.

******ebook converter DEMO Watermarks*******

 Use the standard link technique to link to the CSS files
created by jQuery UI. You can also link to your own CSS files or use
internal CSS in addition to the custom CSS. Be sure that you get the
path right. Normally, the path looks something like
css/themeName/jquery-ui-1.8.1.custom.css. (Note I'm
not linking to the CSS in this first example. The CSS is explained in
the upcoming section called “Resizing on a Theme.”

8. Link to the JavaScript files.

The jQuery UI toolkit also installs two JavaScript files: the standard
jQuery library and the jQuery UI library. By default, both of these files
are installed in the js directory. You'll need to link to both files. One
will be called something like jquery-1.9.1.js and the other will be
called something like jquery-ui-1.10.3.custom.min.js. Sometimes you
will see minimized files alongside ordinary versions. The minimized
version will have the term min embedded. Either version is fine, but
the minimized version will load faster.

 If something isn't working right, check your file paths again.
Almost always, when the jQuery UI stuff isn't working right, it's
because you haven't linked to all the right files. Also, note that the CSS
files created by jQuery UI also include images. Make sure that your
theme has an associated images directory, or your project may not work
correctly. If you copied the entire CSS and JS directories from the
download, you should be fine.

Writing the program
Here's how you go about putting the program together:

1. Create a basic HTML document.

******ebook converter DEMO Watermarks*******

The standard document doesn't have to be anything special. I created
one div with the ID dragMe. That's the div I want to make draggable
(but of course you can apply dragging functionality to anything you
can select with jQuery).

2. Add the standard jQuery library.

The first script tag imports the standard jQuery library. The UI
library requires jQuery to be loaded first.

3. Add a link to the jQuery UI library.

A second script tag imports the jQuery UI library. (See the
following section on downloading and installing jQuery for details on
how to obtain this library.)

4. Create an initialization function.

Use the standard jQuery techniques to build an initialization function
for your page (as usual, I call mine init()).

5. Build a draggable node.

Use standard jQuery selection techniques to isolate the element(s) you
want to make draggable. Use the draggable() method to make the
element draggable.

6. Test your application.

Believe it or not, that's all there is to it. As long as everything's set up
properly, your element will be draggable! The user can drag it with the
mouse and place it anywhere on the screen.

 If you're really paying attention, you might notice that the jQuery
version that came with the UI is slightly older than the 10.2 version I
used in the previous chapter. Really, it's not a big deal because the

******ebook converter DEMO Watermarks*******

differences are minor. For UI examples, I go with the version of jQuery
bundled with the UI library because I know they're tested to work
together.

Resizing on a Theme
The next example demonstrates two important ideas in the jQuery UI
package:

It shows an element that is resizable. The user can drag on the
bottom or right border to change the size of the element. Making an
element resizable is very similar to making it draggable.
It shows the use of a theme. Take a look at Figure 4-5 to see what's
going on.

Figure 4-5: The size of this lovely element can be changed by the user.

You can see from Figure 4-5 that the page has a definite visual style. The
elements have distinctive fonts and backgrounds, and the headers are in a
particular visual style. Although there's nothing earth-shattering about this
(after all, it's just CSS), the exciting thing is that these styles are defined by
the theme. The theme can easily be changed to another theme (created by
hand or via themeRoller), and the visual look of all these elements will
reflect the new theme.

******ebook converter DEMO Watermarks*******

 Themes provide a further level of abstraction to your websites
that make changing the overall visual style much easier.

Figure 4-6 shows the page after the resize me element has changed
sizes, and you can see that the rest of the page reformats itself to fit the
newly resized element.

Figure 4-6: When the element is resized, the rest of the page adjusts.

The following code reveals that most of the interesting stuff is really CSS
coding, and the resizing is really just more jQuery UI magic:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta http-equiv="content-type" content="text/xml;
charset=utf-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <style type = "text/css">
 h1 {
 text-align: center;
 }
 #resizeMe {

******ebook converter DEMO Watermarks*******

 width: 300px;
 height: 300px;
 text-align: center;
 }
 #sample {
 width: 200px;
 height: 200px;
 margin: 1em;
 }
 </style>
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">
 $(init);

 function init(){
 $("#resizeMe").resizable();
 themify();
 } // end init

 function themify(){
 //add theme-based CSS to the elements
 $("div").addClass("ui-widget")
 .addClass("ui-widget-content")
 .addClass("ui-corner-all");
 $(":header").addClass("ui-widget-header")
 .addClass("ui-corner-all");
 $("#resizeMe").append('<span class = "ui-icon ui-icon-
star">');
 }
 </script>
 <title>resize.htm</title>
</head>
<body>
 <h1>Resize Demo</h1>
 <div id = "resizeMe">
 <h2>Resize me</h2>
 <p>
 Drag the right or bottom to resize.
 </p>
 </div>
 <div id = "sample">
 <h2>Sample Widget</h2>
 <p>
 This is made to look like a widget
 with the theme css code.
 </p>
 </div>
</body>

******ebook converter DEMO Watermarks*******

</html>

Examining the HTML and standard CSS
As usual, the HTML is the foundation of the entire page. It's very clean as
usual, and it shows the general structure of the page. The HTML consists
of only three primary elements: a heading and two divs. Each div contains
its own level-two heading and a paragraph. The divs are given IDs to make
them easier to style.
I also included a basic CSS section to handle the general layout of the page.
I wanted the widgets to have specified beginning sizes, so I used ordinary
CSS to get this effect.

Importing the files
jQuery applications require importation of JavaScript code libraries. In this
application (and most jQuery UI applications), I import three files:

The main jQuery library: This file is the essential jQuery base
library. It is imported as described in Chapter 2 of this minibook, as an
ordinary JavaScript file.
The jQuery UI library: This file is also a standard JavaScript library.
Earlier in this chapter, I describe how to obtain a custom version of this
file.
The theme CSS file: When you create a theme with themeRoller, you
are provided with a CSS file. This file is your theme. Because this is a
CSS file rather than JavaScript code, use the link tag to attach it to
your page.

 Not all jQuery UI examples require a theme, but most do. As you
see in the following example, themes provide some other really great
effects too, so it's worth it to include a theme CSS file whenever you
want to use jQuery UI.

Making a resizable element
******ebook converter DEMO Watermarks*******

Surprisingly, the easiest part of the project is making the resizable
element have the resizable behavior. It's a pretty standard jQuery UI trick:

$(init);
 function init(){
 $("#resizeMe").resizable();
 themify();
 } // end init

1. Begin with an initialization function.

Like all good jQuery code, this example begins with standard
initialization.

2. Make an element resizable.

Identify the resizeMe div as a jQuery node, and use the
resizable() method to make it resizable. That's all there is to it.

3. Call a second function to add theming to the elements.

Although the resizable() method doesn't require use of jQuery
themes, the themes do improve the look of the element.

Adding themes to your elements
The jQuery theme tool makes it quite easy to decorate your elements
through CSS. The great thing about jQuery themes is that they are
semantic; that is, you specify the general purpose of the element and then
let the theme apply the appropriate specific CSS. You can use the
themeRoller application to easily create new themes or modify existing
ones. In this way, you can create a sophisticated look and feel for your site
and write very little CSS on your own. It's a very powerful mechanism.
Many of the jQuery interface elements (such as the accordion and tab tools
described elsewhere in this chapter) automatically use the current CSS
theme. Of course, you can also apply them to any of your own elements to
get a consistent look.

******ebook converter DEMO Watermarks*******

 Themes are simply CSS classes. To apply a CSS theme to an
element, you can just add a special class to the object.

For example, you can make a paragraph look like the current definition of
the ui-widget by adding this code to it:

<div class = "ui-widget">
My div now looks like a widget
</div>

Of course, adding classes into the HTML violates one of the principles of
semantic design (that is, separating the content from the layout), so it's
better (and more efficient) to do the work in JavaScript with jQuery:

function themify(){
 //add theme-based CSS to the elements
 $("div").addClass("ui-widget")
 .addClass("ui-widget-content")
 .addClass("ui-corner-all");
 $(":header").addClass("ui-widget-header")
 .addClass("ui-corner-all");
 $("#resizeMe")
 .append('');
 }

The themify() function adds all the themes to the elements on my page,
applying the pretty jQuery theme to it. I use jQuery tricks to simplify the
process:

1. Identify all divs with jQuery.

I want all the divs on my page to be styled like widgets, so I use jQuery
to identify all div elements.

2. Add the ui-widget class to all divs.

This class is defined in the theme. All jQuery themes have this class
defined, but the specifics (colors, font sizes, and so on) vary by theme.
In this way, you can swap out a theme to change the appearance, and
the code still works. The ui-widget class defines an element as a
widget.

******ebook converter DEMO Watermarks*******

3. Add ui-widget-content as well.

The divs need to have two classes attached, so I use chaining to specify
that divs should also be members of the ui-widget-content
class. This class indicates that the contents of the widget (and not just
the class itself) should be styled.

4. Specify rounded corners.

Rounded corners have become a standard of the Web 2.0 visual design.
This effect is extremely easy to achieve with jQuery — just add the
ui-corner-all class to any element you want to have rounded
corners.

 Rounded corners use CSS3, which is not yet supported by all
browsers. Your page will not show rounded corners in older browsers,
but the page will still work fine otherwise.

5. Make all headlines conform to the widget-header style.

The jQuery themes include a nice headline style. You can easily make
all heading tags (H1 to H6) follow this theme. Use the :header filter
to identify all headings, and apply the ui-widget-header and ui-
corner-all classes to these headers.

The jQuery UI package supports a number of interesting classes, which are
described in Table 4-1.

Table 4-1 CSS Classes Defined by jQuery UI
Class Used On Description

ui-widget
Outer
container of
widget

Makes element look like a widget.

ui-widget-
header

Heading
element Applies distinctive heading appearance.

******ebook converter DEMO Watermarks*******

ui-widget-
content

Widget Applies widget content style to element and children.

ui-state-default Clickable
elements Displays standard (unclicked) state.

ui-state-hover Clickable
elements Displays hover state.

ui-state-focus Clickable
elements Displays focus state when element has keyboard focus.

ui-state-active Clickable
elements Displays active state when mouse is clicked on element.

ui-state-highlight Any widget or
element Specifies that an element is currently highlighted.

ui-state-error Any widget or
element

Specifies that an element contains an error or warning
message.

ui-state-error
text Text element Allows error highlighting without changing other elements

(mainly used in form validation).

ui-state-disabled Any widget or
element Demonstrates that a widget is currently disabled.

ui-corner-all, ui-
corner-tl (etc)

Any widget or
element

Adds current corner size to an element. Specify specific
corners with tl, tr, bl, br, top, bottom, left, right.

ui-widget-
shadow Any widget Applies shadow effect to a widget.

A few other classes are defined in UI themes, but these are the most
commonly used. Refer to the current jQuery UI documentation for more
details.

Adding an icon
Note the small start that appears inside the resizeMe element in
Figure 4-6. This element is an example of a jQuery UI icon. All jQuery
themes support a standard set of icons, which are small (16px square)
images. The icon set includes standard icons for arrows as well as images
commonly used in menus and toolbars (save and load, new file, and so on).
Some jQuery UI elements use icons automatically, but you can also add
them directly. To use an icon in your programs, follow these steps:

1. Include a jQuery UI theme.

The icons are part of the theme package. Include the CSS style sheet
******ebook converter DEMO Watermarks*******

that corresponds with the theme (as you've already done in this
example).

2. Be sure that the images are accessible.

 When you download a theme package, it includes a directory
of images. The images included in this directory are used to create
custom backgrounds as well as icons. The CSS file expects a directory
called images to be in the same directory as the CSS. This directory
should contain several images that begin with ui-icons. These
images contain all the necessary icons. If the icon image files are not
available, the icons will not display. (Of course, you can edit these
images in your graphics tool to customize them if you want.)

3. Create a span where you want the icon to appear.

Place an empty span element wherever you want the icon to appear in
the HTML. You can place the span directly in the HTML if you want,
or you can add it through jQuery. I prefer to add UI elements through
jQuery to keep the HTML as pristine as possible.

4. Attach the ui-icon class to the span.

This tells jQuery to treat the span as an icon. The contents of the span
will be hidden, and the span will be resized to hold a 16-pixel square
icon image.

5. Attach a second class to identify the specific icon.

Look at the themeRoller page to see the available icons. When you
hover over an icon on this page, you can see the class name associated
with the icon.

You can add the code directly in your HTML like this:
<p id = "myPara">
 This is my text

******ebook converter DEMO Watermarks*******

</p>

Or, you can use jQuery to add the appropriate code to your element:
$("#myPara").append('
');

Dragging, Dropping, and Calling
Back

jQuery elements look good, but they also have interesting functionality.
Most jQuery UI objects have the ability to respond to specialized events.
As an example, look over the dragDrop.html page shown in Figure 4-7.

Figure 4-7: The page has a group of draggable elements and a target.

When you drop an element onto the target, the color and content of the
target change, as shown in Figure 4-8.

******ebook converter DEMO Watermarks*******

Figure 4-8: The target knows when something has been dropped onto it.

Another interesting aspect of this program is the inclusion of several
draggable elements. This program demonstrates how jQuery simplifies
working with a number of elements.
Take a look at the entire program before you see the smaller segments:

<!DOCTYPE html>
<html lang = "en">

<head>
 <title>dragDrop.html</title>
 <meta charset = "utf-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <style type = "text/css">
 .dragMe {
 width: 100px;
 height: 100px;
 border: 1px solid blue;
 text-align: center;
 background-color: white;
 position: absolute;
 z-index: 100; }
 #target {
 width: 200px;
 height: 200px; border: 1px solid red;
 text-align: center;
 position: absolute;

******ebook converter DEMO Watermarks*******

 left: 300px;
 top: 100px;
 z-index: 0;
 }
 </style>
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">
 $(init);

function init(){
 // make some clones of dragMe
 cloneDragMe();
 //make all drag me elements draggable
 $(".dragMe").draggable();
 //set target as droppable
 $("#target").droppable();
 //bind events to target
 $("#target").bind("drop", changeTarget);
 $("#target").bind("dropout", resetTarget);
 } // end init

function cloneDragMe(){ for (i = 1; i <= 4; i++){
 zValue = (101 + i) + "";
 yPos = 100 + (i * 20) + "px";
 $("div:first").clone()
 .insertAfter("div:last")
 .css("top", yPos)
 .css("zIndex", zValue)
 .append(" #" + i);
 } // end for loop
 } // end cloneDragMe

function changeTarget(event, ui)
 $("#target").addClass("ui-state-highlight")
 .html("Dropped ")
 .append(ui.draggable.text()); } // end changeTarget

function resetTarget(event, ui){
 $("#target").removeClass("ui-state-highlight")
 .html("Drop on me");
 } // end reset
 </script>
</head>
<body>

******ebook converter DEMO Watermarks*******

 <h1>Drag and Drop Demo</h1>
 <div class = "dragMe">
 Drag me
 </div>
 <div id = "target">
 Drop on me
 </div>
</body>
</html>

Building the basic page
As typical with jQuery, the HTML code is simple. It's very striking that
you only see a single dragMe element. It turns out to be simpler to build a
single element in HTML and use jQuery and JavaScript to make as many
copies as you need. You also see a single target element. I added basic
CSS to make the element easy to see (borders) and set them as absolute
positioned so that I could control the initial position.
Note that I attached an ID to target (because there will be a single target
on the page) and made dragMe a class (because I want to be able to have
several draggable elements on the page).

Initializing the page
The initialization is a bit more elaborate than some of the earlier examples
in this chapter, but it still isn't too difficult to follow. The main addition is
the ability to respond to some specialty events:

$(init);

function init(){
 // make some clones of dragMe
 cloneDragMe();

//make all drag me elements draggable
 $(".dragMe").draggable();

//set target as droppable
 $("#target").droppable();

//bind events to target
 $("#target").bind("drop", changeTarget);
 $("#target").bind("dropout", resetTarget);

******ebook converter DEMO Watermarks*******

} // end init

The steps here aren't hard to follow:

1. Make copies of the dragme element.

This part isn't critical (in fact, I added it after testing with a single
element). However, if you want to have multiple copies of the
draggable element, use a method to encapsulate the process.

2. Make all dragme elements draggable.

Use the jQuery draggable() method on all elements with the
dragMe class.

3. Establish the target as a droppable element.

The droppable() method sets up an element so that it can receive
events when a draggable element is dropped on it. Note that making
something droppable doesn't have any particular effect on its own. The
interesting thing comes when you bind events to the element.

4. Bind a drop event to the target.

Droppable elements can have events attached to them just like any
jQuery object. However, the mechanism for attaching an event to a
user interface object is a little bit different than the standard jQuery
event mechanism (which involves a custom function for each event).
Use the bind() method to specify a function to be called when a
particular event occurs. When the user drops a node that has been made
draggable onto the target element, this triggers the drop event, so call
the changeTarget() function.

5. Bind a dropout event to the target as well.

You can bind another event to occur when the user removes all
draggable elements from the target. This event is called dropout, and

******ebook converter DEMO Watermarks*******

I've told the program to call the resetTarget() function when this
event is triggered.

 You often see programmers using shortcuts for this process.
Sometimes, the functions are defined anonymously in the bind call, or
sometimes the event functions are attached as a JSON object directly in
the droppable() method assignment. Feel free to use these
techniques if you are comfortable with them. I've chosen the technique
used here because I think it is the clearest model to understand.

Handling the drop
When the user drags a dragMe element and drops it on the target, the
target's background color changes and the program reports the text of the
element that was dragged. The code is easy:

function changeTarget(event, ui){
 $("#target").addClass("ui-state-highlight")
 .html("Dropped ")
 .append(ui.draggable.text());
 } // end changeTarget

Here's how to put this together:

1. Create a function to correspond to the drop event.

The drop event is bound to a function called changeTarget, so I
need to create such a function.

2. Include two parameters.

Bound event functions require two parameters. The first is an object
that encapsulates the event (much like the one in regular DOM
programming) and a second element called ui, which encapsulates
information about the user interface. You can use the ui object to
determine which draggable element was dropped onto the target.

3. Highlight the target.

******ebook converter DEMO Watermarks*******

 It's a good idea to signal that the target's state has changed.
You can change the CSS directly (with jQuery) or use jQuery theming
to apply a predefined highlight class. I chose to use the jQuery theme
technique to simply add the ui-state-highlight class to the
target object.

4. Change the text to indicate the new status.

Normally you should do something to indicate what was dropped. (If
it's a shopping application, you should add the element to an array so
that you can remember what the user wants to purchase, for example.)
In this example, I simply change the text of the target to indicate that
the element has been dropped.

5. Use ui.draggable to get access to the element that was dropped.

The ui object contains information about the user interface.
ui.draggable is a link to the draggable element that triggered the
current function. It's a jQuery element, so you can use whatever jQuery
methods you want on it. In this case, I extract the text from the
draggable element and append it to the end of the target's text.

Beauty school dropout events
Another function is used to handle the dropout condition, which occurs
when draggable elements are no longer dropped on the target. I bind the
resetTarget() function to this event:

function resetTarget(event, ui){
 $("#target").removeClass("ui-state-highlight")
 .html("Drop on me");
 } // end reset

All you have to do is this:

1. Remove the highlight class from the target.

******ebook converter DEMO Watermarks*******

One great thing about using the theme classes is how easy they are to
remove. Remove the highlight class, and the target reverts to its
original appearance.

2. Reset the HTML text.

Now that the target is empty, reset its HTML so that it prompts the user
to drop a new element.

Cloning the elements
You can simply run the program as it is (with a single copy of the dragMe
class), but more often, drag and drop is used with a number of elements.
For example, you might allow users to drag various icons from your
catalog to a shopping cart.
The basic jQuery library provides all the functionality necessary to make as
many copies of an element as you want. Copying an element is a simple
matter of using the jQuery clone() method.
The more elaborate code is used to ensure that the various elements display
properly:

function cloneDragMe(){
 for (i = 1; i <=4; i++){
 zValue = (101 + i) + "";
 yPos = 100 + (i * 20) + "px";

$("div:first").clone()
 .insertAfter("div:first")
 .css("top", yPos)
 .css("zIndex", zValue)
 .append(" #" + i);
 } // end for loop
 } // end cloneDragMe

Here are the steps:

1. Create a for loop.

Anytime you're doing something repetitive, a for loop is a likely tool.
In this case, I want to make four clones numbered 1 through 4, so I

******ebook converter DEMO Watermarks*******

have a variable named i that can vary from 1 to 4.

2. Create a zValue for the element.

The CSS zIndex property is used to indicate the overlapping of
elements. Higher values appear to be closer to the user. I give each
element a zOrder of over 100 to ensure that it appears over the target.
(If you don't specify the zIndex, dragged elements might go under
the target and become invisible.) The zValue variable is mapped to
the zIndex.

3. Determine the y position of the element.

I want each successive copy of the dragMe element to be a bit lower
than the previous one. Multiplying i by 20 ensures that each element is
separated from the previous one by 20 pixels. Add 100 pixels to move
the new stack of elements near the original.

4. Make a clone of the first element.

Use the clone() method to make a clone of the first div. (Use the :
first filter to specify which div you want to copy.)

5. Remember to insert the newly cloned element.

 The cloned element exists only in memory until it is
somehow added to the page. I chose to add the element right after the
first element.

6. Set the top of the element with the yPos variable.

Use the yPos variable you calculated earlier to set the vertical position
of the newly minted element. Use the css() method to apply the
yPos variable to the element's left CSS rule.

******ebook converter DEMO Watermarks*******

7. Set the zIndex.

Like the y position, the zValue variable you created is mapped to a
CSS value. In this case, zValue is mapped to the zIndex property.

8. Add the index to the element's text.

Use the append() method to add the value of i to the element's
HTML. This way you can tell which element is which.

******ebook converter DEMO Watermarks*******

Chapter 5
Improving Usability with jQuery
In This Chapter

 Working with scroll bars
 Building a sorting mechanism
 Managing selectable items
 Using the dialog box tool
 Creating an accordion page
 Building a tab-based interface

The jQuery UI adds some really great capabilities to your web pages. Some
of the most interesting tools are widgets, which are user interface elements
not supplied in standard HTML. Some of these elements supplement
HTML by providing easier input options. For example, it can be quite
difficult to get the user to enter a date in a predictable manner. The
datepicker widget provides an easy-to-use calendar for picking dates. The
interface is easy for the programmer to add and makes it hard for the user
to enter the date incorrectly. Another important class of tools provided by
the jQuery UI helps manage complex pages by hiding content until it is
needed.

Multi-Element Designs
Handling page complexity has been a constant issue in web development.
As a page gets longer and more complex, navigating the page becomes
more difficult. The early versions of HTML had few solutions to this
problem. The use of frames was popular for a time because it allows the
programmer to place navigation information in one frame and content in
another. However, frames added additional usability problems and have
fallen from favor. Dynamic HTML and AJAX seem like perfect
replacement technologies, but they can be difficult to implement, especially
in a reliable cross-browser manner.

******ebook converter DEMO Watermarks*******

The jQuery UI provides two incredible tools for managing larger pages:

The accordion tool allows you to create a large page but display only
smaller parts of it at a time.
The tabs tool allows you to easily turn a large page into a page with a
tab menu.

These tools are incredibly easy to use, and they add tremendously to your
page development options. Both of these tools automate and simplify the
DOM and AJAX work it takes to build a large page with dynamic content.

Playing the accordion widget
Some of the most powerful jQuery tools are actually the easiest to use. The
accordion widget has become an extremely popular part of the jQuery UI
toolset. Take a look at accordion.html in Figure 5-1 to see how it works.

Figure 5-1: This page shows the first minibook outline of a familiar-sounding book.

When you look at Figure 5-1, you see headings for the first three
minibooks of this book. The details for the first minibook are available, but
the other books’ details are hidden. If you click the heading for Book II,
Book I is minimized and Book II is now expanded, as you can see
Figure 5-2.

******ebook converter DEMO Watermarks*******

Figure 5-2: Book I is minimized, and Book II is now expanded.

This marvelous effect allows the user to focus on a particular part of a
larger context while seeing the overall outline. It's called an accordion
because the various pieces expand and contract to allow the user to focus
on a part without losing place of its position in the whole. Collapsible
content has become an important usability tool made popular by the system
bar in Mac OS and other popular usability tools.
The accordion effect is strikingly easy to achieve with jQuery:

<!DOCTYPE html>
<html lang = "en-US">
<head>

<title>accordion.html</title>
 <meta charset = "UTF-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

 $(init);
 function init(){
 $("#accordion").accordion();

******ebook converter DEMO Watermarks*******

 }
 </script>
</head>
<body>
<h1>Accordion Demo</h1>
<div id = "accordion">
 <h2>Book I - Creating the HTML Foundation
</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 <h2>Book II - Styling with CSS</h2>

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 <h2>Book III - Using Positional CSS for
Layout</h2>

 Fun with the Fabulous Float
 Building Floating Page Layouts
 Styling Lists and Menus
 Using alternative Positioning

</div>
</body>
</html>

As you can see by looking over the code, it's mainly just HTML. The effect
is really easy to accomplish:

1. Import all the usual suspects.

You need to import the jQuery and jQuery UI JavaScript files, and a
theme CSS file. (See Book VII, Chapter 4 if you need a refresher on
this process.) You also need to make sure that the CSS has access to
the images directory with icons and backgrounds because it will use
some of these images automatically.

******ebook converter DEMO Watermarks*******

2. Build your HTML page as normal.

Build an HTML page as you would normally do. Pay attention to the
sections that you want to collapse. There should normally be a heading
tag for each element, all at the same level (Level 2 headings in my
case).

3. Create a div that contains the entire collapsible content.

Put all the collapsible content in a single div with an ID. You'll be
turning this div into an accordion jQuery element.

4. Add an anchor around each heading you want to specify as
collapsible.

Place an empty anchor tag () around each
heading that you want to use as a collapsible heading. The # sign
indicates that the anchor will call the same page and is used as a
placeholder by the jQuery UI engine. You can add the anchor directly
in the HTML or through jQuery code.

5. Create a jQuery init()function.

Use the normal techniques to build a jQuery initializer as shown in
Chapter 3 of this minibook.

6. Apply the accordion()method to the div.

Use jQuery to identify the div that contains collapsible content and
apply accordion() to it:

function init(){
 $("#accordion").accordion();
 }

Building a tabbed interface
Another important technique in web development is the use of a tabbed
interface. This allows the user to change the contents of a segment by

******ebook converter DEMO Watermarks*******

selecting one of a series of tabs. Figure 5-3 shows an example.
In a tabbed interface, only one element is visible at a time, but the tabs are
all visible. The tabbed interface is a little more predictable than the
accordion because the tabs (unlike the accordion's headings) stay in the
same place. The tabs change colors to indicate which tab is currently
highlighted, and they also change state (normally by changing color) to
indicate that they are being hovered over. When you click another tab, the
main content area of the widget is replaced with the corresponding content.
Figure 5-4 shows what happens when the user clicks the Book 3 tab.

Figure 5-3: This is another way to look at that hauntingly familiar table of contents.

******ebook converter DEMO Watermarks*******

Figure 5-4: Clicking a tab changes the main content and the appearance of the tabs.

Like the accordion, the tab effect is incredibly easy to achieve. Look over
the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

$(init);
 function init(){
 $("#tabs").tabs();
 }

</script>
 <title>tabs.html</title>
</head>
<body>
<h1 class = "ui-state-default">Tab Demo</h1>

******ebook converter DEMO Watermarks*******

<div id = "tabs">

 Book 1
 Book 2
 Book 3

 <div id = "book1">
 <h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

 </div>
 <div id = "book2">
 <h2>Book II - Styling with CSS</h2>

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 </div>
 <div id = "book3">
 <h2>Book III - Using Positional CSS for Layout</h2>y<line><!
[CDATA[
 Fun with the Fabulous Float
 Building Floating Page Layouts
 Styling Lists and Menus
 Using alternative Positioning

 </div>
</div>
</body>
</html>

The mechanism for building a tab-based interface is very similar to the one
for accordions:

1. Add all the appropriate files.

Like most jQuery UI effects, you need jQuery, jQuery UI, and a theme
CSS file. You also need access to the images directory for the

******ebook converter DEMO Watermarks*******

theme's background graphics.

2. Build HTML as normal.

If you're building a well-organized web page anyway, you're already
pretty close.

3. Build a div that contains all the tabbed data.

This is the element that you'll be doing the jQuery magic on.

4. Place main content areas in named divs.

Each piece of content that will be displayed as a page should be placed
in a div with a descriptive ID. Each of these divs should be placed in
the tab div. (See my code for organization if you're confused.)

5. Add a list of local links to the content.

Build a menu of links. Place this at the top of the tabbed div. Each link
should be a local link to one of the divs. For example, my index looks
like this:

 Book 1
 Book 2
 Book 3

6. Build an init()function as usual.

Use the normal jQuery techniques.

7. Call the tabs()method on the main div.

Incredibly, one line of jQuery code does all the work.

Using tabs with AJAX
You have an even easier way to work with the jQuery tab interface. Rather

******ebook converter DEMO Watermarks*******

than placing all your code in a single file, place the HTML code for each
panel in a separate HTML file. You can then use a simplified form of the
tab mechanism to automatically import the various code snippets through
AJAX calls. Look at the AJAXtabs.html code for an example:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "css/ui-lightness/jquery-ui-1.10.3.custom.css" />
 <script type = "text/javascript"
 src = "js/jquery-1.9.1.js"></script>
 <script type = "text/javascript"
 src = "js/jquery-ui-1.10.3.custom.min.js"></script>
 <script type = "text/javascript">

$(init);
 function init(){
 $("#tabs").tabs();
 }
 //
 </script>
 <title>AJAXtabs.html</title>
</head>
<body>
 <h1>AJAX tabs</h1>
 <div id = "tabs">

 Book 1
 Book 2
 Book 3

 </div>
</body>
</html>

Note: I didn't provide a screen shot for the AJAXtabs.html page because it
looks exactly like tabs.html, shown in Figure 5-4.
This version of the code doesn't contain any of the actual content! Instead,
jQuery builds the tab structure and then uses the links to make AJAX
requests to load the content. As a default, it finds the content specified by
the first tab (chap1.html) and loads it into the display area. Here's what
book1.html contains:

******ebook converter DEMO Watermarks*******

<h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

As you can see, book1.html is simply a code snippet. It doesn't need all the
complete trappings of a web page (like the doctype or header) because it's
meant to be pulled in as part of a larger page. The AJAX trick is a
marvelous technique because it allows you to build a modular system quite
easily. You can build these code pages separately and include them easily
into a larger page. This is a good foundation for a content-management
system.

Improving Usability
Although the UI widgets are good-looking and fun, another important
aspect is how they can improve usability. Web pages are often used to get
information from users. Certain kinds of information can be very difficult
for the user to enter correctly. The jQuery UI elements include a number of
tools to help you with this specific problem. The UItools.html page, shown
in Figure 5-5, illustrates some of these techniques.

******ebook converter DEMO Watermarks*******

Figure 5-5: The UItools page uses a tabbed interface to demonstrate many input tools.

A lot is going on in this page, but the tabbed interface really cleans it up
and lets the user concentrate on one idea at a time. Using the tabbed
interface can really simplify your user's life.
This page is a bit long because it has a number of sections. I demonstrate
the code in chunks to make it easier to manage. Be sure to look on the
website for the complete code.
Here's the main HTML code so that you can see the general structure of the
page:

<h1>UI tools</h1>
 <div id = "tabs">

 datePicker
 slider
 selectable
 sortable
 dialog

You see a main div named tabs. This contains a list of links to the various
divs that will contain the demonstrations. I describe each of these divs in
the section that demonstrates it. The page also imports jQuery, jQuery UI,
and the theme CSS. The init() method contains most of the jQuery
code:

******ebook converter DEMO Watermarks*******

$(init);

function init(){
 $("h1").addClass("ui-widget-header");

$("#tabs").tabs();
 $("#datePicker").datepicker();

$("#slider").slider()
 .bind("slide", reportSlider);

$("#selectable").selectable();

$("#sortable").sortable();

$("#dialog").dialog();

//initially close dialog
 $("#dialog").dialog("close");

} // end init

The init section initializes the various components. The details of the
init() function are described in each section as they are used.

Most of these special widgets require the standard jquery link,
jqueryui, and a template to be installed. Many of the widgets use
features from the template library. Of course, you can start with a default
template and tune it up later. You just have to have a template available to
see all the effects.

Playing the dating game
Imagine that you're writing a program that requires a birth date. Getting
date information from the user can be an especially messy problem because
so many variations exist. Users might use numbers for the month, month
names, or abbreviations. Some people use month/day/year, and others use
day/month/year. They may enter the year as two or four characters. (That
silly Y2K thing hasn't really died yet. I still have the bunker in the
backyard.) Worse, it's really hard to pick a date without a calendar in front

******ebook converter DEMO Watermarks*******

of you.

The datepicker dialog box is one of the coolest elements in the entire
jQuery UI library. When you add datepicker() functionality to a
textbox, that textbox becomes a datepicker. When the user selects the date
box, a calendar automatically pops up, as shown in Figure 5-6.

Figure 5-6: The datePicker element turns any text field into a calendar!

The user can select a date on the calendar, and it will be placed in the
textbox in a standard format. You have no better way to get date input from
the user. Building a datepicker can't be much easier:

1. Begin with a jQuery UI page.

You need jQuery, jQuery UI, and a theme to use the datepicker.

2. Build a form with a text field.

Any standard text input element will do. Be sure to give the element an
ID so that you can refer to it in JavaScript:

<div id = "datePickerTab">
 <h2>date picker</h2>
 <input type = "text"
 id = "datePicker" />
 </div>

******ebook converter DEMO Watermarks*******

3. Isolate the text input element with jQuery.

Build a standard jQuery node from the input element.

4. Add the datepicker()functionality.

Use the datePicker() method to convert the text node into a date-
picker. This is usually done in some type of init() function. The rest
is automatic!

$("#datePicker").datepicker();

5. Retrieve data from the form element in the normal way.

When the user has selected the date, it is placed in the text field
automatically. As far as your program is concerned, the text field is
still an ordinary text field. Retrieve the data in the ordinary way.

The datepicker is a powerful tool with a large number of additional options.
Look at the jQuery UI documentation to see how to use it to select date
ranges, produce specific date formats, and much more.

Picking numbers with the slider
Numeric input is another significant usability problem. When you want
users to enter numeric information, it can be quite difficult to ensure that
the data really is a number and that it's in the range you want. Traditional
programmers often use sliders (sometimes called scroll bars) to simplify
accepting numeric input. Figure 5-7 shows a slider.

******ebook converter DEMO Watermarks*******

Figure 5-7: The user can choose a number with the mouse using a slider.

The slider is (like many jQuery UI objects) very easy to set up. Here's the
relevant chunk of HTML code:

<div id = "sliderTab">
 <h2>slider</h2>
 <div id = "slider"></div>
 <div id = "slideOutput">0</div>
 </div>

The Slider tab is a basic div. It contains two other divs:

The slider div is actually empty. It will be replaced by the slider
element when the jQuery is activated.
The other div (slideOutput) in this section will be used to output the
current value of the slider.

Create the slider element in the init() function with some predictable
jQuery code:

$("#slider").slider();

The slider() method turns any jQuery element into a slider, replacing
the contents with a visual slider.
Note that you can add a JSON object as a parameter to set up the slider
with various options. See rgbSlider.html on this book's website for an

******ebook converter DEMO Watermarks*******

example of sliders with customization. For more on how to access this
book's website, see the Introduction.
You can set up a callback method to be called whenever the slider is
moved. In my example, I chained this to the code that created the slider in
the first place:

$("#slider").slider()
 .bind("slide", reportSlider);

Use the bind() method to bind the reportSlider() function
(described next) to the slide event.
The reportSlider() function reads the slider's value and reports it in
an output div:

function reportSlider(){
 var sliderVal = $("#slider").slider("value");
 $("#slideOutput").html(sliderVal);
 } // end reportSlider

To read the value of a slider, identify the jQuery node and invoke its
slider() method again. This time, pass the single word value, and
you get the value of the slider. You can pass the resulting value to a
variable as I did and then do anything you want with that variable.

Selectable elements
You may have a situation where you want the user to choose from a list of
elements. The selectable widget is a great way to create this
functionality from an ordinary list. The user can drag or Ctrl+click items to
select them. Special CSS classes are automatically applied to indicate that
the item is being considered for selecting or selected. Figure 5-8 illustrates
the selection in process.

******ebook converter DEMO Watermarks*******

Figure 5-8: Selectable items are easily chosen with the mouse.

Follow these steps to make a selectable element:

1. Begin with an unordered list.

Build a standard unordered list in your HTML. Give the ul an ID so
that it can be identified as a jQuery node:

<div id = "selectableTab">
 <h2>selectable</h2>
 <ul id = "selectable">
 alpha
 beta
 gamma
 delta

 </div>

2. Add CSS classes for selecting and selected states.

If you want the selectable items to change appearance when the items
are being selected or have been selected, add CSS classes as shown.
Some special classes (ui-selecting and ui-selected) are
predefined and will be added to the elements at the appropriate times:

<style type = "text/css">
 h1 {

******ebook converter DEMO Watermarks*******

 text-align: center;
 }

#selectable .ui-selecting {
 background-color: gray;
 }
 #selectable .ui-selected {
 background-color: black;
 color: white;
 }
</style>

3. In the init()function, specify the list as a selectable node.

Use the standard jQuery syntax: selectable().

$("#selectable").selectable();

The ui-selected class is attached to all elements when they have been
selected. Be sure to add some kind of CSS to this class, or you won't be
able to tell that items have been selected.
If you want to do something with all the items that have been selected, just
create a jQuery group of elements with the ui-selected class:

var selectedItems = $(".ui-selected");

Building a sortable list
Sometimes you want the user to be able to change the order of a list. This
is easily done with the sortable widget. Figure 5-9 shows the sortable
list in its default configuration. Of course you'll probably want to indicate
somehow that the list is sortable, because this feature is not obvious to the
user.

******ebook converter DEMO Watermarks*******

Figure 5-9: This looks like an ordinary list.

The user can grab members of the list and change their order, as shown in
Figure 5-10.

Figure 5-10: The user can drag the elements into a different order.

Making a sortable list is really easy. Follow these steps:

1. Build a regular list.

Sortable elements are usually lists. The list is a regular list, but with an
******ebook converter DEMO Watermarks*******

ID:

<div id = "sortableTab">
 <h2>sortable</h2>
 <ul id = "sortable">
 alpha
 beta
 gamma
 delta

 </div>

2. Turn it into a sortable node.

Add the following code to the init() method:

$("#sortable").sortable();

Creating a custom dialog box
JavaScript supplies a few dialog boxes (the alert and prompt dialog boxes),
but these are quite ugly and relatively inflexible. The jQuery UI includes a
technique for turning any div into a virtual dialog box. The dialog box
follows the theme and is resizable and movable. Figure 5-11 shows a
dialog box.

Figure 5-11: This dialog box is actually a jQuery UI node.

******ebook converter DEMO Watermarks*******

 Building the dialog box is not difficult, but you need to be able to
turn it on and off with code, or it will not act like a proper dialog box
(which mimics a window in the operating system):

1. Create the div you intend to use as a dialog box.

Create a div and give it an ID so that you can turn it into a dialog box
node. Add the title attribute, and the title shows up in the dialog
box's title bar.

<div id = "dialog"
 title = "my dialog">
 <p>
 The dialog class allows you to have a movable,
sizable
 customized dialog box consistent with the
installed
 page theme.
 </p>
 </div>

2. Turn the div into a dialog box.

Use the dialog() method to turn the div into a jQuery dialog box
node in the init() function:

$("#dialog").dialog();

3. Hide the dialog box by default.

 Usually you don't want the dialog box visible until some sort
of event happens. In this particular example, I don't want the dialog
box to appear until the user clicks a button. I put some code to close the
dialog box in the init() function so that the dialog box will not
appear until it is summoned.

******ebook converter DEMO Watermarks*******

4. Close the dialog box.

To close a dialog box, refer to the dialog box node and call the
dialog() method on it again. This time, send the single value
“close” as a parameter, and the dialog box will immediately close:

//initially close dialog
 $("#dialog").dialog("close");

5. Clicking the X automatically closes the dialog box.

The dialog box has a small X that looks like the Close Window icon on
most windowing systems. The user can close the dialog box by
clicking this icon.

6. You can open and close the dialog box with code.

My Open Dialog and Close Dialog buttons call functions that control
the behavior of the dialog box. For example, here is the function
attached to the Open Dialog button:

function openDialog(){
 $(“#dialog").dialog(“open");
 } // end openDialog

******ebook converter DEMO Watermarks*******

Chapter 6
Working with AJAX Data

In This Chapter
 Understanding the advantages of server-side programming
 Getting to know PHP
 Writing a form for standard PHP processing
 Building virtual forms with AJAX
 Submitting interactive AJAX requests
 Working with XML data
 Responding to JSON data

AJAX and jQuery are incredibly useful, but perhaps the most important use
of AJAX is to serve as a conduit between the web page and programs
written on the server. In this chapter, you get an overview of how
programming works on the web server and how AJAX changes the
relationship between client-side and server-side programming. You read
about the main forms of data sent from the server, and you see how to
interpret this data with jQuery and JavaScript.

Sending Requests AJAX Style
AJAX work in other parts of this book involves importing a preformatted
HTML file. That's a great use of AJAX, but the really exciting aspect of
AJAX is how it tightens the relationship between the client and server.
Figure 6-1 shows a page called AJAXtest.html, which uses a JavaScript
function to call a PHP program and incorporates the results into the same
page.

******ebook converter DEMO Watermarks*******

Figure 6-1: This page gets data from PHP with no form!

Sending the data
The AJAX version of this program is interesting because it has no form.
Normally an HTML page that makes a request of a PHP document has a
form, and the form requests the PHP page. This page has no form, but a
JavaScript function creates a “virtual form” and passes this form data to a
PHP page. Normally the result of a PHP program is a completely new
page, but in this example the results of the PHP program are integrated
directly onto the original HTML page. Begin by looking over the
HTML/JavaScript code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>AJAXTest.html</title>
 <meta charset= "UTF-8" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(init);
 function init(){
 $.get("simpleGreet.php", { "userName": "Andy" },
processResult);
 }
 function processResult(data, textStatus){

******ebook converter DEMO Watermarks*******

 $("#output").html(data);
 }
 </script>
</head>
<body>
<h1>AJAX Test</h1>
<div id = "output">
 This is the default output
</div>
</body>
</html>

This program uses a jQuery function to simulate a form. It generates its
own virtual form and passes it directly to the PHP program. The PHP
program then processes the form data and produces text results, which are
available for JavaScript to handle directly. In essence, JavaScript and
jQuery are directly managing the server request (rather than allowing the
browser to do it automatically) so that the programmer has more control
over the process.
Here's how it works:

1. Begin with an HTML framework.

As always, HTML forms the spine of any web program. The HTML
here is quite simple — a heading and a div for output. Note that this
example does not include a form.

2. Include the jQuery library.

You can do AJAX without jQuery, but you don't have much reason to
do that. The jQuery library makes life much easier and manages cross-
browser issues to boot. You can also incorporate the jQuery UI and a
theme if you choose, but they aren't absolutely necessary.

3. Initialize as usual.

As soon as this program runs, it's going to get data from the server. (In
the next example, I show you how to make this process more
interactive.) Set up an init() function in the normal way to handle
immediate execution after the page has loaded.

******ebook converter DEMO Watermarks*******

4. Use the.get()function to set up an AJAX call.

jQuery has a number of interesting AJAX functions. The .ajax()
function is a very powerful tool for managing all kinds of AJAX
requests, but jQuery also includes a number of utility functions that
simplify particular kinds of requests. The get() function used here
sets up a request that looks to the server just like a form submitted with
the get method. (Yep, there's also a post() function that acts like a
post form.)

5. Indicate the program to receive the request.

Typically your AJAX requests specify a program that should respond
to the request. I'm using greetUser.php.

6. Pass form data as a JSON object.

Encapsulate all the data you want to send to the program as a JSON
object. (Check out Book IV, Chapter 4 for a refresher on JSON.)
Typically this will be a series of name/value pairs. In this example, I'm
simply indicating a field named userName with the value “Andy”.

7. Specify a callback function.

Normally you want to do something with the results of an AJAX call.
Use a callback function to indicate which function should execute
when the AJAX call is completed. In this example, I call the
processResult() function as soon as the server has finished
returning the form data.

Simplifying PHP for AJAX
One of the nice things about AJAX is how it simplifies your server-side
programming. Most PHP programs create an entire page every time.
(Check out nameForm.html and greetUser.php on the companion website
to compare a more typical HTML/PHP solution. See this book's
Introduction for more on the website.) That's a lot of overhead, building an
entire HTML page every pass. A lot of material is repeated. However,
because you're using AJAX, the PHP result doesn't have to create an entire

******ebook converter DEMO Watermarks*******

web page. The PHP can simply create a small snippet of HTML.
Take a look at simpleGreet.php and you can see that it's very stripped
down:

<?php
$userName = filter_input(INPUT_GET, "userName");
print "<p>Hi, $userName!</p> ";
?>

 This is a lot simpler than most PHP programs. All it needs to do
is grab the username and print it back out. The JavaScript function
takes care of making the code go in the right place. When you're using
AJAX, the HTML page stays on the client, and JavaScript makes
smaller calls to the server. The PHP is simpler, and the code
transmission is generally smaller because there's less repeated structural
information. Be sure if the data was sent through the GET method, you
extract it with INPUT_GET.

Back in the HTML, I need a function to process the results of the AJAX
request after it has returned from the server. The processResult()
function has been designated as the callback function, so take another look
at that function:

function processResult(data, textStatus){
 $("#output").html(data);
 }

This function is pretty simple with jQuery:

1. Accept two parameters.

AJAX callback functions always accept two parameters. The first is a
string that contains whatever output was sent by the server (in this case,
the greeting from processResult.php). The second parameter contains
the text version of the HTTP status result. The status is useful for
testing in case the AJAX request was unsuccessful.

2. Identify an output area.

******ebook converter DEMO Watermarks*******

Just make a jQuery node from the output div.

3. Pass the data to the output.

You sometimes do more elaborate work with AJAX results, but for
now, the results are plain HTML that you can just copy straight to the
div.

Building a Multipass Application

 The most common use of AJAX is to build an application that
hides the relationship between the client and the server. For example,
look at the multiPass.html page shown in Figure 6-2. This seems to be
an ordinary HTML page. It features a drop-down list that contains hero
names. However, that list of names comes directly from a database,
which can't be read directly in HTML/JavaScript. When the user selects
a hero from the list, the page is automatically updated to display details
about that hero. Again, this data comes directly from the database.
Figure 6-3 shows the page after a hero has been selected.

Figure 6-2: The user can choose from a list of heroes.
******ebook converter DEMO Watermarks*******

Figure 6-3: Hero data is automatically updated from the database.

It's certainly possible to get this behavior from PHP alone, but it's
interesting to see an HTML/JavaScript page that can access data from a
database. Of course, some PHP is happening, but AJAX manages the
process. Take a look at the code for multiPass.html to see what's
happening:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>multiPass.html</title>
 <meta charset="UTF-8">
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">

$(init);

function init(){
 //load up list from database
 $("#heroList").load("loadList.php");
 } // end init

function showHero(){
 //pass a hero id, retrieve all data about that hero
 heroID = $("#heroList").val();
 $("#output").load("showHero.php", {"heroID": heroID});

******ebook converter DEMO Watermarks*******

 } // end showHero
 </script>
</head>
<body>
 <h1>Multi - Pass Demo</h1>
 <form>
 <fieldset>
 <label>hero</label><p>
 <select id = "heroList"
 onchange = "showHero()">
 </select>
 <div id = "output">
 Please select a hero for more information...
 </div>
 </fieldset>
 </form>
</body>
</html>

Setting up the HTML framework
As always, the HTML page provides the central skeleton of the page. This
site is reasonably simple because it sets up some empty areas that will be
filled in with AJAX requests later:

1. Import jQuery.

The jQuery library makes AJAX really simple, so begin by importing
the library. Check out Chapter 2 of this minibook if you need a
refresher on importing jQuery. You can also include the jQuery UI
modules if you want, but it isn't necessary for this simple example.

2. Build a simple form.

The page has a form, but this form is designed more for client-side
interaction than server-side. Note that the form does not specify an
action parameter. That's because the form won't be directly contacting
the PHP program. Let AJAX functions do that.

3. Don't add a button.

******ebook converter DEMO Watermarks*******

 Traditional forms almost always have buttons (either
standard buttons in client-side coding or submit buttons for server-
side). Although you can still include buttons, one of the goals of AJAX
is to simplify user interaction. The page will update as soon as the user
selects a new hero, so you don't need a button.

4. Create an empty <select> object.

Build an HTML select element that will contain all the hero names,
but don't fill it yet. The hero names should come from the database.
Give the <select> object an id property so that it can be
manipulated through the code.

5. Apply an onchange event to the <select> object.

When the user chooses a new hero, call a JavaScript function to
retrieve data about that hero.

6. Build a div for output.

Create a placeholder for the output. Give it an id so that you can refer
to it later in code.

Loading the select element
The first task is to load the select element from the database. This
should be done as soon as the page is loaded, so the code will go in a
standard init() function:

1. Write an initialization function.

Use the standard jQuery technique for this. I just use the $(init)
paradigm because I think it's easiest.

2. Build a jQuery node based on the <select> object.

******ebook converter DEMO Watermarks*******

Use jQuery selection techniques to build a jQuery node.

3. Invoke the jQuery load()method.

This method allows you to specify a server-side file to activate. Many
AJAX examples in this book use plain HTML files, but in this case,
you call a PHP program.

 The load() method works just like get() (used earlier in
this chapter), but it's a bit easier to use load() when the purpose of
the AJAX call is to populate some element on your web page (as is the
case here).

4. Call loadList.php.

When you call a PHP program, you won't be loading in the text of the
program. Instead, you're asking that program to do whatever it does (in
this case, get a list of hero names and heroIDs) and place the results
of the program in the current element's contents. In this situation, the
PHP program does a database lookup and returns the <option>
elements needed to flesh out the <select> object.

Writing the loadList.php program
Of course, you need to have a PHP program on the server to do the work.
AJAX makes PHP programming a lot simpler than the older techniques
because each PHP program typically solves only one small problem, rather
than having to build entire pages. The loadList.php program is a great
example:

<?php
//connect to database
 try {
 $con= new PDO('mysql:host=host;dbname=dbName', "user",
"pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

******ebook converter DEMO Watermarks*******

$result = $con->query('SELECT * FROM hero');
 $result->setFetchMode(PDO::FETCH_ASSOC);

foreach($result as $row){
 $id = $row["heroID"];
 $name = $row["name"];

print <<< HERE
 <option value = "$id">$name</option>

HERE;

} // end record loop
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

?>

The code for loadList.php is typical of PHP programs using AJAX. It's
small and focused and does a simple job cleanly. (I tend to think of PHP
programs in AJAX more like external functions than complete programs.)
The key to this particular program is understanding the output I'm trying to
create. Recall that this example has an empty select element on the
form. I want the program to add the following (bold) source code to the
page:

 <select id="heroList" onchange="showHero()">
 <option value="1">The Plumber</option>
 <option value="2">Binary Boy</option>
 <option value="3">The Janitor</option>
</select>

It should go to the database and find all the records in the hero table. It
should then assign heroID to the value attribute of each option, and
should display each hero's name. After you know what you want to create,
it isn't difficult to pull off:

1. Make a database connection.

In this example, PHP is used mainly for connecting to the database. It's
******ebook converter DEMO Watermarks*******

not surprising that the first task is to make a data connection. Build a
connection to your database using the techniques outlined in Book VI,
Chapter 5.

2. Create a query to get data from the database.

The <option> elements I want to build need the heroID and name
fields from the hero database. It's easiest to just use a SELECT *
FROM hero; query to get all the data I need.

3. Apply the query to the database.

Pass the query to the database and store the results in the $result
variable.

4. Cycle through each record.

Use the PDO associative array-fetching technique described in Book
VI, Chapter 5.

5. Build an <option> element based on the current record.

Because each record is stored as an associative array, it's easy to build
an <option> element using fields from the current record.

6. Print the results.

 Whatever you print from the PHP program becomes the
contents of the jQuery element that called the load() method. In this
case, the <option> elements are placed in the <select> object
(where all good <option> elements live).

Responding to selections
After the page has initialized, the <select> object contains a list of the

******ebook converter DEMO Watermarks*******

heroes. When the user selects a hero, the showHero() function is called
by the select element's onchange event.

The showHero() function is another AJAX function. It gathers the
details needed to trigger another PHP program. This time, the PHP
program needs a parameter. The showHero() function simulates a form
with a data element in it and then passes that data to the PHP through the
AJAX load() method:

function showHero(){
 //pass a hero id, retrieve all data about that hero
 heroID = $("#heroList").val();
 $("#output").load("showHero.php", {"heroID": heroID});
} // end showHero

If the user has selected a hero, you have the hero's heroID as the value of
the <select> object. You can use this data to bundle a request to a PHP
program. That program uses the heroID to build a query and return data
about the requested hero:

1. Extract the heroID from the select element.

You're building a JSON object which will act as a virtual form, so you
need access to all the data you want to send to the server. The only
information the PHP program needs is a heroID, so use the jQuery
val() method to extract the value from the <select> element.

2. Use the load()method to update the output element.

Once again, use the exceptionally handy load() method to invoke an
AJAX request. This time, load the results of showHero.php.

3. Pass form data to the server.

The showHero.php program thinks it's getting information from a
form. In AJAX, the easiest way to simulate a form is to put all the data
that would have been in the form in a JSON object. In this case, only
one data element needs to be passed: {“heroID”: heroID}. This
sends a field called heroID that contains the contents of the
JavaScript variable heroID. See Book IV, Chapter 4 if you need a

******ebook converter DEMO Watermarks*******

refresher on the JSON format.

 The virtual form technique is a common AJAX idiom. It's
important because it overcomes a serious usability limitation of
ordinary HTML. In old-school programming, the primary way to
invoke a server-side program was through an HTML form submission.
With AJAX, you can respond to any JavaScript event (like the
onchange event used in this example) and use JavaScript code to
create any kind of fake form you want. You can use variables that come
from one or more forms, or you can send data from JavaScript
variables. AJAX lets you use JavaScript to control precisely what data
gets sent to the server and when that data gets sent. This improves the
user experience (as in this example). It's also commonly used to allow
form validation in JavaScript before passing the data to the server.

Writing the showHero.php script
The showHero.php script is a simple PHP program that has a single
task: After being given a heroID, pass a query to the database based on
that key, and return an HTML snippet based on the query. The code is a
standard database access script:

<?php
//get heroID

$heroID = filter_input(INPUT_POST, 'heroID');

try {
 $con= new PDO('mysql:host=localhost;dbname=dbName',
"user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

$stmt = $con->prepare("SELECT * FROM hero WHERE heroID =
?");
 $stmt->execute(array($heroID));

$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

******ebook converter DEMO Watermarks*******

 foreach($result as $row){
 foreach ($row as $field => $value){
 print <<< HERE
 $field: $value

HERE;
 } // end field loop
 } // end record loop
 } catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try

As far as the showQuery.php program is concerned, it got a request from
an ordinary form. Its job is to produce HTML output based on that input:

1. Get the $heroID value from the form.

Use the standard filter_input mechanism to extract data from the
form. (It doesn't matter to the PHP program that this isn't a normal
form. Note that the AJAX call is sending the data through the POST
mechanism, so that's how you retrieve it.)

$heroID = filter_input(INPUT_POST, 'heroID');

2. Build a standard data connection.

Create your standard PDO connection, with an exception handler, the
PDO connection, and the exception attributes.

try {
 $con= new PDO('mysql:host=host;dbname=dbName',
"user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

3. Build a prepared statement.

This query will involve user input (the heroID comes from the user
form) so it should use a prepared statement to prevent SQL injection
attacks. (See Book VI, Chapter 5 for more about SQL injection and
prepared statements.)

You only want data from the hero identified by $heroID, so build a
******ebook converter DEMO Watermarks*******

query that selects a single record.

$stmt = $con->prepare("SELECT * FROM hero WHERE heroID
= ?");
 $stmt->execute(array($heroID));

4. Execute the statement with the heroID.

Pass the heroID to the prepared statement, place this element in an
array, and pass it to the statement.

$result = $stmt->fetchAll(PDO::FETCH_ASSOC);

5. Process the results. Use the ordinary foreach mechanism to print
out the results of the query. You can get as fancy as you want with the
output, but I'm going for a very standard “print all the contents”
approach for now.

foreach($result as $row){
 foreach ($row as $field => $value){
 print <<< HERE
 $field: $value

Xxxxx
HERE;
 } // end field loop
 } // end record loop

Working with XML Data
Server-side work normally involves storage of data because that's one thing
that's easy to do on the server and difficult to do on the client. Data can be
stored in many ways:

In plain-text files
In HTML
In JSON
In XML
In a relational database

The database approach is most common because it's incredibly powerful

******ebook converter DEMO Watermarks*******

and flexible. Normally programmers use an HTML page to request
information from the user, and then use this information in PHP to prepare
a request for the database in a special language called SQL (Structured
Query Language). The data request is passed to the database management
system, which returns some kind of result set to the PHP program. The
PHP program then typically builds an HTML page and passes the page
back to the browser.
The process can be easier when you use AJAX because the PHP program
doesn't have to create an entire web page. All that really needs to be passed
back to the JavaScript program is the results of the data query. The
examples in this chapter have created HTML snippets as their output, but
you often want to make your server-side programs a little more generic so
that the data can be used in a number of different ways. Normally, the data
is returned using a special data format so that the JavaScript program can
easily manage the data.

 When a server-side program is designed to simply take some
input and produce generic data for output, that program is sometimes
called a web service. Web services are very popular because they can
simplify coding and be re-used. These are good things.

Review of XML
The XML format has become an important tool for encapsulating data for
transfer between the client and the server. You might already be familiar
with XML because XHTML is simply HTML following the stricter XML
standard.
XML is much more than HTML. XML can actually be used to store any
kind of data. For example, take a look at the following file ( pets.xml):

<?xml version="1.0" encoding="US-ASCII"?>
<pets>
 <pet>
 <animal>cat</animal>
 <name>Lucy</name>
 <breed>American Shorthair</breed>
 <note>She raised me</note>
 </pet>

******ebook converter DEMO Watermarks*******

 <pet>
 <animal>cat</animal>
 <name>Homer</name>
 <breed>unknown</breed>
 <note>Named after a world-famous bassoonist</note>
 </pet>
 <pet>
 <animal>dog</animal>
 <name>Jonas</name>
 <breed>Cairn Terrier</breed>
 <note>The dog that currently owns me</note>
 </pet>
 </pets>

If you look over pets.xml, you can see that it looks a lot like HTML.
HTML tags are very specific (only a few are legal), but XML tags can be
anything, as long as they follow a few simple (but familiar) rules:

1. Begin with a doctype.

Formal XML declarations often have very complex doctypes, but basic
XML data typically uses a much simpler definition:

<?xml version="1.0" encoding="US-ASCII"?>

Anytime you make your own XML format (as I'm doing in this
example), you can use this generic doctype.

2. Create a container for all elements.

 The entire structure must have one container tag. I'm using
pets as my container. If you don't have a single container, your
programs will often have trouble reading the XML data.

3. Build your basic data nodes.

In my simple example, each pet is contained inside a pet node. Each
pet has the same data elements (but that is not a requirement).

******ebook converter DEMO Watermarks*******

 Tags are case-sensitive. Be consistent in your tag names. Use
camel-case and single words for each element.

4. Add attributes as needed.

You can add attributes to your XML elements just like the ones in
HTML. As in HTML, attributes are name/value pairs separated by an
equal sign (=), and the value must always be encased in quotes.

5. Nest elements as you do in HTML.

 Be careful to carefully nest elements inside each other like
you do with HTML.

You can get an XML file in a number of ways:

Most databases can export data in XML format.
More often, a PHP program reads data from a database and
creates a long string of XML for output.

For this simple introduction, I just wrote the XML file in a text editor and
saved it as a file.
You manipulate XML in the same way with JavaScript, whether it comes
directly from a file or is passed from a PHP program.

Manipulating XML with jQuery
XML data is actually familiar because you can use the tools you used to
work with HTML. Better, the jQuery functions normally used to extract
elements from an HTML page work on XML data with few changes. All
the standard jQuery selectors and tools can be used to manage an XML file
in the same way that they manage parts of an HTML page.
The readXML.html page featured in Figure 6-4 shows a JavaScript/jQuery

******ebook converter DEMO Watermarks*******

program that reads the pets.xml file and does something interesting with
the data.

Figure 6-4: The pet names came from the XML file.

In this case, it extracts all the pet names and puts them in an unordered list.
Here's the code:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8" />
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">

$(init);
 function init(){
 $.get("pets.xml", processResult);
 } // end init

function processResult(data, textStatus){
 //clear the output
 $("#output").html("");
 //find the pet nodes...
 $(data).find("pet").each(printPetName);
 } // end processResult

******ebook converter DEMO Watermarks*******

function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find("name").text();
 //add list item elements around it
 thePet = "" + thePet + "<\/li>";
 //add item to the list
 $("#output").append(thePet);
 } // end printPetName

</script>
 <title>readXML.html</title>
</head>
<body>
<h1>Reading XML</h1>
<ul id = "output">
 This is the default output

</body>
</html>

Creating the HTML
Like most jQuery programs, this page begins with a basic HTML
framework. This one is especially simple: a heading and a list. The list has
an ID (so that it can be recognized through jQuery easily) and a single
element (that will be replaced by data from the XML file).

Retrieving the data
The init() function sets up an AJAX request:

$(init);

function init(){
 $.get("pets.xml", processResult);
 } // end init

This function uses the get() function to request data:

1. Use the jQuery get()mechanism to set up the request.

 Because I'm just requesting a static file (as opposed to a PHP

******ebook converter DEMO Watermarks*******

program), the get() function is the easiest AJAX tool to use for
setting up the request.

2. Specify the file or program.

Normally you call a PHP program to retrieve data, but for this
example, I pull data straight from the pets.xml file because it's simpler
and it doesn't really matter how the XML was generated. The get()
mechanism can be used to retrieve plain text, HTML, or XML data.
My program will be expecting XML data, so I should be calling an
XML file or a program that produces XML output.

3. Set up a callback function.

When the AJAX is complete, specify a function to call. My example
calls the processResult() function after the AJAX transmission
is complete.

Processing the results
The processResult() function accepts two parameters: data and
textStatus:

function processResult(data, textStatus){
 //clear the output
 $("#output").html("");
 //find the pet nodes...
 $(data).find("pet").each(printPetName);
 } // end processResult

The processResult() function does a few simple tasks:

1. Clear the output ul.

The output element is an unordered list. Use its html() method to
clear the default list item.

2. Make a jQuery node from the data.

The data (passed as a parameter) can be turned into a jQuery node.

******ebook converter DEMO Watermarks*******

Use $(data) for this process.

3. Find each pet node.

Use the find() method to identify the pet nodes within the data.

4. Specify a command to operate on each element.

Use the each() method to specify that you want to apply a function
separately to each of the pet elements. Essentially, this creates a loop
that calls the function once per element.

 The each mechanism is an example of a concept called an
iterator, which is a fundamental component of functional
programming. (Drop those little gems to sound like a hero at your next
computer science function. You're welcome.)

5. Run the printPetName function once for each element.

The printPetName is a callback function.

Printing the pet name
The printPetName function is called once for each pet element in the
XML data. Within the function, the $(this) element refers to the current
element as a jQuery node:

function printPetName(){
 //isolate the name text of the current node
 thePet = $(this).find("name").text();

//add list item elements around it
 thePet = "" + thePet + "";

//add item to the list
 $("#output").append(thePet);
 } // end printPetName

******ebook converter DEMO Watermarks*******

1. Retrieve the pet's name.

Use the find() method to find the name element of the current pet
node.

2. Pull the text from the node.

The name is still a jQuery object. To find the actual text, use the
text() method.

3. Turn the text into a list item.

I just used string concatenation to convert the plain text of the pet name
into a list item.

4. Append the pet name list item to the list.

The append() method is perfect for this task.

Of course, you can do more complex things with the data, but it's just a
matter of using jQuery to extract the data you want and then turning it into
HTML output.

Working with JSON Data
XML has been considered the standard way of working with data in AJAX
(in fact, the X in AJAX stands for XML). The truth is, another format is
actually becoming more popular. Although XML is easy for humans (and
computer programs) to read, it's a little bit verbose. All those ending tags
can get a bit tedious and can add unnecessarily to the file size of the data
block. Although XML is not difficult to work with on the client, it does
take some getting used to. AJAX programmers are beginning to turn to
JSON as a data transfer mechanism. JSON is nothing more than the
JavaScript object notation described in Book IV, Chapter 4 and used
throughout this minibook.

Knowing JSON's pros
JSON has a number of very interesting advantages:

******ebook converter DEMO Watermarks*******

Data is sent in plain text. Like XML, JSON data can be sent in a
plain-text format that's easy to transmit, read, and interpret.
The data is already usable. Client programs are usually written in
JavaScript. Because the data is already in a JavaScript format, it is
ready to use immediately, without the manipulation required by XML.
The data is a bit more compact than XML. JavaScript notation
doesn't have ending tags, so it's a bit smaller. It can also be written to
save even more space (at the cost of some readability) if needed.
Lots of languages can use it. Any language can send JSON data as a
long string of text. You can then apply the JavaScript eval()
function on the JSON data to turn it into a variable.
PHP now has native support for JSON. PHP version 5.2 and later
supports the json_encode() and json_decode() functions,
which convert PHP arrays (even very complex ones) into JSON objects
and back.
jQuery has a getJSON()method. This method works like the
get() or post() methods, but it's optimized to receive a JSON
value.

 If a program uses the eval() function to turn a result string into
a JSON object, there's a potential security hazard: Any code in the
string is treated as JavaScript code, so bad guys could sneak some ugly
code in there. Be sure that you trust whoever you're getting JSON data
from.

The pet data described in pets.xml looks like this when it's organized
as a JSON variable:

{
 "Lucy": { "animal": "Cat",
 "breed": "American Shorthair",
 "note": "She raised me"},
 "Homer": { "animal": "Cat",
 "breed": "unknown",
 "note": "Named after a world-famous bassoonist"},
 "Jonas": { "animal": "Dog",

******ebook converter DEMO Watermarks*******

 "breed": "Cairn Terrier",
 "note": "The dog that currently owns me"}
}

Note a couple of things:

The data is a bit more compact in JSON format than it is in XML.
You don't need an overarching variable type ( like pets in the XML
data) because the entire entity is one variable (most likely called
pets).

JSON takes advantages of JavaScript's flexibility when it comes to objects:

An object is encased in braces: { }. The main object is denoted by a
pair of braces.
The object consists of key/value pairs. In my data, I used the animal
name as the node key. Note that the key is a string value.
The contents of a node can be another node. Each animal contains
another JSON object, holding the data about that animal. JSON nodes
can be nested (like XML nodes), giving the potential for complex data
structures.
The entire element is one big variable. JavaScript can see the entire
element as one big JavaScript object that can be stored in a single
variable. This makes it quite easy to work with JSON objects on the
client.

Reading JSON data with jQuery
As you might expect, jQuery has some features for simplifying the (already
easy) process of managing JSON data.
Figure 6-5 shows readJSON.html, a program that reads JSON data and
returns the results in a nice format.

******ebook converter DEMO Watermarks*******

Figure 6-5: This program got the data from a JSON request.

Here's the complete code of readJSON.html:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <title>readJSON.html</title>
 <meta charset = "UTF-8" />
 <style type = "text/css">
 dt {
 font-weight: bold;
 float: left;
 width: 5em;
 margin-left: 1em;
 clear: left;
 }
 </style>
 <script type = "text/javascript"
 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">

$(init);
 function init(){
 $.getJSON("pets.json", processResult);
 } // end init
 function processResult(data){
 $("#output").text("");
 for(petName in data){

******ebook converter DEMO Watermarks*******

 var pet = data[petName];
 $("#output").append("<h2>" + petName + "<h2>");
 $("#output").append("<dl>");
 for (detail in pet){
 $("#output").append(" <dt>" + detail + "<\/dt>");
 $("#output").append(" <dd>" + pet[detail] + "
<\/dd>");
 } // end for
 $("#output").append("<\/dl>");
 } // end for
 } // end processResults
 </script>
</head>
<body>
<h1>Reading JSON</h1>
<div id = "output">
 This is the default output
</div>
</body>
</html>

Managing the framework
The foundation of this program is the standard XTML and CSS. Here are
the details:

1. Build a basic HTML page.

Much of the work will happen in JavaScript, so an H1 and an output
div are all you really need.

2. Put default text in the output  div.

Put some kind of text in the output div. If the AJAX doesn't work,
you'll see this text. If the AJAX does work, the contents of the
output div will be replaced by a definition list.

3. Add CSS for a definition list.

I print out each pet's information as a definition list, but I don't like the
default formatting for <dl>. I add my own CSS to tighten up the
appearance of the definitions. (I like the <dt> and <dd> on the same
line of output.)

******ebook converter DEMO Watermarks*******

Retrieving the JSON data
The jQuery library has a special AJAX function for retrieving JSON data.
The getJSON() function makes an AJAX call and expects JSON data in
return:

$(init);

function init(){
 $.getJSON("pets.json", processResult);
 } // end init

It isn't difficult to get JSON data with jQuery:

1. Set up the standard init()function.

In this example, I'm pulling the JSON data in as soon as the page has
finished loading.

2. Use the getJSON()function.

This tool gets JSON data from the server.

3. Pull data from pets.json.

Normally you make a request to a PHP program, which does some kind
of database request and returns the results as a JSON object. For this
simple example, I'm just grabbing data from a JSON file I wrote with a
text editor, so I don't have to write a PHP program. The client-side
processing is identical whether the data came from a straight file or a
program.

4. Specify a callback function.

Like most AJAX methods, getJSON() allows you to specify a
callback function that is triggered when the data has finished
transferring to the client.

Processing the results
******ebook converter DEMO Watermarks*******

The data returned by a JSON request is already in a valid JavaScript
format, so all you need is some for loops to extract the data. Here's the
process:

function processResult(data){
 $("#output").text("");
 for(petName in data){
 var pet = data[petName];
 $("#output").append("<h2>" + petName + "<h2>");
 $("#output").append("<dl>");
 for (detail in pet){
 $("#output").append(" <dt>" + detail + "<\/dt>");
 $("#output").append(" <dd>" + pet[detail] + "
<\/dd>");
 } // end for
 $("#output").append("<\/dl>");

} // end for
 } // end processResults

1. Create the callback function.

This function expects a data parameter (like most AJAX requests). In
this case, the data object contains a complete JSON object
encapsulating all the data from the request.

2. Clear the output.

I replace the output with a series of definition lists. Of course, you can
format the output however you wish.

$("#output").text("");

3. Step through each petName in the list.

This special form of the for loop finds each element in a list. In this
case, it gets each pet name found in the data element:

for(petName in data){

4. Extract the pet as a variable.

The special form of for loop doesn't retrieve the actual pets but rather

******ebook converter DEMO Watermarks*******

the key associated with each pet. Use that pet name to find a pet and
make it into a variable using an array lookup:

var pet = data[petName];

5. Build a heading with the pet's name.

Surround the pet name with <h2> tags to make a heading and append
this to the output:

$("#output").append("<h2>" + petName + "<h2>");

6. Create a definition list for each pet.

 Begin the list with a <dl> tag. Of course, you can use
whichever formatting you prefer, but I like the definition list for this
kind of name/value data:

$("#output").append("<dl>");

7. Get the detail names from the pet.

The pet is itself a JSON object, so use another for loop to extract each
of its detail names (animal, breed, note):

for (detail in pet){

8. Set the detail name as the definition term.

 Surround each detail name with a <dt></dt> pair. (Don't
forget to escape the slash character to avoid an HTML validation
warning.)

$("#output").append(" <dt>" + detail + "<\/dt>");

9. Surround the definition value with <dd></dd>.

******ebook converter DEMO Watermarks*******

This provides appropriate formatting to the definition value:

$("#output").append(" <dd>" + pet[detail] + "
<\/dd>");

10. Close the definition list.

After the inner for loop is complete, you're done describing one pet,
so close the definition list:

$("#output").append("<\/dl>");

******ebook converter DEMO Watermarks*******

Chapter 7
Going Mobile

In This Chapter
 Improving mobile accessibility
 Using media queries to build responsive designs
 Working with the jQuery mobile library
 Building mobile-friendly interfaces
 Adding collapsible interface elements
 Building multi-page applications with jQuery mobile
 Turning mobile pages into iOS apps

Mobile devices are no longer becoming mainstream. They are mainstream.
Although people are still using traditional desktop devices to view the web,
mobile devices are more prevalent and important than ever. For the most
part, you can treat mobile devices like ordinary web browsers, but they do
have a few special considerations and tricks. In this chapter you learn how
to be sensitive to the needs of mobile users, and how to do some really cool
tricks to make a mobile site really stand out.

Thinking in Mobile
A few years back, mobile programming was completely different than
ordinary programming. You had to learn entirely different languages and
visual toolsets. Although you can still program in native mobile languages,
much of what people want to do with mobile devices can be done in
HTML5 with CSS and JavaScript. In fact, this was one of the major drivers
of HTML5 and CSS3 — making the web more mobile-friendly.
Virtually all mobile devices now ship with an HTML5-compliant browser,
so just by learning HTML5, you're well on your way to mobile
development. Any of the pages or programs in this book should work fine
on a mobile client. (I tested all on an iPad and an Android phone.)

******ebook converter DEMO Watermarks*******

However, there are a few easy things you can do to improve the browsing
experience for those who visit your site on a tablet or mobile phone:

Make text bigger: Tablets and phones tend to have smaller screens
with lower resolution. If your font size is tiny on an ordinary screen, it
will but unreadable on a phone. Consider using a larger font size if you
expect mobile users.
Make the user interface larger: It's also a great idea to make buttons
larger because they will need to be pressed by thick fingers rather than
a tiny mouse. If you're using check boxes or radio buttons, be sure to
use a related label to make the target larger. See the section “Using
jQuery Mobile to Build Mobile Interfaces” later in this chapter for
some great ways to improve your interface with a special version of
jQuery UI specifically designed for mobile devices.
Consider turning off “helpful” features: Many phones and tablets
come with tools to automatically capitalize input and to autocorrect
misspellings. You can turn these elements off by adding these
attributes to an input element:

<input type = "text" autocorrect = "off" autocapitalize =
"off">

Think carefully about each input to ensure you've got the best option.
For example, a Last Name field would benefit from autocapitalize, but
not autocorrect.

Use specialty input elements: HTML5 includes some excellent new
input types. Many of them were designed with mobile keyboards in
mind. For example, the <input type = “url”> field creates an
ordinary-looking textbox, but on many mobile devices, it pops up a
custom keyboard containing the special characters normally seen in a
web address (/ and : are more prominent, for example). Likewise, the
<input type = “email”> pops up a keyboard that includes the
@ sign. Many of the other input elements (date, color, and time) pop up
specialty elements designed to work well without a keyboard. Any
browser that cannot use these special input types will revert to a
standard text input, so this is a very safe tool to use.
Avoid the : hover state: CSS3 gives nearly every element a : hover

******ebook converter DEMO Watermarks*******

state, which is activated when the mouse is hovered over an element
but has not been clicked. Touch screens don't have a hover state! Most
touch screen events feel just like mouse input, but there's no easy way
for a touch screen to replicate the : hover state. It's fine to use this for
special effects, but don't make it a major part of your page design if
you intend your project to be used by mobile users.
Build with responsive CSS: Much of the time you can build a page
once and have it work pretty well on all browsers, but sometimes you
really need something different for different browser sizes and
capabilities. This is where media queries come in. Essentially, they
allow you to apply special rules based on the current screen size
(typically the most important variable). Please see the next section,
“Building a Responsive Site,” to get a feel for how to target specific
screen sizes.
Add a viewport indicator: The default behavior for many mobile
devices is to simply display the standard page on the smaller screen.
Although this can work, it is often difficult to make the screen readable
for all screen sizes. If you create a customized layout as described in
this chapter, you can set the default behavior of the screen to respond
to your improved layout:

<meta name="viewport" content="width=device-width, user
 -scalable=false;">

Building a Responsive Site
One way to make a site work well on multiple resolutions is to provide
different CSS rules based on the detected media type.
CSS3 has a marvelous new feature called the media query, which allows
you to specify a media type and determine various features of the display.
You can use this specification to build a subset of the CSS that should be
used when the browser detects a certain type or size of display.

Specifying a media type
The @media rule allows you to specify what type of output the included
CSS should modify. The most common media types are screen, print,

******ebook converter DEMO Watermarks*******

speech, handheld, projection, and tv. There are more, but only
print and screen are universally supported.

For example, the following code will specify the font size when the user
prints the document:

@media print {
 body {
 font-size: 10pt;
 }
}

This CSS can be embedded into a normal CSS document, but it should
typically be placed at the end of the document because it holds exceptions
to the normal rules. You can place as much CSS code as you wish inside
the @media element, but you should only put CSS code that's relevant to
the specific situation you're interested in. For print output, for example, I
might turn off all the colors to save ink, and I might use points (pt) for the
character size, as points actually have meaning in printed output.

Adding a qualifier
In addition to specifying the media type, the @media rule has another very
powerful trick. You can apply a special qualifying condition to the media.
For example, look at Figure 7-1.

Figure 7-1: When the page is wider than 500 pixels, it shows black text on a white
background.

******ebook converter DEMO Watermarks*******

When the browser is wider than 500 pixels, you can see black text on a
white background. But make the screen narrower, and you see something
interesting, as shown in Figure 7-2.

Figure 7-2: When the screen is narrower, the colors change!

Normally you would use this trick to change the layout, but start with this
simpler color-changing example. I show how to change the layout in the

******ebook converter DEMO Watermarks*******

“Making Your Page Responsive” section later in this chapter. Here's the
code for this simpler example:

 <!doctype html>
<html lang="en">
<head>
 <title>narrowBlack.html</title>
 <meta charset="UTF-8">
<meta name="viewport" content="width=device-width, user-
scalable=false;">
 <style type = "text/css">
 body {
 color: black;
 background-color: white;
 }

 @media (max-width: 500px){
 body {
 color: white;
 background-color: black;
 }
 }
 </style>

</head>
<body>
 <h1>Qualifier Demo</h1>
 <p>
 Try resizing this page. When the page is
 wider than 500 pixels, it shows black text on a
 white background.
 </p>

<p>
 When the page is narrower than 500 pixels, the colors
 reverse, giving white text on a black background.
 </p>
</body>
</html>

Here's how to build a page that adapts to the screen width:

1. Build your site as usual.

This is one place where that whole “separate content from layout”
thing really pays off. The same HTML will have two different styles.

******ebook converter DEMO Watermarks*******

2. Apply a CSS style in the normal way.

Build your standard style in the normal way — for now, embed the
style in the page with the <style> tag. Your main style should
handle the most common case. (Typically, a full-size desktop.)

3. Build a @media rule.

The @media CSS rule should go at the end of the normal CSS.

4. Set a max-width: 500px qualifier.

This qualifier indicates that the rules inside this segment will only be
used if the width of the screen is smaller than 500 pixels.

5. Place special case rules inside the new style set.

Any CSS rules you define inside the @media rule will be activated if
the qualifier is true. Use these rules to override the existing CSS. Note
you don't have to redefine everything. Just supply rules that make sense
in your particular context. In this (trivial) example, I'm swapping the
color of the foreground and background, but you can do more
interesting things here, as you see in the “Making Your Page
Responsive” section later in this chapter.

6. Add a viewport.

Mobile browsers will sometimes try to rescale the page so it can all be
seen at once. This defeats the purpose of a special style, so use the
viewport metatag to indicate that the browser should report its true
width. It's also often useful to turn off page-scaling because it should
no longer be necessary.

In this example, the browser always applies the main (black text on a white
background) style. Then it looks at the @media rule to see if the qualifier
is true. If the width is less than 500 pixels, the max-width:500px
qualifier is evaluated to true, and all the CSS code inside the @media
segment is enabled. The browser then stores both sets of CSS and applies

******ebook converter DEMO Watermarks*******

the correct CSS based on the status of the rule.

Making Your Page Responsive
The most common use of the media query is to make dramatic changes in
the page layout when a smaller screen is encountered. The screen layouts
described throughout Book III are already somewhat sensitive to different
screen sizes, but true responsive design goes a step farther by recognizing
that the entire layout may need to be changed (not just shrunk) in certain
circumstances.
As an example, take a look at the page in Figure 7-3.

Figure 7-3: This is a standard two-column page.

When viewed on a normal desktop display, it shows a two-column design,
which is a standard design for traditional monitors. However, take a look at
the same exact page when viewed on a smaller display (like the ones you
would encounter on a mobile phone). Figure 7-4 shows the smaller page.

******ebook converter DEMO Watermarks*******

Figure 7-4: The same page is now in a single column.

Multiple-column layouts may look great on the desktop (especially with
the proliferation of widescreen monitors), but they can be very frustrating
to users with narrow browsers. This page detects when the browser is too
narrow to display columns, and automatically switches to a single-column
display. It also steps up the overall font size to compensate for the
generally weaker resolution of mobile screens, and could do more (resizing
buttons, for example, to make them easier to hit with fingers).
If the browser is resized again to a larger size, it will revert to the two-
column view.
The responsive technique is not difficult to achieve at all. Begin (as
always) by looking over the HTML code.

<!doctype html>
<html lang="en">
<head>

******ebook converter DEMO Watermarks*******

 <title>responsive.html</title>
 <meta charset="UTF-8">
 <link rel = "stylesheet"
 type = "text/css"
 href = "responsiveWide.css" />
 <link rel = "stylesheet"
 type = "text/css"
 href = "responsiveNarrow.css" />
 <meta name="viewport" content="width=device-width, initial-
scale=1.0">

</head>
<body>
 <div id="all">
 <header>
 <h1>Responsive Layout Demo</h1>
 </header>
 <nav>

 one
 two
 three
 four
 five

 </nav>
 <div id="content">
 <p>
 Try this page on different sizes of screens.
 </p>

<p>
 On wider browsers, it will have a two-column layout.
 On a smaller screen (like a phone,) it will revert
 to a single-column format better for mobile browsers.
 </p>

</div>
 <footer>
 This is my footer
 </footer>
 </div>
</body>
</html>

Really, the remarkable thing about this HTML is how unremarkable it is.
There's absolutely nothing in the HTML to indicate it will do something

******ebook converter DEMO Watermarks*******

special when the page resizes. I do call two separate CSS files (although I
could have used just one, I think it's nice to separate the rules).
As you look over the HTML, it seems pretty standard for an HTML5-based
two-column layout. I used native HTML5 elements when I could, and
named divs for features that don't have an HTML5 semantic tag.
The one new element is the meta viewport attribute in the header.
Some mobile browsers automatically zoom into a smaller screen size, and
some act like larger browsers and make you zoom in by yourself. If you
want the browser to show the smaller size by default, add the meta
viewport attribute in the document header. This is especially useful for
iOS devices.

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

Building the wide layout
If you look over the first CSS file for the responsive example, it will look
very much like the kind of two-column design described in Book III.
Here's the code for responsiveWide.css:

body {
 background-color: red;
}

#all {
 background-color: white;
 width: 600px;
 margin-left: auto;
 margin-right: auto;
}

header {
 text-align: center;
}

nav {
 background-color: green;
 float: left;
 width: 150px;
 color: white;
 height: 400px;
}

******ebook converter DEMO Watermarks*******

#content {
 background-color: yellow;
 float: left;
 width: 440px;
 height: 400px;
 padding-left: 10px;
}

footer {
 color: white;
 background-color: gray;
 clear: both;
 text-align: center;
}

Once again, there's absolutely nothing in this code that would indicate
anything special is going on. It looks just like the CSS you saw in Book II.
That's again a big part of the beauty of responsive design. Build for the
base case just like you always do. In this case, I'm building a jello layout
with a fixed 600-pixel layout floating in a larger screen. As long as the
browser is wider than 600 pixels, the layout will float in the center of the
screen. As is typical for this type of layout, I've specified heights for the
main containers (nav and #contents) to make everything look good.

 For the sake of visual clarity, I changed the background and
foreground colors so the size and position of each element would be
obvious, even in a black-and-white screen shot. Obviously these garish
color values will need to be changed in production. I don't know,
though. I'm kind of liking garish.

Adding the narrow CSS
The second CSS file is where the magic (such as it is) happens. It is also a
standard CSS file, except:

The entire file is enclosed in a media query: This second file is
entirely based on the exceptions for a smaller browser.
Trap for a screen less than 600 pixels wide: Since the standard view

******ebook converter DEMO Watermarks*******

expects the screen to be larger than 600 pixels, I will trap for any
screen narrower than 600 pixels. (  You can try to trap for the size of the
typical smart phone, but this is a moving target, as there are too many
devices on the market to be certain what the width will be. I simply go
for what makes most sense for my design.)
Overwrite any style rules that need to be changed: If the screen is
narrower than 600 pixels, I no longer want a jello layout. Instead, I
want the page to be in a single column taking up most of the screen
width. I also want to slightly increase the overall text size. Only change
the CSS necessary to make your page adapt to the narrower screen.

Here's the code for the responsiveNarrow.css file:
@media (max-width: 600px) {
 /*special instructions for narrower screens */

#all {
 display: block;
 width: 90%;
 font-size: 125%;
 }

nav {
 display: block;
 width: 100%;
 height: auto;
 }

#content{
 display: block;
 width: 95%;
 height: auto;
 padding-left: 5%;
 }

footer {
 display: block;
 width: 100%;
 }
}

The specific rule changes simply override the style rules defined in
responsiveWide.css.

******ebook converter DEMO Watermarks*******

1. Set the all div to take up 90 percent of the screen width.

The #all div was set to 600 pixels wide in the main CSS, but here I'm
overriding the width to be percentage-based, and to take up 90 percent
of whatever the screen width is. I also set the font size to be 125
percent of the standard size, to make the text easier to read on the
smaller screen. I don't change anything else about #all because I'm
only interested in the screen-width related changes here.

2. Change the floated elements to display: block.

The nav and #contents elements were floated in the wide
presentation. The easiest way to remove the floating behavior is to
assign a new display. Setting the display to block will make the
elements act like default divs.

3. Give each block a relative width.

The blocks were assigned pixel-based exact widths in the wide layout.
This needs to be overridden with a more flexible scheme. I made every
element 100 percent of the parent container, which is 90 percent of the
overall screen size.

4. Set the heights to automatic.

In the wide presentation, it made sense to give each column a specific
height. That doesn't make sense in the more fluid mobile presentation.
Set the height to automatic to override the heights indicated in
the wide CSS code.

5. Season to taste.

You'll need to test your code to ensure it's working right. One
adjustment is in the padding. In my fixed-width wide version, I
specified the padding of the #content div in pixels. In the narrower
version, it makes more sense to set this value in percentages.

******ebook converter DEMO Watermarks*******

 This is only a very brief introduction to the media query
mechanism. There is much more to this specification than I can show in
this (already hefty) book. Please check the W3 specification at
www.w3.org/TR/css3-mediaqueries/ for more information
on the various techniques you can use with media queries.

Using jQuery Mobile to Build Mobile
Interfaces

There's another very popular approach to building mobile-friendly
websites, and that's to use an add-on library to jQuery called jQuery
Mobile. Jquery Mobile is a powerful combination of JavaScript and CSS
code built on top of the jQuery library.

Building a basic jQuery mobile page
Figure 7-5 shows a basic page using jQuery mobile.

******ebook converter DEMO Watermarks*******

http://www.w3.org/TR/css3-mediaqueries/

Figure 7-5: This looks almost like a native mobile app, but it's just a web page.

The jQuery library works by taking a normal HTML5 page and modifying
it in ways that emulate a native look and feel. The code looks a lot like
ordinary HTML:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Mobile Demo</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js">
</script>
 <script
src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
1.3.1.min.js">
 </script>

******ebook converter DEMO Watermarks*******

</head>
<body>
 <div data-role = "page" data-theme = "b">
 <div data-role = "header" data-position = "fixed">
 <h1>JQuery Mobile Demo</h1>
 </div>
 <div data-role = "content">
 <p>
 <a href = "http://jquerymobile.com/"
 data-role = "button">jQuery Mobile web site
 </p>

<ul data-role = "listview">
 This is an ordinary list
 Coded to look like
 a mobile list

 </div>
 <div data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

</body>
</html>

A few details turn this page into a mobile wonder:

1. Include the jQuery mobile CSS.

This is a special CSS file designed to transform HTML elements into
their mobile counterparts. Although you can download it yourself, most
developers link straight to the jQuery site (as I do here).

2. Include the standard jQuery library.

Much of the code is based on jQuery, so integrate the jQuery library
as well. Once again, I pull jQuery from the main jQuery website.

3. Incorporate the jQuery mobile library.

This is a JavaScript library that extends the jQuery library to add new
mobile-specific behavior.

******ebook converter DEMO Watermarks*******

4. Add a data-role= “page” attribute to the main div.

Create a main div in your page and provide the data-role attribute
to it. This is a custom attribute added by jQuery mobile. jQuery looks
over the data roles of the various elements and applies style and
behavior changes to these elements automatically. Assign your main
div the data role page. This tells the browser to treat the entire div as a
page. Look ahead to the “Building a multi-page document” section
later in this chapter for more on pages.

5. Specify a data theme.

You can apply a data theme to any element, but you almost always
apply a theme to the page. jquery mobile comes with a number of
default themes built in, called “a” through “e.” Experiment to find the
one you like, or you can build your own with the special mobile
version of the ThemeRoller found at
http://jquerymobile.com/themeroller/index.php.

6. Add more divs inside your page.

Add a few more divs inside your page div. Generally you'll have three:
header, content, and footer.

7. Specify the header div with data-role = “header”.

By placing any of your header information inside a div with a “header”
data role, you're telling jQuery to treat this element as a mobile header
and apply the appropriate styles. The header typically includes an
<H1> tag. Look to the section called “Building a multi-page
document” for how to add buttons to the header. Typically you'll
specify the header to be fixed with the data-position =
“fixed” attribute. This ensures the header will stay in place if the
rest of the content is scrolled, which is typical behavior in a mobile
application.

8. Set up a content div.

******ebook converter DEMO Watermarks*******

http://jquerymobile.com/themeroller/index.php

Add a div with data-role = “content” to set up the main
content area of your page. Any of the main body elements of your site
should go in this segment.

9. Any link can be converted to a button.

The standard convention in web apps is to turn links into buttons that
have a larger target than mouse-based input. It's easy to convert any
link to a button by adding the data-role = “button” attribute to
the anchor tag.

10. Convert lists to mobile listviews.

Lists also have special conventions in the mobile world. You can use
the (sing along with me now . . .) data-role attribute to turn any list
into a listView.

11. Build a footer.

Add one more div with data-role set to “footer”. Normally, the
footer (like the header) is fixed with the data-position attribute.

Working with collapsible content
The jQuery accordion element described earlier in this minibook is ideal
for mobile development because it allows you to place an overview of a lot
of text on the screen and allows the user to focus on one element at a time.
The jQuery mobile library makes this a very easy mechanism to build
for mobile devices.
Figure 7-6 shows a page hinting at my all-time favorite collapsible content.

******ebook converter DEMO Watermarks*******

Figure 7-6:  I wonder what's in Book 2?

As the user clicks on a book, the hidden content is revealed, as you can see
in Figure 7-7.

******ebook converter DEMO Watermarks*******

Figure 7-7: The selected contents expand, and other contents are hidden.

The collapsible content trick is very similar to the standard jQuery mobile
example:

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>collapsible.html</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js">
</script>
 <script
src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
1.3.1.min.js">
 </script>
</head>
<body>

******ebook converter DEMO Watermarks*******

 <div data-role = "page">
 <div data-role = "header" data-position = "fixed">
 <h1>Collapsible Content</h1>
 </div>

<div data-role = "content">
 <div data-role = "collapsible-set"
 data-theme = "c" data-content-theme = "b">
 <div data-role = "collapsible">
 <h2>Book 1</h2>
 <p>
 Learn to build a basic site with HTML including new
 HTML5 features.
 </p>
 </div>
 <div data-role = "collapsible">
 <h2>Book 2</h2>
 <p>
 Add basic CSS to your sites to change colors and
fonts, and
 to control backgrounds and images.
 </p>
 </div>
 <div data-role = "collapsible">
 <h2>Book 3</h2>
 <p>
 Use positional CSS to build attractive and flexible
site layouts
 in a number of different ways.
 </p>
 </div>
 </div>
 </div>
 </div>
</body>
</html>

The code is mostly standard HTML, with a few new attributes in place.

1. Import the standard jQuery mobile stuff.

Import the CSS and JavaScript files from jQuery.com. Of course you
can also import your own CSS and JavaScript if you wish, but I keep it
simple in this example.

2. Set up the data roles as normal.

******ebook converter DEMO Watermarks*******

All jQuery mobile pages have the same general structure. Build a div
for the page, and add a header, content, and footer. Specify each of the
segments with the data-role attribute.

3. Set up a div as a collapsible set.

If you want the accordion behavior, just build a div inside your content
with the data-role set to “collapsible-set”.

4. Set up the data theme for the collapsed set.

Specify a data theme for the collapsed set. It works best if you also
explicitly set a data-content-theme. (If you don't, sometimes the
expanded content will not look like it is part of the main element.)

5. Place one or more collapsible objects in the set.

A collapsible object is simply a div with the data-role set to
collapsible.

6. Add some sort of header in each collapsible.

Any headline tag (<H1> through <H6>) will be used as the always-
visible handle for the collapsible element.

7. Non-header content will be hidden.

Any other content of the collapsible element will be hidden by default
and only disclosed when the element is selected.

Building a multi-page document
It's great being able to pare down a web page so it fits on a mobile device,
but obviously if the page is smaller, you'll need more of them. Mobile apps
often use a page-flipping metaphor to pack more data in a small piece of
screen real estate, and the jQuery mobile library has another wonderful tool
to make this easy. Take a look at Figure 7-8 to see how to break a single
web document into a number of pages.

******ebook converter DEMO Watermarks*******

Figure 7-8: This is the main page. It has a bunch of buttons.

So far, this application looks just like the other jQuery mobile apps you've
seen so far. One thing is different, and that's the button in the header. It's
very common for mobile apps to have navigation buttons in the header.
Press the Next button, and you'll see Figure 7-9.

******ebook converter DEMO Watermarks*******

Figure 7-9: The second page is similar.

After a nifty fade transition, the next page appears. This one has two
buttons in the header. Pressing Next again takes the user to the third page,
illustrated in Figure 7-10.

******ebook converter DEMO Watermarks*******

Figure 7-10: I think this is the third page.

The third page is once again very familiar, but this time it has a single
button on the left of the header, and another button in the main content
area.
The interesting thing about these three pages is they aren't three pages at
all! It's all just one page, designed to act like three different pages. There's
a couple of advantages to this arrangement.

CSS and JavaScript resources only need to be loaded once: This
keeps the system consistent and improves load times slightly.
There's no lag time: When the document loads, the whole thing is in
memory, even if only one part is visible at a time. This allows you to
quickly move between pages without having to wait for server access.

******ebook converter DEMO Watermarks*******

 Of course this mechanism doesn't replace ordinary links taking
you to new pages. You'd normally implement this type of mechanism
when you have a large page you want to treat as several smaller pages
so the user doesn't have to scroll.

Here's the code for multiPage.html in its entirety. Of course, I explain each
new idea following the listing.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>multiPage.html</title>
 <link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
1.3.1.min.css" />
 <script src="http://code.jquery.com/jquery-1.9.1.min.js">
</script>
 <script
src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
1.3.1.min.js">
 </script>
 <style type = "text/css">
 #foot {
 font-size: 75%;
 font-style: italic;
 text-align: center;
 }

pre {
 margin-left: auto;
 margin-right: auto;
 background-color: white;
 width: 8em;
 }
 </style>
</head>

<body>
 <div id = "page1" data-role = "page" data-theme = "b">
 <div id="head" data-role = "header">
 <h1>Page One</h1>
 next
 </div>

******ebook converter DEMO Watermarks*******

<div id="content" data-role = "content">
 <p>
 This is the index
 </p>

 <a data-role = "button" href = "#page1">page 1

 <a data-role = "button" href = "#page2">page 2

 <a data-role = "button" href = "#page3">page 3

 </div>

<div id="foot" data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

<div id = "page2" data-role = "page" data-theme = "b">
 <div id="head" data-role = "header">
 prev
 <h1>Page Two</h1>
 next
 </div>

<div id="content" data-role = "content">
 <p>
 The second page is much like the first, except
 it isn't the first, and it has text rather than
 buttons. It's the second page.
 If you like the first, I suppose you can
 go back, but you should really go to the next
 page, because I hear it's really nice.
 </p>

</div>

<div id="foot" data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies

******ebook converter DEMO Watermarks*******

 </div>
 </div>

<div id = "page3" data-role = "page" data-theme = "b">
 <div id="head" data-role = "header">
 prev
 <h1>Page Three</h1>
 </div>

<div id="content" data-role = "content">
 <pre>
 3333333
 3 3
 3
 33333
 3
 3 3
 3333333
 </pre>

<p>
 <a href = "#page1" data-role = "button" data-transition
= "flip">
 Go to index

 </p>

</div>

<div id="foot" data-role = "footer" data-position = "fixed">
 from HTML All in One for Dummies
 </div>
 </div>

</body>
</html>

While the code for this example is long, it doesn't break a lot of new
ground.

1. Load up the jQuery mobile content.

Pull in the necessary CSS and JavaScript files from the jQuery.com
site.

******ebook converter DEMO Watermarks*******

2. Apply your own CSS.

Even if you're “borrowing” CSS code from jQuery, you're still allowed
to add your own. I added CSS to make the footer and pre elements act
the way I want.

3. Build your pages.

You can build as many pages as you want, but they all follow the same
general jQuery mobile pattern: Create a page div with header, content,
and footer divs. Use the data-role attribute to indicate the role of
each div.

4. Name each of the page-level divs with the id attribute.

Because the user will be flipping through the pages, each page needs
some sort of identifier. Give each page a unique id attribute. I went
with the rather uninspired page1, page2, and page3. You might
think of something more clever than that.

5. Build buttons inside the headers.

The only truly new part of this example (aside from the page-flipping
itself  ) is the buttons in the headers. Skip ahead to the page 2 header,
and you'll see something really interesting:

prev
 <h1>Page Two</h1>
 next

If you define a link inside an element with the header data-role,
that link will automatically become a button. Furthermore, the first
such link defined will automatically be placed to the left of the header,
and the second will be placed to the right.

6. Force a single button to the right.

If you want a button to be on the right (as I do on the first page), add a
class to the button:

******ebook converter DEMO Watermarks*******

<h1>Page One</h1>
 next

7. Use internal anchors to skip between pages.

Take a look at the URLs in all the buttons. They begin with a hash,
which indicates an internal link inside the document. Remember,
though this feels like three different pages to the user, it's really all one
big web page.

8. Experiment with transitions.

Take a careful look at the button on page three:

<a href = "#page1" data-role = "button" data-transition =
"flip">
 Go to index

This button has a special data-transition attribute. By default,
mobile pages swap with a fade. You can set the transition to slide,
slideup, slidedown, pop, fade, or flip. You can also reverse
the transition by adding another attribute: data-direction =
“reverse”.

Going from Site to App
Everybody wants to make mobile apps these days. Here's the big secret.
Many apps are really written in HTML5, CSS, and JavaScript. You already
know everything you need to make apps that work on mobile devices.
Better yet, you don't need to learn a new language or get permission from
the app store or purchase a license, as you do for native apps.
There's a couple of wonderful tricks you can do for iOS users. You can
design your program so the user can add an icon directly to the desktop.
The user can then start the program like any other app. You can also make
the browser hide the normal browser accoutrements so your program
doesn't look like it's running in a browser!

******ebook converter DEMO Watermarks*******

It turns out these effects are quite easy to do.

Adding an icon to your program
Modern versions of iOS (the iPhone/iPad operating system) already have
the ability to store any web page on the desktop. Just view the web page in
Safari and click the Share button. You'll find an option to save the web
page to the desktop. You can instruct your users to do this, and they'll be
able to launch your program like a normal app.
However, the default icon for a saved app is quite ugly. If you want a nice-
looking icon, you can save a small image as a .png file and put it in the
same directory as your program. Then, you can add this line to your page
(in the header) and that image will appear on the desktop when the user
saves your program:

<link rel="apple-touch-icon" href="myImage.png" />

As an added bonus, the iPhone or iPad automatically adjust the image to
look like an Apple icon, adding the effects appropriate to the installed
version of iOS (rounded and glassy in iOS6, flat in iOS7.)
Of course, this icon trick is an Apple-only mechanism. With most versions
of Android, any bookmark you've designated with your main browser can
be added to the desktop, but there is no custom icon option. The apple-
touch-icon directive will simply be ignored if you're using some other
OS.

Removing the Safari toolbar
Although your program looks good from the main screen, when the user
activates the program it's still obvious that the program is part of the web
browser. You can easily hide the browser toolbar with another line in the
header:

<meta name="apple-mobile-web-app-capable" content="yes" />

This code will not do anything different unless the program is called from
the desktop. However, in that case, it hides the toolbar, making the
program look and feel like a full-blown app. As an added bonus, this runs
the program in a full-screen mode, giving you a little more room for game
play.

******ebook converter DEMO Watermarks*******

Again, this is an Apple-specific solution. There isn't an easy way to achieve
the same effect on the Android devices.

Storing your program offline
Now your program is looking a lot like an app, except it only runs when
you're connected to the Internet. HTML5 has a wonderful feature that
allows you to store an entire web page locally the first time it's run. Then if
the user tries to access the program and the system can't get online, the
local copy of the game is run instead. In essence, the program is
downloaded the first time it is activated and stays on the local device.
This is a relatively easy effect to achieve:

Make your program stable: Before you can use the offline storage
mechanism, you'll want to make sure your program is close to release-
ready. At a minimum, you'll need to ensure you know all of the
external files needed by the game.
Use only local resources: For this kind of project, you can't rely on the
external Internet, so you'll need to have all your files local. This means
you can't really use PHP or external files. You'll need to have a local
copy of everything on the server.
Build a cache.manifest file: Look at the directory containing your
game, and create a new text file called cache.manifest.
Write the first line: The first line of the cache.manifest file should
only contain the text CACHE MANIFEST (all in capital letters).
Make a list of every file in the directory: Write the name of every
file in the directory, one file per line. Be careful with your
capitalization and spelling.
Add the manifest attribute: The <html> tag has a new attribute
called manifest. Use this to describe to the server where the cache
manifest can be found:

<html lang = "en"
 manifest = "cache.manifest">

Load the page normally: You'll need to load the web page once in the
normal way. If all is set up correctly, the browser will quietly make a
copy of the file.

******ebook converter DEMO Watermarks*******

Test offline: The best way to test offline storage is to temporarily turn
off wireless access on your machine and then try to access the file. If
things worked out, you should be able to see your page as if you were
still online.
Check server settings: If offline storage is not working, you might
need to check with your server administration. The text/manifest
MIME type needs to be configured on the server. You might have to
ask your server administrator to set this option in the .htaccess file for
your account:

addtype text/cache-manifest .manifest

 Note that it can take the cache-manifest mechanism several hours
to recognize changes, so when you make changes to your page, these
changes aren't automatically updated to the local browser. That's why
it's best to save off-line archiving for near the end of your project
development cycle.

******ebook converter DEMO Watermarks*******

Book VIII
Moving from Pages to Sites

 Visit www.dummies.com/extras/html5css3aio for
more on what's next for the web.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/extras/html5css3aio

Contents at a Glance
Chapter 1: Managing Your Servers
Chapter 2: Planning Your Sites
Chapter 3: Introducing Content Management Systems
Chapter 4: Editing Graphics
Chapter 5: Taking Control of Content

******ebook converter DEMO Watermarks*******

Chapter 1
Managing Your Servers

In This Chapter
 Understanding the client/server relationship
 Reviewing tools for client-side development
 Gathering server-side development tools
 Installing a local server with XAMPP
 Setting essential security settings
 Choosing a remote server
 Managing the remote servers
 Choosing and registering a domain name

Web pages are a complex undertaking. The basic web page itself isn't too
overwhelming, but web pages are unique because they have meaning only
in the context of the Internet — a vastly new undertaking with unique
rules.
Depending where you are on your web development journey, you may
need to understand the entire architecture, or you may be satisfied with a
smaller part. Still, you should have a basic idea of how the Internet works
and how the various technologies described in this book fit in.

Understanding Clients and Servers
A person using the web is a client. You can also think of the user's
computer or browser as the client. Clients on the Internet have certain
characteristics:

Clients are controlled by individual users. You have no control over
what kind of connection or computer the user has. It may not even be a
computer but may be instead a cellphone or ( I'm not kidding)
refrigerator.

******ebook converter DEMO Watermarks*******

Clients have temporary connections. Clients typically don't have
permanent connections to the Internet. Even if a machine is on a
permanent network, most machines used as clients have temporarily
assigned addresses that can change.
Clients might have wonderful resources. Client machines may have
multimedia capabilities, a mouse, and real-time interactivity with the
user.
Clients are limited. Web browsers and other client-side software are
often limited so that programs accessed over the Internet can't make
major changes to the local file system. For this reason, most client
programs operate in a sort of “sandbox” to prevent malicious coding.
Clients can be turned off without penalty. It doesn't really cause
anybody else a problem if you turn off your computer. Generally, client
machines can be turned off or moved without any problems.

Servers are the machines that typically host web pages. They have a much
different set of characteristics:

Servers are controlled by server administrators. A server
administrator is responsible for ensuring that all data on the server is
secure.
Servers have permanent connections. The purpose of a server is to
accept requests from clients. For this reason, a server needs to have an
IP number permanently assigned to it.
Servers usually have names, too. To make things easier for users,
server administrators usually register domain names to make their
servers easier to find.
Servers can access other programs. Web servers often talk to other
programs or computers (especially data servers).
Servers must be reliable. If a web server stops working, anybody
trying to reach the pages on that server is out of luck. This is why web
servers frequently run Unix or Linux because these operating systems
tend to be especially stable.
Servers must have specialized software. The element that truly
makes a computer a server is the presence of web server software.

******ebook converter DEMO Watermarks*******

Although several options are available, only two dominate the market:
Apache and Microsoft IIS.

Parts of a client-side development system
A development system is made up of several components. If you're
programming on the client (using XHTML, CSS, and JavaScript), you
need the following tools:

Web browsers: You need at least a couple of browsers so that you can
see how your programs behave in different ones. Chrome is especially
useful for web developers because of its extensive developer toolset.
Text editor: Almost all web development happens with plain-text
files. A standard text editor should be part of your standard toolkit. I
prefer Komodo Edit because it handles all the languages described in
this book and works well on all desktop operating systems, and it's
free. (I really like Emacs too, but I won't force that monster on
anybody.)

For client-side development, you don't necessarily need access to a server.
You can test all your programs directly on your own machine with no other
preparation. Of course, you'll eventually want a server so that you can
show your pages to everyone.

 The client-side development tools listed here are described in
more detail in Book I, Chapter 3.

Parts of a server-side system
When you start working on the server side (with PHP, MySQL, and
AJAX), you need a somewhat more complex setup. In addition to
everything you need for client-side development, you also need these
items:

A web server: This piece of software allows users to request web
pages from your machine. You must either sign on to a hosting service

******ebook converter DEMO Watermarks*******

and use its server or install your own. (I show you both techniques in
this chapter.) By far the most common server in use is Apache. Web
server software usually runs all the time in the background because you
never know when a request will come in.
A server-side language: Various languages can be connected to web
servers to allow server-side functionality. PHP is the language I chose
in this Book because it has an excellent combination of power, speed,
price (free), and functionality. PHP needs to be installed on the server
machine, and the web server has to be configured to recognize it. See
Book VI, Chapter 1 for a review of other server-side languages.
A data server: Many of your programs work with data, and they need
some sort of application to deal with that data. The most common data
server in the open-source world is MySQL. This data package is free,
powerful, and flexible. The data server is also running in the
background all the time. You have to configure PHP to know that it has
access to MySQL.
A mail server: If your programs send and receive e-mail, you need
some sort of e-mail server. The most popular e-mail server in the
Windows world is Mercury Mail, and Sendmail is popular in the world
of Unix and Linux. You probably won't bother with this item on a
home server, but you should know about it when you're using a remote
host.
An FTP server: Sometimes, you want the ability to send files to your
server remotely. The FTP server allows this capability. Again, you
probably don't need this item for your own machine, but you definitely
should know about it when you use a remote host.
phpMyAdmin: There's a command-line interface to MySQL, but it's
limited and awkward. The easiest way to access your MySQL
databases is to use the phpMyAdmin program. Because it's a series of
PHP programs, it requires a complete installation of PHP, MySQL, and
Apache (but, normally, you install all these things together anyway).

Creating Your Own Server with
******ebook converter DEMO Watermarks*******

XAMPP
If the requirements for a web hosting solution seem intimidating, that's
because they are. It's much more difficult to set up a working server system
by hand than it is to start programming with it.
I don't recommend setting up your own system by hand. It's simply not
worth the frustration because very good options are available.
XAMPP is an absolutely wonderful open-source tool. It has the following
packages built in:

Apache: The standard web server and the cornerstone of the package
PHP: Configured and ready to start with Apache and MySQL
MySQL: Also configured to work with Apache and PHP
phpMyAdmin: A data management tool that's ready to run
Mercury Mail: A mail server
FileZilla FTP server: An FTP server
PHP libraries: A number of useful PHP add-ons, including GD
(graphics support), Ming (Flash support), and more
Additional languages: Perl, another extremely popular scripting and
server language, and SQLite, another useful database package
Control and configuration tools: A Control Panel that allows you to
easily turn various components on and off

 This list is a description of the Windows version. The Mac and
Linux versions have all the same types of software, but the specific
packages vary.

Considering the incredible amount of power in this system, the download is
remarkably small. The installer is only 34MB.
XAMPP installation is pretty painless: Simply download the installer and
respond to all the default values.

******ebook converter DEMO Watermarks*******

 If you use Windows, you may want to change where the package
is installed because the program files directory causes problems for
some users. I normally install XAMPP in root of the C:\ drive on
Windows installations. The default directory is fine for Mac and Linux.

Running XAMPP
After you install XAMPP, you can manage your new tools with the
XAMPP Control Panel. Figure 1-1 shows this program in action.

Figure 1-1: XAMPP Control Panel allows you to turn features on and off.

Some components of XAMPP (PHP, for example) run only when they're
needed. Some other components (Apache and MySQL) are meant to run
constantly in the background. Before you start working with your server,
you need to ensure that it's turned on.
You can choose to run Apache and MySQL as a service, which means that
the program is always running in the background. This arrangement is
convenient, but it slightly reduces the performance of your machine. I
generally turn both Apache and MySQL on and off as I need it.

******ebook converter DEMO Watermarks*******

 Leaving server programs open on your machine constitutes a
security hazard. Be sure to take adequate security precautions. See the
section “Setting the security level,” later in this chapter, for information
on setting up your security features.

Testing your XAMPP configuration
Ensure that Apache and MySQL are running, and then open your web
browser. Set the address to http://localhost, and you see a screen
like the one shown in Figure 1-2.

Figure 1-2: The XAMPP main page.

This page indicates that XAMPP is installed and working. Feel free to
experiment with the various items in the Demos section. Even though you
may not know yet what they do, you should know what some of their
capabilities are.

Adding your own files
Of course, the point of having a web server is to put your own files in it.
Use your file management tool to find the XAMPP directory in your file
system. Right under the XAMPP directory is the htdocs folder, the

******ebook converter DEMO Watermarks*******

http://localhost

primary web directory. Apache serves only files that are in this directory or
under it. (That way, you don't have to worry about your love letters being
distributed over the Internet.)

 All the files you want Apache to serve must be in htdocs or in
a subdirectory of it.

When you specified http://localhost as the address in your
browser, you were telling the browser to look on your local machine in the
main htdocs directory. You didn't specify a particular file to load. If
Apache isn't given a filename and it sees the file named index.html or
index.php, it displays that file, instead. So, in the default htdocs
directory, the index.phpprogram is immediately being called. Although this
program displays the XAMPP welcome page, you don't usually want that
to happen.
Rename index.php to index.php.old or something similar. It's still there if
you want it, but now there's no index page, and Apache simply gives you a
list of files and folders in the current directory. Figure 1-3 shows my
localhost directory as I see it through the browser.

Figure 1-3: After disabling index.php, I can see a list of files and directories.

******ebook converter DEMO Watermarks*******

http://localhost

You typically don't want users to see this ugly index in a production server,
but I prefer it in a development environment so that I can see exactly what's
on my server. After everything is ready to go, I put together index.html or
index.php pages to generate more professional directories.
Generally, you want to have subdirectories to all your main projects. I
added a few others for my own use, including haio, which contains all the
code for this book.

 If you want to display the XAMPP welcome screen after you
remove the index.php program, simply point your browser to
http://localhost/xampp.

Setting the security level
When you have a web server and a data server running, you create some
major security holes. You should take a few precautions to ensure that
you're reasonably safe:

Treat your server only as a local asset. Don't run a home installation
of Apache as a production server. Use it only for testing purposes. Use
a remote host for the actual deployment of your files. It's prepared for
all the security headaches.
Run a firewall. You should run, at an absolute minimum, the
Windows firewall that comes with all recent versions of Windows (or
the equivalent for your OS). You might also consider an open-source
or commercial firewall. Block incoming access to all ports by default
and open them only when needed. There's no real need to allow
incoming access to your web server. You only need to run it in
localhost mode.

 The ports XAMPP uses for various tools are listed on the
security screen shown in Figure 1-4.

******ebook converter DEMO Watermarks*******

http://localhost/xampp

Run basic security checks. The XAMPP package has a handy security
screen. Figure 1-4 shows the essential security measures. I've already
adjusted my security level, so you'll probably have a few more “red
lights” than I do. Click the security link at the bottom of the page for
some easy-to-use security utilities.

Figure 1-4: The XAMPP Security panel shows a few weaknesses.

Change the MySQL root password. If you haven't already done so,
use the security link to change the MySQL root password, as shown in
Figure 1-5. (I show an alternative way to change the password in Book
VI, Chapter 1.)
Add an XAMPP Directory password. Type a password into the
lower half of the security form to protect your XAMPP directory from
unauthorized access. When you try to go to the XAMPP directory,
you're prompted for this password.

******ebook converter DEMO Watermarks*******

Figure 1-5: Changing the MySQL root password.

Security is always a compromise. When you add security, you often
introduce limits in functionality. For example, if you changed the root
password for MySQL, some of the examples (and phpMyAdmin) may not
work any-more because they're assuming that the password is blank. You
often have to tweak. See Chapter 1 in Book VI for a complete discussion of
password issues in MySQL and phpMyAdmin.

Compromising between functionality and
security
You may be shocked that my example still has a couple of security holes.
It's true, but it's not quite as bad as it looks:

The firewall is the first line of defense. If your firewall blocks
external access to your servers, the only real danger your system faces
is from yourself. Begin with a solid firewall and ensure that you don't
allow access to port 80 (Apache) or port 3306 (MySQL) unless you're
absolutely sure that you have the appropriate security measures in
place.
I left phpMyAdmin open. phpMyAdmin needs root access to the
MySQL database, so if anybody can get to phpMyAdmin through the
web server, they can get to my data and do anything to it. Because my

******ebook converter DEMO Watermarks*******

firewall is blocking port 80 access, you can't get to phpMyAdmin from
anything other than localhost access, and it's not really a problem.
I'm not running a mail or FTP server on this machine. The security
system isn't sure whether my FTP or mail system is secure, but because
I'm not running them, it isn't really a problem.

 If you're having troubles getting Apache to start, take a look at
the other programs you have running. Sometimes other programs use
the same ports that XAMPP needs, and cause problems. Messaging
programs (like Skype) are notorious for this. If you can't start Apache
while Skype is running, turn off Skype (or the other offending
software) until Apache is turned on. Typically you'll be able to run
Skype after Apache is running.

Choosing a Web Host
Creating a local server is useful for development purposes because you can
test your programs on a server you control, and you don't need a live
connection to the Internet.
However, you should avoid running a production server on your own
computer, if you can. A typical home connection doesn't have the
guaranteed IP number you need. Besides, you probably signed an
agreement with your broadband provider that you won't run a public web
server from your account.
This situation isn't really a problem because thousands of web hosting
services are available that let you easily host your files. You should
consider an external web host for these reasons:

The host, not you, handles the security headaches. This reason alone
is sufficient. Security isn't difficult, but it's a never-ending problem
(because the bad guys keep finding new loopholes).
The remote server is always up. Or, at least, it should be. The web
server isn't doing anything other than serving web pages. Your web

******ebook converter DEMO Watermarks*******

pages are available, even if your computer is turned off or doing
something else.
A dedicated server has a permanent IP address. Unlike most home
connections, a dedicated server has an IP address permanently assigned
to it. You can easily connect a domain name to a permanent server so
that users can easily connect.
Ancillary services usually exist. Many remote hosting services offer
other services, like databases, FTP, and e-mail hosting.
The price can be quite reasonable. Hosting is a competitive market,
which means that some good deals are available. Decent hosting is
available for free, and improved services are extremely reasonable.

You can find a number of free hosting services at sites like
http://free-webhosts.com.

Finding a hosting service
When looking for a hosting service, ask yourself these questions:

Does the service have limitations on the types of pages you can
host? Some servers are strictly for personal use, and some allow
commercial sites. Some have bandwidth restrictions and close your site
if you draw too many requests.
How much space are you given? Ordinary web pages and databases
don't require a huge amount of space, but if you do a lot of work with
images, audio, and video files, your space needs increase dramatically.
Is advertising forced on you? Many free hosting services make
money by forcing advertisements on your pages. This practice can
create a problem because you might not always want to associate your
page with the company being advertised. (A page for a day care center
probably should not have advertisements for dating services, for
example.)
Which scripting languages (if any) are supported? Look for PHP
support.
Does the host offer prebuilt scripts? Many hosts offer a series of
prebuilt and preinstalled scripts. These can often include content

******ebook converter DEMO Watermarks*******

http://free-webhosts.com

management systems, message boards, and other extremely useful
tools. If you know that you're going to need Moodle, for example (a
course management tool for teachers), you can look for hosting
services that have it built in. (If a tool you want isn't there, make sure
you have FTP access so you can install it yourself.)
Does the host provide access to a database? Is phpMyAdmin support
provided? How many databases do you get? What is the size limit?
What sort of Control Panel does the service provide? Does it allow
easy access to all the features you need?
What type of file management is used? For example, determine how
you upload files to the system. Most services use browser-based
uploading. This system is fine for small projects, but it's quite
inconvenient if you have a large number of files you want to transfer.
Look for FTP support to handle this.
Does the host have an inactivity policy? Many free hosting services
automatically shut down your site if you don't do anything with it
(usually after 30 to 90 days of inactivity). Be sure you know about this
policy.
Do you have assurances that the server will remain online? Are
backups available? What sort of support is available? Note that these
services are much more likely on a paid server.
How easily can you upgrade if you want? Does a particular hosting
plan meet your needs without being too expensive?
Does the service offer you a subdomain, and can you register your
own? You may also want to redirect a domain that you didn't get
through the service. (See the section “Naming Your Site,” later in this
chapter, for information on domain names.)
What kind of support is available? Most hosting services have some
kind of support mechanism with e-mail or ticket systems. Some hosts
offer live chat, and some have telephone support. Talking to a real
human in real time can be extremely helpful, and this is often worth
paying for.

Connecting to a hosting service
******ebook converter DEMO Watermarks*******

The sample pages for this book are hosted on Freehostia.com, an excellent,
low-cost hosting service. You can find many great hosting services, but the
rest of the examples in this chapter use Freehostia, where the examples for
this book are hosted.
Choose whichever hosting service works for you. If you find a free hosting
service that you really like, upgrade to a paid service. Hosting is a
reasonably cheap commodity, and a quality hosting service is well worth
the investment.

Managing a Remote Site
Obviously, having a hosting service isn't much fun if you don't have pages
there. Fortunately, there are a lot of ways to work with your new site.

Using web-based file tools
Most of the time, your host has some sort of Control Panel that looks like
the one shown in Figure 1-6.

Figure 1-6: This Control Panel allows you to manage your site remotely.

There's usually some sort of file management tool that might look like the
one shown in Figure 1-7.

******ebook converter DEMO Watermarks*******

Figure 1-7: This file management tool allows you to manipulate the files on your system.

In this particular case, all my web files are in the
www/aharrisbooks.net directory, so I click to see them. Figure 1-8
shows what you might see in an actual directory.

Figure 1-8: Now, you can see some files here.

This page allows you to rename, upload, and edit existing files and change
file permissions.
You can create or edit files with a simple integrated editor: Build a new file

******ebook converter DEMO Watermarks*******

http://www/aharrisbooks.net

with the Create File button. Type a filename into the text area and click the
button. You can also click the edit button next to a file, and the file will
open in the editor. In either case, the text editor shown in Figure 1-9
appears.

Figure 1-9: The hosting service has a limited text editor.

You can write an entire website using this type of editor, but the web-based
text editing isn't helpful, and it's kind of awkward. More often, you create
your files on your own XAMPP system and upload them to the server
when they're basically complete. Use server-side editing features for quick
fixes only.

Understanding file permissions
Most hosting services use Linux or Unix. These operating systems have a
more sophisticated file permission mechanism than the Windows file
system does. At some point, you may need to manipulate file permissions.
Essentially, the universe is divided into three populations: Yourself, your
group, and everybody else. You can allow each group to have different
kinds of permission for each file. Each of the permissions is a Boolean
(true or false) value:

Read permission: The file can be read. Typically, you want everybody
to be able to read your files, or else you wouldn't put them on the web

******ebook converter DEMO Watermarks*******

server.
Write permission: The file can be written, changed, and deleted.
Obviously, only you should have the ability to write to your files.
Execute permission: Indicates that the file is an executable program or
a directory that can be passed through. Normally, none of your files is
considered executable, although all your directories are.

What's with all the permissions?
Permissions are typically treated as binary numbers: 111 means “read, write, execute.”
This (111 value) is also a 7 permission because 111 binary translates to 7 in base ten (or
base eight, but let's skip that detail for now).

A permission is read as three digits, each one a number indicating the permissions, so 644
permission means rw- r– r–. This example can be translated as “The owner should be
able to read and write this file. Everyone else can read it. Nobody can execute it.”

If you don't understand this concept, don't worry about it. The guidelines are very simple:
Make sure that each of your files has 644 permission and that each directory has 755
permission. That's all you really need to know.

Using FTP to manage your site
Most of the work is done on a local machine and then sent to the server in a
big batch. (That's how I did everything in this book.) The standard web-
based file management tools are pretty frustrating when you want to
efficiently upload a large number of files.
Fortunately, most hosts have the FTP (File Transfer Protocol) system
available. FTP is a client/server mechanism for transferring files
efficiently. To use it, you may have to configure some sort of FTP server
on the host to find out which settings, username, and password you should
use. Figure 1-10 shows the Freehostia Control Panel with this information
displayed.

******ebook converter DEMO Watermarks*******

Figure 1-10: Configuring the FTP server.

You also need an FTP client. Fortunately, many free clients are available. I
like FileZilla, for a number of reasons:

It's free and open source. That's always a bonus.
It works the same on every OS. If I'm on Windows, Linux, or Mac, it
works the same.
It's easy to use. It feels a lot like a file manager.

Figure 1-11 shows FileZilla running in my browser.

******ebook converter DEMO Watermarks*******

Figure 1-11: FileZilla is an excellent free FTP client.

Using an FTP client
FileZilla and other FTP programs all do pretty much the same thing. Here's
how to use it:

1. Download and install FileZilla.

You can download FileZilla for free at http://download-
filezilla-ftp-free.com/. (There is also a link at my main
page: www.aharrisbooks.net.)

2. Gather the login information.

You'll need to get your FTP login information from your service
provider. Normally this consists of a special address (like a URL, but it
begins with ftp://), a username, and a password. These are not
necessarily the same credentials used to log in to the server.

3. Enter host information.

Use the site manager (Ctrl+S or File⇒Site Manager) to manage your
site. Select the New Site button to build a new connection.

******ebook converter DEMO Watermarks*******

http://download-filezilla-ftp-free.com/
http://www.aharrisbooks.net

There's a place in the dialog box to enter your login information. Put
the address (which usually begins with ftp://) in the host box,
with your username and password in the other boxes. You can typically
leave the port box blank, as this information is normally determined
automatically. (If in doubt, try port 21 or 22.) If an ordinary FTP
connection doesn't work, check with your server to see if you need to
use SFTP (a more secure variant) instead. If so, just select the
appropriate encryption method (provided by your server) in the
Encryption field. Once you've made the connection, SFTP acts almost
exactly like FTP. Figure 1-12 shows the Site Manager dialog box.

Figure 1-12: Setting up an FTP account with FileZilla.

4. Connect to the FTP server.

Click Connect to make the connection. A flurry of obscure messages
flies through the top panel. In a few seconds (if all went well), you'll
see a directory listing of the remote system in the right-hand panel.

5. Use the left panel to manage local files.

The left-hand panel controls the local file system. Use this to find files
on your local computer. It's a normal file management system like My
Computer or Finder.

******ebook converter DEMO Watermarks*******

6. Use the right panel for remote files.

The right-hand panel controls the remote server file system. It works
exactly like the local system, except it allows you to manipulate files
on the remote system. Use this system to move to the appropriate
directory on the remote system. You can also create a new directory or
rename files with the appropriate buttons on this screen.

7. Drag files to transfer them.

To transfer files between machines simply drag them. Drag from the
local machine to the remote machine to upload, or in the other direction
to download them. You can move many files at a time in this manner.

8. Watch for errors.

Most of the time, everything works great, but sometimes there is a
problem. The bottom panel shows potential error messages. If there is
an error, you may need to reload a file.

 Most remote servers run some variation of the Unix operating
system. You may not be familiar with Unix, but it really works a lot
like the systems you already know. However, it has one feature that
may be new to you: file permissions. Most of the time, an FTP program
automatically gets the file permissions right, but if the browser cannot
see a file after you upload it to the server, try right-clicking that file in
FileZilla and look at its properties. Most web files should have a
permission set called 644 (which means you can read and write the
file, everyone else can read it, and nobody can run it on the server). If it
is set to something else, try changing it to 644. Web directories should
typically have 755 permission, which is almost always the default.

 FTP is a completely unsecure protocol. Anything you transfer

******ebook converter DEMO Watermarks*******

with FTP is completely visible to any bad guys sniffing the Internet.
For this reason, some servers use a different protocol: Secure FTP
(SFTP). Filezilla supports this and other protocols your server might
use.

Naming Your Site
After you have a site up and running, you need to give it an address that
people can remember. The Domain Name System (DNS) is sort of an
address book of the entire Internet. DNS is the mechanism by which you
assign a name to your site.

Understanding domain names
Before creating a domain name, you should understand the basics of how
this system works:

Every computer on the Internet has an IP (Internet Protocol)
address. When you connect to the Internet, a special number is
assigned to your computer. This IP address uniquely identifies your
computer. Client machines don't need to keep the same address. For
example, my notebook has one address at home and another at work.
The client addresses are dynamically allocated, and that's fine. But a
server needs a permanent address that doesn't change.
IP addresses are used to find computers. Any time you request a
web page, you're looking for a computer with a particular IP address.
For example, the Google IP address is 66.102.9.104. Type it into
your browser address bar, press Enter, and you see the Google main
page.
DNS names simplify addressing. IP numbers are too confusing for
human users. The Domain Name System (DNS) is a series of databases
connecting website names with their associated IP numbers. When you
type http://www.google.com, for example, the DNS system
looks up the text www.google.com and finds the computer with the
associated IP.
You have to register a DNS name. Of course, to ensure that a
particular name is associated with a page, you need to register that

******ebook converter DEMO Watermarks*******

http://www.google.com
http://www.google.com

relationship.

Registering a domain name
In this section, I show you how to register a domain using Freehostia.com.
Check the documentation on your hosting service. Chances are that the
main technique is similar, even if the details are different.
To add a domain name to your site, follow these steps:

1. Log in to the service.

Log in to your hosting service administration panel. You usually see a
Control Panel something like the one shown in Figure 1-13.

Figure 1-13: This Control Panel shows all the options, including domain and
subdomain tools.

2. Find the domain manager.

In Freehostia, the domain manager is part of the regular administration
panel.

3. Pick a subdomain.

In a free hosting service, the main domain (freehostia.com, for

******ebook converter DEMO Watermarks*******

http://freehostia.com

example) is often chosen for you. Sometimes, you can set a subdomain
(like mystuff.freehostia.com) for free. The page for managing
this process might look like Figure 1-14.

Figure 1-14: Use this page to create a subdomain for your account.

4. Look for a domain search tool.

Often, you have a tool, like the one shown in Figure 1-15, that allows
you to search for a domain.

5. Search for the domain name you want.

You can type a domain name to see whether it's available.

Figure 1-15: I'm searching for aharrisbooks.net — it seems like a good name!

******ebook converter DEMO Watermarks*******

http://mystuff.freehostia.com

6. If the domain name is available to register and you want to own it,
purchase it immediately.

If a domain is available to transfer, it means that somebody else
probably owns it.

 Don't search for domains until you're ready to buy them.
Unscrupulous people on the web look for domains that have been
searched and then buy them immediately, hoping to sell them back to
you at a higher price. If you search for a domain name and then go
back the next day to buy it, you often find that it's no longer available
and must be transferred. I've also seen people offer to sell you a
domain that's currently available, then buy it up only after you've
agreed to purchase from them and sell it at a huge markup.

7. Register the domain.

The domain-purchase process involves registering yourself as the
domain owner. WHOIS information provides your information to
people inquiring about the domain name.

8. Wait a day or two.

Your new domain name won't be available immediately. It takes a
couple of days for the name to be registered everywhere.

9. Remember to renew your domain registration.

Domain-name registration isn't expensive (typically about $10 per
year), but you must renew it or risk losing the name.

Managing Data Remotely
Websites often work with databases. Your hosting service may have

******ebook converter DEMO Watermarks*******

features for working with MySQL databases remotely. You should
understand how this process works because it's often slightly different from
working with the database on your local machine.

Creating your database
Often, a tool like the one shown in Figure 1-16 allows you to pick a
defined database or create a new one.

Figure 1-16: You often have to create a database outside of phpMy-Admin.

This database creation step happens because you don't have root access
to MySQL. (If everybody had root access, chaos would ensue.) Instead,
you usually have an assigned username and database name enforced by the
server. On Freehostia, all database names begin with the username and an
underscore. To create a new database, you need to provide a database name
and a password. Usually, a MySQL user is created with the same name as
the database name.
After you create the database, you can select it to work with the data in
MySQL. Figure 1-17 shows the MySQL screen for my database on
Freehostia.

******ebook converter DEMO Watermarks*******

Figure 1-17: phpMy-Admin is just like the one on your home machine!

You can see from Figure 1-17 that phpMyAdmin is somewhat familiar if
you read Book VI. Often, public servers remove the Privileges section
because you aren't logged in as root. Everything else is basically the
same. See Book VI for details on how to use phpMyAdmin to work with
your databases.

Finding the MySQL server name
Throughout Book VI, I assume that the MySQL server is on the same
physical machine as the web server. This situation is common in XAMPP
installations, but commercial servers often have separate servers for data.
You may have to dig through the documentation or find a Server Statistics
section to discover how your PHP programs should refer to your server.
By far the biggest problem when moving your programs to a remote server
is figuring out the new connection. Make sure that you know the right
combination of server name, username, and password. Test on a simple
PHP application before working on a complex one.

******ebook converter DEMO Watermarks*******

Chapter 2
Planning Your Sites

In This Chapter
 Planning multipage websites
 Working with the client
 Analyzing the audience
 Building a site plan
 Creating HTML and CSS templates
 Fleshing out the project

At some point, your web efforts begin to grow. Rather than think about
single web documents, you begin to build more complex systems. Most
real-life web problems require a lot more than a single page to do the work.
How do you make the transition to a site with many different but
interconnected pages? How do you think through the process of creating a
site that serves a specific purpose?
You might even be thinking about doing commercial web development
work. If so, it's definitely time to think about how to put together a plan for
a customer.

Creating a Multipage Website
A complete website has these characteristics:

A consistent theme: All the pages in a website should be about
something — a product, a shop, a hobby. It doesn't matter much what
the theme is, but the pages should be unified around it.
Consistent design: The site should have a unified color scheme. All
pages should have the same (or similar) layout, and the font choices
and images should all use a similar style.
A navigation scheme: Users must have a clear mechanism to move

******ebook converter DEMO Watermarks*******

around from page to page. The organization of the pages and their
relationships should be clear.
A common address: Normally, all pages in a site are on the same
server and have a common DNS name so that they're easy to
distinguish.

Obviously, the skills of web design are critical to building a website, but a
broader skill set is required when creating something larger than individual
pages.
If you're starting to build a more complicated website, you need to have a
plan, or else you won't succeed. This plan is even more important if you're
building a site for somebody else.

Planning a Larger Site
Here are some questions you need to ask yourself when designing a larger
website:

What's the point of the site? The site doesn't have to be serious, but it
does have to have a theme. If you don't know what your site is about,
neither do your users (and they'll leave in a hurry).
Who am I talking to? Websites are a form of communication, and you
can't communicate well if you don't understand your audience. Who is
the primary target audience for this site?
Which resources do I have available? Resources involve a lot more
than money (but it helps). How much time do you have? Do you have
access to a solid technical framework? Can you get help if you need it?
Do you have all the copy and raw materials?
What am I trying to say? Believe it or not, this question often poses a
huge problem. Somebody says, “I need a website.” When you ask what
she wants on the site, she says, “Oh, lots of things.” When you try to
pin down the answers, though, people often don't know what they want
their website to say.
What are the visual design constraints? If you're building a page for
a small business, it probably has some kind of visual identity (through

******ebook converter DEMO Watermarks*******

brochures or signage, for example). The business owner often wants
you to stick with the company's current branding, which may involve
negotiating with graphic artists or advertisers the business has worked
with.
Where will I put this thing? Does the client already have a domain
name? Will moving the domain name cause a problem? Does content
that's already on the web need to be moved? Do you already have
hosting space and a DNS name in mind?

Understanding the Client
Often, a larger site is created at the behest of somebody else. Even if you're
making a site for your own purposes, you should consider yourself a client.
If the project is going to be successful, you need to know a few things
about the client, as described in the following sections.

Ensuring that the client's expectations are
clear
The short answer to the question of whether a client's expectations are clear
is, “Not usually.”
A client who truly understands the Internet and knows what it takes to
realize her vision for the site probably doesn't need you. Most of the time, a
client's own concepts of what should happen on the site are vague, at best.
Here are some introductory questions you can ask to get a sense of your
client's expectations:

What are you trying to say with this site? If the website has a single
message that can be boiled down to one phrase or sentence, find out
what that message is.
Who are you trying to reach with this site? Determine who the client
expects to be the typical users of the site. Find out whether she expects
others and whether the site has more than one potential type of user.
(For example, customers and employees may need different things.)
What problem is this site trying to solve? Sometimes, a website is

******ebook converter DEMO Watermarks*******

envisioned as a solution to a particular problem (getting the schedule
online or keeping an online newsletter updated, for example.)
What kind of design framework is already in place? Determine
whether the organization already has some sort of branding and design
strategy or whether you have freedom in this arena. If the client is
already working with a graphic designer or artist, you'll need contact
information.
What is the time constraint? Find out how quickly the client needs
the site completed. Does the client want the entire project at one time,
or can it be phased in?
Do you already have a technical framework in place? Determine
whether the project needs to work with an existing database, web
server, website, or domain name and whether you have complete
access to those resources.
Are there security concerns? First ask whether you will be asked to
post data (personal information, credit card numbers, or Social Security
numbers, for example) on the Internet that shouldn't be there. Run from
any project that requires you to work with this potentially dangerous
data, unless you're extremely comfortable with security measures.
How will you get the copy? Any professional web developer can tell
you that the client usually promises to make the copy available
immediately but rarely delivers it without a lot of pleading. If the
content is available, it's often incomplete or incorrect. You need to
have some plan for getting the material from the client, or else you
cannot proceed past a certain point.
Does the client have a remuneration strategy? If you will be paid for
your work, find out how you will be paid and whether it's hourly or by
the project. If you have a business arrangement, treat it as such and
write out a contract. Even if the page is written for free for a friend, a
written contract is a good idea because you don't want to ruin a
friendship over something as silly as a website.

Delineating the tasks
Building a website can involve a lot of different tasks. Your contract

******ebook converter DEMO Watermarks*******

should indicate which of these tasks is expected. This list describes the
potential scope of the project:

Site layout: Determine which pages the site has and how they're
connected to each other.
HTML coding: Some projects simply require HTML coding and CSS.
Presumably, the copy has already been provided, and you simply need
to convert it to HTML format. This work isn't difficult, but it's tedious.
Use a text editor with macro capability — after you create an HTML
template.
HTML template design: Devise an overall page design. The content
isn't important here, but the general page design is the issue. This task
requires sample data and an editor. It's normally done in conjunction
with CSS templating.
CSS design: After you have an HTML template or two (so that you
know the logical structure of the pages), you can work on the visual
design. Start with sketches on paper and maybe images from a paint
program. After you have a layout approved, write the CSS to
implement it.
Data design: If the project will have a database component, take some
time to analyze (and, often, rebuild) the data structure to follow the
normalization rules. Data work is difficult because it doesn't have a
visual result, yet it's critical to the overall site. This step is usually put
off until the end, and that decision often dooms web projects. If you
need data design, start it early.
Data implementation: If the project has a data component, write and
test the SQL code to build the database, including tables, views, and
sample queries. You need time to write PHP code to connect the
database to the HTML front end.
Site integration and implementation: It takes some effort to fit all the
pieces back together and make them work. Usually, this process is
ongoing. The site needs to be set up on a production server and then
tested and launched.
Testing: Testing your work with live users is critical. You can use
formal usability studies, but failing that, you still learn a lot by asking

******ebook converter DEMO Watermarks*******

people to use your system and watching them do it (with your mouth
shut). This method is the best way to see whether your assumptions are
correct and the site is doing what it needs to do.

 For this discussion, I'm assuming you're building the entire site
manually. In Chapter 3 of this minibook, I explain how to use content
management systems to simplify the process of building large websites.

Understanding the Audience
Understanding your audience is one of the trickiest parts of web planning.
You need to anticipate the audience in a number of ways, as described in
the following sections.

Determining whom you want to reach
Before you make a lot of design decisions, you need to think carefully
about the type of person you're trying to reach with the website.
Try to anticipate the mindset that people have when they use a particular
site. For example, one of my students simultaneously worked on two sites:
one for a graduate program at a university and another for a spa and salon.
She had to think quite differently about the users of the two sites, which
had implications for how she approached each step of the process.
The graduate program page was part of a website for a university. The
university already had its own style and branding guidelines, official
colors, and a number of (evolving) standards. The potential users of this
site were graduate students seeking online degrees. The focus of this site
was all business. People were there to learn about the graduate program
and set up their schedules. They wanted information about classes,
instructors, and schedules, but they didn't want anything that interfered
with the problem at hand. The writing was efficient and official, the color
scheme was standard, and the layout was also official.
The spa and salon page had an entirely different feel. The owner loves
design and spent long hours picking exactly the right paint color for the

******ebook converter DEMO Watermarks*******

walls in the physical space. She's really happy with her brochure, and
although she's not sure exactly what she wants, she knows when something
isn't right. She wants to give her customers information about the salon, but
more importantly, she wants them to get a sense of how invigorating,
relaxing, and feminine the experience of visiting her salon can be.
These two sites, although they require the same general technical skills,
demand vastly different visual and technical designs because the clients
and their users are vastly different.
Of course, someone could simultaneously be a graduate student and a
patron of the salon, but the person would still have a different identity in
these different sites. If you're going to a university site, in a student
mindset, you want quick, reliable information. If, after you sign up for
classes, you're looking for a salon, you likely want to be pampered.
Websites are experiences. The design of the site should reflect the
experience you're trying to give the user when he visits your site.

Finding out the user's technical expertise
Understanding the user isn't just an exercise in psychology. You also need
to estimate the users’ technical proficiency because it can have a major
impact on your site. Consider these issues for the typical user:

Whether the user has broadband access: University students, hard-
core gamers, and web developers often have high-speed Internet
access, so they don't mind a page with lots of video, multimedia assets,
and large file sizes. (In fact, they may expect a page like this.) Lots of
people still use dialup connections or mobile access with limited
bandwidth. If your audience has slower connections, every image
creates a delay. Audio and video assets are completely unavailable to
this group — and even make your site unattractive to them.
Whether the user has a recent browser: You have no way to predict
which browser a user has, but think about whether your target audience
has a reason to install any of the current browsers. By and large,
grandmothers use whichever browsers were on their machines when
they purchased them. (I do know some L337 H@XX0R grandmas,
however.) If most people in your audience are still using ancient
browser — believe it or not, they're still used a lot — using advanced

******ebook converter DEMO Watermarks*******

CSS and JavaScript tricks on your page may not be the best choice.
Whether the user has a recent computer: As technical people, we
tend to assume that everyone else keeps up-to-date on technology.
That's not necessarily an accurate assumption.
Whether the user has certain proficiencies: If you include a Flash
animation, for example, the user might not have the right version of
Flash installed. You have to decide whether it's reasonable to expect
the user to install a plug-in.
Whether this will be a largely mobile application: These days, every
website should be considered a potential mobile site, but if a large
percentage of your visitors will be using mobile devices to view your
page, this will have implications on your design.

This process isn't about stereotyping, but you must consider the user while
you're building a site. You want to match users’ expectations and
capabilities, if possible.

 Of course, you're making assumptions here, and you may well be
wrong. I once did some work for a club for retired professors, and I
based my expectations on their being retired. I should have based my
assumptions on their being professors. And they let me have it! Be
willing to adjust your expectations after you meet real users. (For
professional work, you must meet and watch real users use your site.)

Building a Site Plan
Often, the initial work on a major site involves creating a plan for the site
design. I like to do this step early because it helps me see the true scope of
the project. A site plan is an overview of a website. Normally, it's drawn as
a hierarchy chart.
I was asked to help design a website for an academic department at a major
university. The first question I asked was, “What do you want on the
website?” I wrote down everything on a whiteboard, with no thought of
organization. Figure 2-1 shows a (cleaned-up) version of that sketch.

******ebook converter DEMO Watermarks*******

Figure 2-1: We need a lot of stuff on this site. Good grief!

 For all the sketches in this chapter, I used Dia, the open-source
drawing tool. An excellent tool for this kind of work, I've added a link
on the website so that you can play with it.

After all participants suggested everything they thought their site needed, I
shooed them out of the room. Using only paper and pencil, I created a more
organized sketch based on how I thought the information should be
organized. My diagram looked like the one shown in Figure 2-2.

******ebook converter DEMO Watermarks*******

Figure 2-2: This chart shows an organized representation of the data.

Creating a site overview
Keep these suggestions in mind while creating a site overview diagram:

Use the Law of Seven. This law suggests that people generally can't
handle more than seven choices at a time. Try not to have more than
seven major segments of information at any level. Each of these can be
separated into as many as seven chunks, and each of these can have
seven chunks.

Note: Even this book uses the Law of Seven! (Well, sorta — this book
has eight minibooks.) The monster you're holding is too intimidating to
look at as just one book, but if you break it into smaller segments, it
becomes easier to manage. Clever, huh?

Identify commonalities. While you look over the data, general
groupings emerge. In the university example, I could easily see that we
had a lot of course data, degree information, information about faculty,
and research. I wanted to consider a few other topics that didn't fit as
well, until I realized that they could be grouped as events and
opportunities.
Try to assign each topic to a group. I'm doing a form of data

******ebook converter DEMO Watermarks*******

normalization here. This data structure isn't necessarily a formal one,
but I'm using the same sort of thinking, so it could be. Clearly, I'm
using the principle of functional dependency.
Arrange a hierarchy. Group the topics from most general to most
specific. For example, the term course info is very broad. N100 is a
specific course, and it may have many sections (specific date, time, and
instructor combinations). Thus, it makes sense to group sections under
N100 and to group N100 under courses.
Provide representative data. Not every single scrap of information is
necessary here. The point is to have enough data so you can see the
relationships among data.
Keep in mind that this diagram does not represent the site design.
When I showed this diagram to people, many assumed that I was
setting up a menu structure, and they wanted a different kind of
organization or menu. That's not the point yet. The purpose of this type
of diagram is to see how the data itself fits together. Of course, this
diagram tends to inform the page setup and the menu structure, but it
doesn't have to.
Not each box is a page. It might be, but it doesn't have to be. Later in
the process, you can decide how to organize the parts of the site. For
example, we decided to put all sections of N100 on one page with the
N100 information using AJAX.

Building this sort of site diagram is absolutely critical for larger sites, or
else you never really grasp the scope of the project. Have the major
stakeholders look it over to see whether it accurately reflects the
information you're trying to convey.

Building the site diagram
The site diagram is a more specific version of the site overview. At this
point, you make a commitment about the particular pages you want in the
system and their organizational relationship. Figure 2-3 shows a site
diagram for the department site.

******ebook converter DEMO Watermarks*******

Figure 2-3: Now you have a site diagram for the department site.

The site diagram is a bit different from the overview for these reasons:

Each box represents a page. Now you have to make some decisions
about how the pages are organized. Determine at which level of the
overview you have separate pages. For example, are all the course
sections on one page, or all the sections of N100? Does each section of
each course have a different page? These decisions will help you
determine which technologies to use in constructing the page.
The site diagram still doesn't need every page. If you have 30
classes, you don't need to account for each one if you know where they
go and they all have the same general purpose and design.
The navigation structure should be clear. The hierarchy should give
you a clear navigation structure. (Of course, you can, and often should,
add a secondary navigation structure. See the sidebar “Semantic
navigation.”)
Name each box. Each page should have a name. These box names
translate to page titles and help you form a unified title system. This
arrangement is useful for your navigation scheme.

******ebook converter DEMO Watermarks*******

Identify overall layout for each box. Generally, a site uses only a few
layouts. You have a standard layout for most pages. Often, the front
page has a different layout (for news and navigation information). You
may have specialty layouts, as well. For example, the faculty pages all
have a specific layout with a prominent image. Don't plan the layout
here — just identify it.
Sort out the order. If the order of the pages matters, the site diagram
is the place to work it out. For example, I organized the degrees from
undergraduate to PhD programs.

The goal for this part of the site-planning process is to have a clear
understanding of what each page requires. This information should make it
easy for you to complete the data and visual design steps. The site diagram
is an absolutely critical document. After you have it approved, print it and
tape it to your monitor. It's your map for the rest of the project.

Semantic navigation
One idea that has been popular in web design circles is the notion of semantic navigation,
where you set up your menu structure so that it reflects the jobs people are trying to do,
rather than reflect the hierarchy of your sites. For example, a university department site
might have a menu for common student activities, alumni, and faculty.

This idea can be quite helpful if done properly, but don't try to set up your entire site this
way because it involves too much duplication of data. (Students and faculty both need
course information, but you don't want to post that in two different places.) Instead, set up
your site in a normalized way, and then put another menu system on your site that allows
users to choose the section of the site they want based on problems they're trying to solve.
Then, you create the best of both worlds.

Creating Page Templates
If you've developed a site diagram, you should have a good feel for the
overall requirements of the web development project. You should know
how many layouts you need and the general requirements for each one.
Your next task is to think about the visual design. Here are some
guidelines:

******ebook converter DEMO Watermarks*******

Get help if you need it. Visual design is a skill that requires insight
and experience. If you “design like a programmer” (I sure do!), don't
be afraid to get help from a person who has design sensibility. You still
need to translate the design into code, however.
Identify unifying design goals. All pages on the site have certain
characteristics in common. Find out the overall color scheme, whether
you will have a logo, and whether all pages will have the same header
and retain the same fonts throughout.
Identify a primary layout. Generally, a website requires one major
layout that's repeated throughout the site. Often, the main page does
not use this primary layout, but most internal pages do. Determine, for
example, which broad design elements can be shared by most of the
pages, whether every page has a headline, whether you need columns,
and how important images are.
Identify specialty designs. The main page is often a bit different from
the other pages because it serves as an overview to the site. Likewise, if
you will be repeating certain kinds of pages (the course pages and
faculty pages in my university example), you have to know how these
designs differ from the primary layout. Keep design elements as
consistent as you can because unity makes your job easier and ties the
site pages together.

Sketching the page design
Do not write even a single line of code before sketching out some design
ideas. Figure 2-4 shows a page sketch for my sample site.
Your page sketch gives you enough information to create HTML and CSS
code. It needs to start showing some detail, such as the following details:

Draw out each element on the page. Any major page element
(headlines, menus, columns) must be delineated.
Include the class or ID identifier for each element. If you have a
segment that will be used as a menu, name it “menu,” for example. If
you have a content area, identify that name now. Write all names
directly on the diagram so that you're clear about what belongs where.

******ebook converter DEMO Watermarks*******

Include all relevant style information. Describe every font, the width
of every element (including measurement units), the foreground and
background colors (with hex codes), the background images (including
sizes), and anything else you might need in order to code CSS styles
for the page.
Build a page sketch following these guidelines for each page
template in your site. If you have three page designs, for example,
you need three separate diagrams.

Figure 2-4: Here's a sample sketch for the standard template on this site.

These diagrams are finished only if they give you everything you need to

******ebook converter DEMO Watermarks*******

build the HTML and CSS templates. The idea is to do all your design work
on paper and then implement and tweak your project with code. If you plan
well, the coding is easy.

 The design sketch isn't a page mock-up. It's not meant to look
exactly like the page. Instead, it's a sketch that explains with text all the
various details you need to code in HTML and CSS. Often, designers
produce beautiful mock-ups that aren't helpful in development because
you need to know sizes and colors, for example. If you want to produce
a mock-up, by all means do so, but also make a design sketch that
includes things like actual font names and hex color codes so that you
can re-create the mock-up with live code.

Building the HTML template framework
With a page layout in place, you can finally start writing some code. Begin
with your standard page layout diagram and create an HTML template to
implement the diagram in working code. The HTML template is quite
simple because most of the design should happen in the CSS. Keep these
guidelines in mind:

Remember that the template is simply a framework. The HTML is
mainly blank. It's meant to be duplicated and filled in with live data.
It has a reference to the style sheet. External CSS is critical for large
web projects because many pages refer to the same style sheet. Make a
reference to the style sheet, even though it may not actually exist yet.
Include all necessary elements. The elements themselves can be
blank, but if your page needs a list for a menu, add an empty list. If you
need a content div, put it in place.
Create a prototype from the template. You'll need sample data in
order to test the CSS. Build a prototype page that contains typical data.
The amount of data should be typical of the actual site so that you can
anticipate formatting problems.

******ebook converter DEMO Watermarks*******

 It's very possible that you'll never manually put content in your
template. There are several options for automating this process, which
can be found in Chapter 4 of this minibook.

The HTML template should be easy to construct because everything you
need is in the page template diagram. Figure 2-5 shows an HTML
prototype.

Figure 2-5: An HTML prototype for my site (with no CSS attached yet).

Here's the HTML code for my prototype:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>CS Standard Template</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">

******ebook converter DEMO Watermarks*******

 <h1>Heading</h1>
 </div><!-- end heading div -->
 <div id = "menu">
 menu

 one
 two
 three

 </div> <!-- end menu div -->
 <div class = "content">
 <h2>Content 1</h2>
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 </div> <!-- end content div -->
 <div class = "content">
 <h2>Content 2</h2>
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 One or more of these will contain content
 </div> <!-- end content div -->
 <div id = "footer">
 contact and footer info
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

 People commonly start writing pages at this point, but that's a
dangerous idea. Don't use any real data until you're certain of the
general HTML structure. You can always change the style later, but if
you create 100 pages and then decide that each of them needs another
<div> tag, you have to go back and add 100 divs.

******ebook converter DEMO Watermarks*******

Creating page styles
With an HTML framework in place, you can start working on the CSS.
The best way to incorporate CSS is by following these steps:

1. Begin with the page template diagram.

It should have all the information you need.

2. Test your CSS in a browser.

Begin with a simple CSS implementation that ensures you have the
right names for all the page elements. (I like to give each element a
different background color, for example.) Then modify each element
according to your design document, testing as you go.

3. Implement the CSS from your diagram.

You should be implementing the design you already created, not
designing the page. (That already happened in the diagramming
process.)

4. Save the design.

For multi-page projects, external CSS in a separate file is definitely the
way to go. As you work, save the CSS in the normal way so the
browser will be able to read it. (See Book II for information on
implementing external style sheets.)

5. Test and tweak.

Things are never quite what they seem with CSS because browsers
don't conform to standards equally. You need to test and tweak on
other browsers. If users with older technologies are a concern, you may
have to use a secondary style sheet for older versions of IE. You may
also want to make a mobile version.

6. Repeat for other templates.

******ebook converter DEMO Watermarks*******

Repeat this process for each of the other templates you identified in
your site diagram.

The result of this process should be a number of CSS files that you can
readily reuse across your site.
Here's the CSS code for my primary page:

body {
 background-color: #000000;
}

h1 {
 text-align: center;
 font-family: sans-serif;
 color: white;
 text-shadow: 0 0 10px black;
}

#all {
 background-color: white;
 border: 1px solid black;
 width: 800px;
 margin-top:2em;
 margin-left: auto;
 margin-right: auto;
 min-height: 600px;
}

#heading {
 background-color: #A11204;
 background-image: url("cbBackground.png");
 color: #FFFFFF;
 height: 100px;
 font-size: 2em;
 padding-left: 1em;
 border-bottom: 3px solid black;
 margin-top: -1.5em;
}

#menu {
 background-image: url("cbBackground.png");
 background-color: #A11204;
 color: #FFFFFF;
 float: left;
 width: 100px;

******ebook converter DEMO Watermarks*******

 min-height: 500px;
}

#menu li {
 list-style-type: none;
 margin-left: -2em;
 margin-right: .5em;
 text-align: center;
}

#menu a {
 color: #FFFFFF;
 display: block;
 border: #A11204 3px outset;
 text-decoration: none;
}
#menu a:hover {
 border: #A11204 3px inset;
}

.content {
 border: 3px double #A11204;
 margin: 1em;
 margin-left: 110px;
 padding-left: 1em;
 padding-bottom: 1em;
 padding-right: 1em;
 border-radius: 5px;
 box-shadow: 5px 5px 5px gray;
}

.content h2 {
 background-color: #A11204;
 background-image: url("cbBackground.png");
 color: #FFFFFF;
 text-align: right;
}

#footer {
 color: #FFFFFF;
 background-color: #000000;
 border: 1px solid #A11204;
 float: left;
 clear: both;
 width: 100%;
 text-align: center;

******ebook converter DEMO Watermarks*******

}

Figure 2-6 shows the standard template with the CSS attached.

Figure 2-6: The HTML template looks good with the CSS attached.

Building a data framework
The examples throughout this chapter assumed that a large web project can
be done in straight HTML and CSS. That's always a good starting point,
but if your program needs data or interactivity, you probably have a data
back end.

 Most data-enabled sites fail because they weren't planned
properly.

The reason is almost always that the data normalization wasn't incorporated
into the plan early enough, and the other parts of the project inevitably
depend on a well-planned data back end.
If you suspect your project will involve a database, you should follow these
steps early in the process (during the early site-planning phase):

1. Identify the true data problem to be solved.

******ebook converter DEMO Watermarks*******

Data gets complicated in a hurry. Determine why exactly you need the
data on the site. Keep the data as simple as you can, or else you'll
become overwhelmed.

2. Identify data requirements in your site diagram.

Find out where on the site diagram you're getting data. Determine
which data you're retrieving and record this information on the site
diagram.

3. Create a third normal form ER diagram.

Don't bother building a database until you're sure that you can create an
ER diagram in third normal form. Check Book VI, Chapter 3 for
details on this process. If you're spotty on data design, get help.

4. Implement the data structure.

Create an SQL script that creates all the necessary data structures
(including tables and views) and includes sample data. Implementing
the design is easy after you've made it. (That seems to be a theme,
doesn't it?)

5. Create PHP middleware.

After the database is in place, you usually need PHP code to take
requests, pass them to the database, and return the results. Most of the
PHP code for the main site consists of simple queries from the
database. If you can use AJAX or SSI, it simplifies the process because
your PHP code doesn't have to create entire pages — it simply creates
snippets of code.

 See Chapter 3 of this minibook for help on implementing
these technologies.

6. Consider update capabilities.
******ebook converter DEMO Watermarks*******

Usually, when you have a database, you need another part of the site to
allow the client to update information. It's often an administrative site
with password access. An administrative site is much more complex
than the main site because it requires the ability to add, edit, and update
records.

Fleshing Out the Project
If you completed all the steps in the preceding section, it becomes
relatively easy to create the page: It's simply a matter of forming the copy
into the templates you created, tying it all together, and launching the site.

Making the site live
Typically, you do the primary development on a server that isn't in public
view. Follow these steps to take the site to production:

1. Test your design.

Do some usability testing with real users. Watch people solve typical
problems on the site and see what problems they encounter.

2. Proofread everything.

Almost nothing demolishes credibility as quickly as sloppy writing.
Get a quality proofreader or copy editor to look over everything on the
site to check for typos and spelling errors. If your page contains a
specific type of content (technical information or company policy, for
example), have an expert familiar with the subject check the site for
factual or content errors.

3. Prepare the online hosting environment.

Be sure that you have the server space to handle your requirements.
Make a copy of your database and test it. Check the domain name to be
sure that you have no legal encumbrances.

4. Move your site online.
******ebook converter DEMO Watermarks*******

Move the files from your development server to the main server.

5. Test everything again.

Try a beta test, where your page is available to only a few people. Get
input and feedback from these testers and incorporate the best
suggestions.

6. Ensure you have a maintenance agreement.

Websites are complicated, and they will have a long lifespan. Make
sure you have an agreement in place that clearly indicates your ongoing
relationship with the project. You should generally have the client sign
off that the project is complete and build in some kind of contract for
on-going support.

7. Take a vacation. You earned it!

Contemplating efficiency
When you start working with the site, you'll probably encounter repeated
code. For example, each page may have exactly the same title bar. You
obviously don't want to write exactly the same code for 100 different pages
because it might change, and you don't want to make the change in 100
different places. You have three options in this case:

Use AJAX to import the repeated code. Follow the AJAX
instructions in Chapter 3 of this minibook to import your header (or
other repeated code).
Use Server-Side Includes (SSI) to import code on the server. If your
server allows it, you can use the SSI technology to import pages on the
server without using a language like PHP. SSI is explained in Chapter
3 of this minibook.
Build the pages with PHP. Put all segments in separate files and use a
PHP script to tie them together. When you do this, you're creating a
content management system, which is the topic of Chapters 3 and 5 of
this minibook.

******ebook converter DEMO Watermarks*******

******ebook converter DEMO Watermarks*******

Chapter 3
Introducing Content

Management Systems
In This Chapter

 Understanding the need for content management systems
 Previewing typical content management systems
 Installing a content management system
 Adding content to a content management system
 Setting up the navigation structure
 Adding new types of content
 Changing the appearance with themes
 Building a custom theme

If you've ever built a large website, you'll probably agree that the process
can be improved. Experienced web developers have discovered the
following maxims about larger projects:

Duplication should be eliminated whenever possible. If you find
yourself repeatedly copying the same HTML code, you have a
potential problem. When (not if) that code needs to be changed, you
have a lot of copying and pasting to do.
Content should be separated from layout. You've already heard this
statement, but it's taken to a new level when you're building a large
site. Separating all content from the layout would be helpful so that
you could create the layout only one time and change it in one location.
Content is really data. At some point, the content of the website is
really just data. It's important data, to be sure, but the data can — and
should — be separated from the layout code.
Content belongs to the user. Developing a website for somebody can

******ebook converter DEMO Watermarks*******

become a long-term commitment. If the client becomes dependent on
the site, he frequently pesters you for changes. It would be helpful if
the client could change his own content and ask you only for changes
in structure or behavior.
A website isn't a collection of pages — it's a framework. If you can
help the client own the data, you're more concerned with the
framework for manipulating and displaying that data. It's a good deal
for you and the client.

A content management system (CMS) is designed to address exactly these
issues, as this chapter will show you.

Overview of Content Management
Systems

CMSs are used in many of the sites you use every day. As you examine
these CMSs, you start to recognize them all over the web. If you have your
own server space, a little patience, and a little bit of knowledge, you can
create your own professional-looking site using a CMS.
This list describes the general characteristics of a CMS:

It's written in a server-side language. The language is usually PHP,
but CMSs are sometimes written in other languages. Stick with PHP
for now because it's described in this book, it's easy to use, and it's the
most frequently used CMS language.
All content is treated as data. Almost all the content of the CMS is
stored in text files or (more commonly) a MySQL database. A CMS
usually has few HTML files.
The layout consists of data, too. The CSS and HTML templates, and
everything else the CMS needs, are also stored as data, in either text
files or the database.
All pages are created dynamically. When a user logs in to a CMS,
she is normally talking to a PHP program. This program analyzes the
current situation and generates an HTML document on the fly.

******ebook converter DEMO Watermarks*******

There are different levels of access. Most CMSs allow anonymous
access (like regular web pages) but also allow users to log in for
increased access, and usually a special form of administrative access to
modify the site.
The content can be modified from within the system. Users with the
appropriate access can modify the content of the CMS without
knowing anything about PHP or databases. Often, you don't even need
to know HTML or CSS.
The layout can be modified from within the system, too. Many
CMSs allow you to change the layout and design from within the
system, although the process is usually more involved.
CMSs can be expanded. Most CMSs are easily modified with
hundreds of visual themes, add-in modules, and new capabilities
available for free. In most cases, if you need something that isn't there,
you can make it yourself.
Many of the best CMSs are open-source. CMSs are a shocking
value. When you consider how much they can contribute to your online
presence, it's amazing that most CMS programs are absolutely free.

Previewing Common CMSs
To get a true feel for the power of CMSs, you should test-drive a few. The
wonderful resource www.opensourcecms.com allows you to log in to
hundreds of different CMSs as a user and as an administrator to see how
they work. I show you a few typical CMSs so that you can get a feel for
how they work.

Moodle
Often, you have a special purpose in mind. For example, I wanted to teach
an online course without purchasing an expensive and complicated course
management system. I installed the special-purpose CMS Moodle.
Figure 3-1 shows the Moodle screen for one of my courses.

******ebook converter DEMO Watermarks*******

http://www.opensourcecms.com

Figure 3-1: Moodle is useful for managing online courses.

Moodle has a lot of features that lend it to the educational setting:

Student and instructor management: The system already
understands the roles of student and instructor and makes appropriate
parts of the system available.
Online assignment creation and submission: One of the biggest
problems with online courseware is getting assignments to and from
students. Moodle has a complete system for handling this problem.
Online grade book: When a teacher grades an assignment (online
through Moodle), the student's grades are automatically updated.
Online testing support: Moodle has built-in modules for creating,
managing, and scoring online quizzes and exams.
Communication tools: Moodle includes a wiki (a collaborative
documentation tool), online chat, and forum tools you can set up for
improved communication with your students.
Specialized educational content: Moodle was put together by
hundreds of passionate (and geeky) teachers, so it has all kinds of
support for various teaching methodologies.

Community-created software can be very good (as Moodle is) because it's
built by people who know exactly what they want, and anybody with an
idea (and the skills to carry them out) can add or modify the features. The

******ebook converter DEMO Watermarks*******

result is an organic system that can often be better than the commercial
offerings.

 I find Moodle easier to use and more reliable than the
commercial course management system that my university uses. I keep
a Moodle backup for my classes because when the “official” system
goes down, I can always make something available for my students.

WordPress
WordPress is another specialty CMS, meant primarily for blogging (short
for web logging, or keeping an online public diary). WordPress has
become the dominant blogging tool on the Internet. Figure 3-2 shows a
typical WordPress page.

Figure 3-2: Woot! I'm blogging!

WordPress takes one simple idea (blogging) and pushes it to the limit.
Unregistered users see the blog output, but if you log in, you gain access to
a complete set of tools for managing your online musings.
Figure 3-3 illustrates the administrator view of WordPress.

******ebook converter DEMO Watermarks*******

Figure 3-3: You can easily get started with WordPress — just start writing.

Additionally, you can change the layout and colors, add new templates, and
do much more, as you can in a more traditional CMS.
Of course, hundreds of other specialized CMSs are out there. Before you
try to build your own CMS from the ground up, take a look at the other
available offerings and see whether you can start by using the work of
somebody else.

Drupal
Drupal is one of the most popular multipurpose CMSs out there. Intended
for larger sites, it's more involved than the specialty CMSs — although it
can do almost anything.
Figure 3-4 shows a basic site running Drupal.

******ebook converter DEMO Watermarks*******

Figure 3-4: Drupal is intended to support online communities.

Drupal was designed primarily for managing community websites. It is
commonly used in the following types of sites:

Gaming sites: Many game communities are based around a CMS like
Drupal because it allows opportunities for users to share information,
opinions, news, and files.
Software sites: A CMS like Drupal is an ideal place to post
information about your software, including downloads, documentation,
and user support.
Forums: Although you can find many dedicated forum packages,
Drupal supports several good forum tools.
Blogging: You can also use Drupal as a news site and a location to
post your blog. You can add community features when you want or
need them.

Drupal is powerful and extremely popular. However, this power has led to
increased complexity. Learning everything you can do with Drupal will
take some time and effort.

Building a CMS site with WebsiteBaker
For the rest of this chapter, I take you through the installation and
customization of a complete website using the WebsiteBaker CMS. This is

******ebook converter DEMO Watermarks*******

one of my favorite CMSs for a number of reasons:

It's easy to understand: Systems like Drupal have gotten so
complicated that you often require entire books on how to use them.
WebsiteBaker (as you'll see) is not complicated at all, even for
somewhat advanced features.
It's easy to modify: WebsiteBaker uses a reasonably simple template
system that's primarily HTML and CSS (with a few PHP functions
thrown in). This makes it very easy to adapt pages that were not
designed in WebsiteBaker to a CMS format.
It's easy to teach to clients: When you're building a commercial site,
it's critical that your customer learns how to manage the site. The easier
you can make managing the site for the customer, the easier your job is
down the road.
It's reasonably complete: The basic install of WebsiteBaker is not
large, but you can customize your installation with hundreds of
modules and templates to get exactly the look and behavior you want.
It's free and open source: Like almost all the software I recommend,
WebsiteBaker is entirely free and open source, even for commercial
use.

 I focus on WebsiteBaker in the upcoming section, but it's just a
sample CMS. Look over this section, but if you want to use a different
CMS other than WebsiteBaker, by all means do so. You'll see the
overall steps are pretty much the same regardless of the particular
package you use. (I used almost exactly the same steps to install Drupal
and WordPress on my demo server.)

Installing your CMS
A CMS package typically contains many different kinds of files. Most are
primarily PHP programs with HTML/HTML pages and CSS. Most CMSs
also include databases written in MySQL. To install a CMS, you need to
download these components and install them on your server.

******ebook converter DEMO Watermarks*******

1. Download the latest version of WebsiteBaker at
www.websitebaker2.org/en/home.

Download the .zip file. (The CMS is all web code, so it doesn't matter
which operating system you use.)

2. Create a subdirectory on your web root.

If you use a local server, create a new subdirectory under htdocs (or
wherever you save your web files). If you're on a remote server, use
FTP or the file management tool to create the subdirectory you want
the files to go in.

3. Copy all WebsiteBaker files to the new directory.

The .zip file you download from WebsiteBaker contains a wb
directory. Copy all files and folders in this directory to your new
directory.

4. Navigate to the new directory in your browser.

Be sure you have Apache and MySQL turned on. If you're on a local
machine, be sure to use the localhost mechanism to find the
directory.

If all is well, you see the WebsiteBaker Installation Wizard, as shown
in Figure 3-5.

******ebook converter DEMO Watermarks*******

http://www.websitebaker2.org/en/home

Figure 3-5: The Website-Baker Installation Wizard helps you get started.

Most CMSs work in a similar way: You install a set of base files to the
server, and then the system helps you get the other systems configured.
Here's how to install WebsiteBaker:

1. Check system configuration.

The Step 1 section of the installation wizard ensures all the needed
components are available on your server.

2. Ensure folders are writable.

The CMS will need to write files to the server. If you're in a Unix-
based system, you may have to check the file permissions to ensure all
files and folders specified in this section can be written to. Each
specified file or folder can be set to 777 permission.

See Chapter 1 of this minibook for more on changing Unix
permissions. (Even if you use a Windows or Mac at home, your web
server might use Linux or Unix.)

3. Set default settings.

Specify the path to the CMS, the default time zone, and the default

******ebook converter DEMO Watermarks*******

language.

4. Specify your operating system.

Windows has its own way of doing things, so let WebsiteBaker know
whether you're using Windows or a Unix-based system. (Mac OSX and
Linux are both Unix-based.)

5. Include database information.

Supply the information needed so WebsiteBaker can get to your
database. Supply a database name as well as the username and
password you want to use to access the database. Check the Install
Tables option to have WebsiteBaker automatically build the database
you need.

6. Enter the website name.

This name appears on all the site's pages (but you can change it later).

7. Create an administrator account.

The admin account will have the ability to change the site. Create a
user named admin with a password you can remember.

8. Install the CMS.

Press the Install WebsiteBaker button to install the CMS. Figure 3-6
shows the installation wizard after I filled in the contents.

******ebook converter DEMO Watermarks*******

Figure 3-6: The CMS is ready to install.

If all goes well, you're greeted by the administration page shown in
Figure 3-7.

Figure 3-7: Congratulations! You now own a bouncing baby CMS!

The final step of installing your CMS is to remove the install directory.
This directory contains the scripts and tools you used to install the CMS. If
you leave it in place, bad guys can reinstall your CMS from the web and
destroy your settings. Use your file management or FTP tool to delete the
install directory from your WebsiteBaker directory as soon as you're

******ebook converter DEMO Watermarks*******

satisfied the installation went well. When you do this, the warning about
the installation directory will disappear.

 Instead of installing the CMS manually, many hosting services
have automated installation scripts for popular CMSs that you can use.
Freehostia has built-in support for WebsiteBaker, but I find the
automated systems tend to have older versions of the software. You
should still know how to set up the CMS by hand.

Getting an overview of WebsiteBaker
The administration page (refer to Figure 3-7) is the control panel you and
other administrators use to build the site. The administration page's tools
are the foundation of the entire site:

Pages: Where you add the primary content for the site. Each page is
built here. WebsiteBaker features a few standard page types, and you
can install hundreds more through the module feature.
Add-ons: The core installation of WebsiteBaker is reasonably basic,
but you can customize it in many ways. The most important techniques
are to add new types of pages (modules) and new visual themes
(templates). I describe both techniques later in this chapter.
Settings: Allows you to change global settings for the site. You can
modify the site name, description, theme, and other settings from this
panel.
Access: Allows you to add new users and groups and grant various
users access to different parts of the system. For example, if you're
setting up a site for a church, you might want the children's pastor to
have access to only the site's children's ministry parts.
Media: You can add images and video to your site. This section allows
you to manage and upload the various media to your server.
Preferences: Allows you to change a few more settings, including the
e-mail address and password of the admin account.
Admin-Tools: Contains advanced options for improving the

******ebook converter DEMO Watermarks*******

administration experience.

Adding your content
The point of a content management system is to manage some content, so
it's time to add pages to the system.

1. From the administration page, choose Pages.

A screen similar to Figure 3-8 appears.

Figure 3-8: This page allows you to add, modify, and delete pages.

2. Type main as the first page name.

Each page you create needs to have a name.

3. Keep the page type WYSIWYG.

You can make many different kinds of pages, but most of your pages
will be the standard WYSIWYG format.

4. Leave all other settings at their default.

The other settings available here don't mean much until you have

******ebook converter DEMO Watermarks*******

multiple pages.

5. Click the Add button to add the page.

A screen similar to Figure 3-9 appears.

Figure 3-9: Now you're at a nice page editor.

Using the WYSIWYG editor
The purpose of the CMS is to make editing a website without any technical
skills easy. You can give admin access to an HTML novice, and he can use
the system to build web pages with no knowledge of HTML or CSS. The
editor has a number of useful tools that make creating and editing much
like working with a word processor.

Predefined fonts and styles: The user can choose fonts and styles
from drop-down menus, unaware that these options are taking
advantage of predefined CSS styles.
The ability to add lists, links, and images: The editor includes the
ability to add lists, links, and images (and other types of content)
without any knowledge of HTML. If you add an image, the editor
includes a wizard that helps you upload the image to the server. If you
add a link, a wizard helps you specify the URL of the link.

******ebook converter DEMO Watermarks*******

Multiple paste options: Many users create content in Microsoft Word.
A Paste from Word button attempts to delete all the excess junk Word
adds to a file and paste the content cleanly, which is a major lifesaver.
A plain source editor: My favorite button on the WYSIWYG editor is
the one that turns off the WYSIWYG features. The Source button
displays the page as plain HTML/HTML text. The automated features
are nice, but I can usually build a page a lot faster and more accurately
by hand. This feature is especially useful when the visual tools aren't
doing what you want.

When you finish building your page, click the Save button to save the
contents of the page.
Along the top of the editor is a series of icons: a house, a blue screen, a life
ring, and a lock. Click the blue screen (which is the View icon) to open
your new page and see it the way the user will see it. Figure 3-10 shows the
results of my simple page.

Figure 3-10: This is how the page looks to the user.

The WYSIWYG page is the most commonly used page type (especially by
nontechnical users) but it's not the only option. The standard edition of
WebsiteBaker also comes with a number of other default page types:

Code: Interprets the page as PHP code. This is any easy way to enter
******ebook converter DEMO Watermarks*******

any PHP code you wish, including database lookups. The code is
interpreted as PHP, so if you want it to be HTML, you can just use a
giant heredoc. Figure 3-11 shows a PHP snippet being written, and
Figure 3-12 shows the results.

Figure 3-11: The code page allows you to write any PHP code you wish.

Figure 3-12: How the code page looks to the user.

Form: Allows you to build a basic HTML form without knowing any
HTML. The administrator can add all the normal form elements.
Figure 3-13 shows the form editor in action. When the user enters form

******ebook converter DEMO Watermarks*******

data, the content is automatically e-mailed to the administrator and
stored in a database that can be retrieved via the CMS. This feature is
one of the most important factors of a CMS because it's something that
plain HTML websites simply can't do.

Figure 3-13: The form editor simplifies creating forms and collecting form data.

Menu Link: This placeholder (it isn't really a page type) allows you to
create a menu item that helps organize other pages. Use the parent
attribute of a page to make it a child of a menu or an ordinary page.
The menu structure adapts automatically.
News V3.5: A blog feature that allows the user to write blog articles. I
often use it for other things, such as sermon archives for church sites,
specials of the week for commercial sites, and so on. A blog feature is
good any time you're working with repetitive, dated material. You can
add multiple blogs to the same site easily. Figure 3-14 shows the news
page in action.

******ebook converter DEMO Watermarks*******

Figure 3-14: The news page type allows you to build a blog-like document.

Wrapper: This incredibly versatile page type allows you to do all
kinds of interesting things. Essentially, it allows you to embed any
page into the CMS. Figure 3-15 shows the wrapper used to embed a
Google search into my site. The wrapper is handy when you want to
access an external ordering or newsgroup system but keep within the
visual structure of the CMS.

Figure 3-15: Use the wrapper page type to embed other pages into your system.

******ebook converter DEMO Watermarks*******

 You are not limited to these page types. See the section “Adding
new functionality” later in this chapter for information on how to add
additional page types to your system.

Changing the template
One of the primary goals of a CMS is to separate the visual layout from the
contents. So far, you've seen how to modify the contents, but you'll also
want to change the appearance of the page. The visual settings of a site are
all based on a template concept. You can easily overlay a new template
onto the existing site without changing the contents at all.

1. Log in as the administrator.

Obviously, the administrator has the ability to change the template
(although you can allow individual users to change their own
templates).

2. Go to the system menu.

Templates are set in the system menu.

3. Change template under Default Settings.

Don't worry about the Backend Theme and Search Settings templates.
It's best to leave these alone until you're a bit more experienced
because they don't have a major impact on the user experience.

4. Choose a template from the drop-down list.

All the templates installed in the system are available in a drop-down
list. For this example, I chose the All CSS template (the default). See
the section “Adding additional templates” for how to download and
install templates that aren't already installed in the system.

5. Preview the site with your new template in place.

******ebook converter DEMO Watermarks*******

Figure 3-16 shows the contents of the site with the All CSS template in
place. The template essentially encapsulates core HTML code and the
CSS used to display each file.

Figure 3-16: The same site has a new look!

Adding additional templates
The standard installation of WebsiteBaker includes only a few templates.
Typically, you'll want to work with additional templates. Fortunately, there
are hundreds of great templates available, and you can easily build your
own. Here's how to add additional templates.

1. Locate the template you want online.

A number of web places offer great, free templates for WebsiteBaker.
My favorite is the Templates repository available at
www.websitebaker2.org/template/pages/templates.php
The templates in this archive are approved by the WebsiteBaker
community and meet minimum quality standards. (Note that many of
these templates have been adopted from other CMS systems so you can
often get the same general look and feel regardless of the CMS you
choose.)

2. Download a template or two that you like.
******ebook converter DEMO Watermarks*******

http://www.websitebaker2.org/template/pages/templates.php

When browsing templates, remember that you will be able to modify
them. If you don't like the particular colors or images, you can change
them later. Save the downloaded .zip file somewhere on your local
machine.

3. Log in to WebsiteBaker as admin.

Only the administrator can add new templates to the system.

4. Navigate to the Templates page of the Add-ons section.

This is where you install and uninstall downloaded templates.

5. Click the Browse button to locate the .zip file on your local system.

Load the entire .zip file containing the template onto the server.

6. Click the Install button to begin the process.

You receive a notification when the installation is complete.

7. Navigate to the Settings section.

Installing a template does not apply the template automatically.

8. In Settings, apply the new template.

Specify the template to display from the drop-down list of templates.

9. Preview your new look.

Use the Preview button (or reload the currently showing version of the
CMS) to see the new look. Figure 3-17 shows my site with the
Multiflex-3 template installed.

******ebook converter DEMO Watermarks*******

Figure 3-17: You can install any template onto your existing system.

 The Multiflex-3 template is one of the most commonly used
templates on the Internet. The original design
(www.oswd.org/design/preview/id/3626) was built with
plain HTML/CSS implementation in mind but has been ported to nearly
every CMS including WebsiteBaker. The design is a solid and very
flexible starting place. I've used it as the foundation of dozens of sites.
After you get to know it, you'll recognize it all over the place.

Adding new functionality
In addition to custom templates, you can add modules to your system. A
module is a new page type that adds additional functionality. Dozens of
add-ons are available at the WebsiteBaker AMASP (All Modules and
Snippets Project) at www.websitebakers.com.
The add-on modules include many new types of functionality, including
online shopping modules, image galleries, event calendars, and many
more. In addition to full-fledged modules, the AMASP also includes PHP
snippets you can copy into your code for advanced functionality and
droplets, which are small, self-contained PHP modules to add features to
your site. It's probably best you start with full modules because they

******ebook converter DEMO Watermarks*******

http://www.oswd.org/design/preview/id/3626
http://www.websitebakers.com

require the least effort to get working. As you become more proficient with
WebsiteBaker, you'll want to investigate how to add more features.
Many of my clients like to have image galleries. I use them for a number of
things, including a simple form of an online catalog and for viewing
sample work for craft or artist sites. Here's how to add a basic but full-
featured image gallery:

1. Find a module you wish to test.

Go to the AMASP site and browse the various modules until you find
one you like; there's about a dozen. For this example, I'm looking at the
(unimaginatively named) Image Gallery module. This one works very
well, looks pretty good, and is very easy for my clients to use, so I
almost always install it on commercial sites.

2. Download the module.

Modules are installed much like templates. Download the module,
which is usually PHP and HTML code in a .zip file, and then save the
.zip file somewhere on your local file system.

3. Log in as admin.

As usual, anything that involves changing the site requires
administrator access.

4. Navigate to the Add-ons section.

You add modules in the same section you add templates; that is, the
Modules page of the Add-ons section.

5. Browse to find the .zip file you downloaded.

Click the Browse button to look on your local system for the .zip file
containing the module. Click the Install button when you locate the
file. WebsiteBaker uploads the module to the server and places the files
in the correct location.

******ebook converter DEMO Watermarks*******

6. A new page type will appear.

When you go to the Pages section, you see a new type of page. In this
case, you can now add image galleries.

Building Custom Themes
WebsiteBaker is an outstanding way to build a complex and fully featured
website easily and quickly. With over a hundred templates, you're bound to
find something you like. However, you almost never find something
exactly the way you want it. This is especially important if you're
developing for somebody else. Usually, you find a template that is close,
but you still need to modify the colors and images. For that reason, it's
important to understand the general structure of a WebsiteBaker template
and how to make your own.

Starting with a prebuilt template
Although it's possible to build a WebsiteBaker template from scratch, it's
generally not a good idea. It's much smarter to begin with a template that's
close and add those features you need to make it your own. That way the
general structure is already proven, and you only need to customize it to
your specifications.

1. Find a starting template you like.

Often I have clients look over the Templates repository
(www.websitebaker2.org/template/pages/templates.php
and tell me their favorite three templates. I also like to have them
explain what they like or dislike about each template. I tell them we
can change colors or banner graphics in a template, so to focus more on
the general look and feel.

If you don't have another place to start, I like the templates built into
the WebsiteBaker core (especially All CSS and Round). Blank
Template is especially designed for customizing. I often build
commercial sites based on Multiflex-3 because it's well known

******ebook converter DEMO Watermarks*******

http://www.websitebaker2.org/template/pages/templates.php

throughout the web community and has some great features.

2. Install the template on your local system.

It's much easier to work with a template on your local system than on a
remote server.

3. Locate the local copy of the template.

Normally, templates are stored in the wb/templates directory of
your server. Each template will have its own folder.

4. Copy the folder of the template you want to modify.

It's generally smarter to work with a copy rather than the original. Paste
the copied folder in the templates directory.

5. Rename the new folder to reflect your new template name.

Your new template needs a different name than the original template.

At this point, you have a copy of the original template, but this copy will
not be reflected in the CMS yet. You need to make a few changes before
the new template is available. Before you do that, take a look at the file
structure of a typical WebsiteBaker template. Figure 3-18 shows my copy
of the Multiflex-3 template.

******ebook converter DEMO Watermarks*******

Figure 3-18: Typical file structure for Website- Baker templates.

One of the reasons I like WebsiteBaker so much is how relatively simple
the template structure is compared to other CMSs. The directory contains a
relatively small number of files:

index.php: This PHP file is the basic file that's used as the foundation
of every page in the system. It's essentially an HTML page with a few
special PHP functions built in. You can edit any of the HTML you
wish, and the resulting changes will be reflected in every page of the
site.
info.php: This simple PHP file contains a number of variables used to
control the overall behavior of the template. You'll make a few changes
in this file to give your template an official name.
layout_setup.css: This CSS file describes the CSS used for the overall
page design. You can change the contents of this CSS file to change
font colors or other big-picture CSS.
layout_text.css: This CSS file is used to define the styles of the
various text elements in the site. If you're looking for a class that isn't
defined in layout_setup.css, you may find it here. Note: The names of
the CSS files may change in other templates, but there will be at least
one CSS file.
editor.css: This file is used to modify the internal WYSIWYG editor.
It describes how various elements are displayed in the editor.
images directory: Often a template will include a number of images.
These are stored in a subdirectory for convenience. You may need to
change some of these images to create the look you're going for.

Some templates are more complex, some less so. Really, you can have as
many or as few files as you want. You'll always need to have index.php
and info.php. You'll almost always have at least one CSS page. You can
have anything else you wish in the template, but nothing else is absolutely
necessary.

Changing the info.php file
The info.php file contains a few PHP variables. You can modify these

******ebook converter DEMO Watermarks*******

variables to identify this template as your own. You must change the
template name to a unique value, and you can also change such variables as
the developer name and version number. I typically claim any substantial
changes I make to a template, but I always give credit to the original
developer. It's great to stand on the shoulders of giants, and you should
give them their due in the documentation. Here's the info.php file after I
made a few changes:

<?php

/*

Website Baker Project <http://www.websitebaker.org/>
 Copyright (C) 2004-2006, Ryan Djurovich

Website Baker is free software; you can redistribute it and/or
modify
 it under the terms of the GNU General Public License as
published by
the Free Software Foundation; either version 2 of the License,
or
 (at your option) any later version.

Website Baker is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public
License
 along with Website Baker; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

*/

$template_directory = 'aio';
$template_name = 'aio';
$template_version = '1.1';
$template_platform = '2.x';
$template_author = 'Andy Harris, from Erik Coenjaerts (WB
port)';
$template_license = '<a

******ebook converter DEMO Watermarks*******

href="http://www.1234.info/webtemplates/">Open Source';
$template_description = 'Original design from 1234.info. Ported
to Website Baker by Erik
Coenjaerts.';
$menu[1]='Main Menu';
$menu[2]='Top Menu';
$menu[3]='Extra Menu';
$block[2]='Sidebar';
$block[3]='News';

?>

Note that the template has the potential for three different types of menus
and three blocks of information. ($block[1] is the main content block
and is available by default.)

Modifying index.php
For the most part, you can leave index.php alone. However, there are a few
modifications you might make. If you look over the file, it's basically plain
HTML/HTML with a few PHP functions thrown in. Generally, you can
change the HTML code without any worries, but be more careful about the
PHP code. The PHP code tends to call special functions defined in the
WebsiteBaker code base. Here are the functions and variables you're likely
to run across:

TEMPLATE_DIR: This constant contains the template directory. Use it
to make links to the template directory.
WEBSITE_TITLE: Use this constant to display the website name
anywhere in your template.
PAGE_TITLE: The title of the current page as defined in the menu.
WEBSITE_HEADER: This constant displays the header defined in the
admin panel.
show_menu(menuID): This is a powerhouse of a function. It
analyzes your site structure and uses it to build a navigation structure.
It takes a parameter, which is the level of menu. (Typically the left
menu is level 1 and the top menu is level 2, but this can be changed.)
Note: Some templates use the more advanced show_menu_2()
function, which has additional parameters, like the ability to define

******ebook converter DEMO Watermarks*******

template code for how the menu displays.
page_content(blockID): This function is used to display
content for the current page. The parameter describes which block of
content should display. Use 1 for the main page content, 2 for block 2,
and so on.
page_footer(): Display the page footer identified in the admin
panel.

WebsiteBaker features many more constants and functions, but these are
the basic ones used in nearly all templates. See the online documentation at
www.websitebaker2.org/ for complete documentation. Other CMS
systems use the same idea (HTML templates with PHP functions
embedded), but of course the function names are a bit different in a
different CMS.
You may want to make other modifications of the default template. For
example, the Multiflex-3 template includes multilanguage support and a
large number of different “Post-it note” features. I generally remove the
multilanguage content (because I only speak one language) and change all
the “Post-it notes” to use the same CSS style (or remove them all).

Modifying the CSS files
Of course, the most powerful way to change the appearance of your pages
is to modify the CSS files. Here's how:

1. Make a backup first.

You're very likely to break things when you go mucking around in
unfamiliar code, so make a backup first so when you (inevitably)
destroy something, you'll be able to get back to a sensible starting
place.

2. Identify the class you want to modify.

This can be surprisingly difficult in a system you didn't create. Use the
Inspect feature of the Chrome or Firebug developer tools to quickly
identify which styles act on a particular element and what its class

******ebook converter DEMO Watermarks*******

http://www.websitebaker2.org/

hierarchy is.

3. Find the class definition in the CSS sheets.

Note that a system may have more than one CSS file, so find the one
containing the class information you're interested in.

4. Make incremental changes.

Make small changes and test frequently.

5. Test on a local server.

You can make changes directly on the files in your local server. Just
reload the page after every change to make sure the changes are being
reflected. Of course, you need to have the template installed in your
system.

Packaging your template
A template is nothing more than a set of PHP and CSS files (and perhaps
some images and other files). It's pretty easy to port a template for
installation. Just follow these steps:

1. Create a stable version of the template.

It doesn't have to be perfect before you package it, but at a minimum
you need to change the info.php page to reflect the new template's
name.

2. Package the entire directory into a .zip file.

Use a utility like IZArc for Windows or the xip utility that comes
installed with Linux or Mac. Save the .zip file with the same name as
your template. Note: Don't include the template directory itself in the
template; just include any contents of that directory (including
subdirectories, if you have them).

******ebook converter DEMO Watermarks*******

3. Install the template into your copy of WebsiteBaker.

Install your template the way you do any other template.

******ebook converter DEMO Watermarks*******

Chapter 4
Editing Graphics

In This Chapter
 Introducing Gimp
 Managing the main tools
 Selecting image elements
 Working with layers
 Understanding filters
 Creating a tiling background
 Building banner images

HTML and CSS are powerful tools, but sometimes you still need to use a
graphics editor to get the look you want. In this chapter, you learn to use
Gimp, a free and powerful graphic editor.

Using a Graphics Editor
You'll find using a graphics editor handy for a number of tasks:

Modifying an image: The obvious use of a graphical tool is to modify
or create an image that will be used on your web page. This could
involve changing the image size, correcting the color balance, changing
the file type, or cropping the image.
Preparing a background image: As I discuss in Book II, Chapter 4,
background images can be distracting if you aren't careful. Making a
lower contrast image (either lighter or darker than normal) might make
sense so the text is easier to read. You might also want to prepare a
tiled background.
Building banners: Many websites include a special banner image
that's prominent on every page. The banner image usually has a very
specific size requirement.

******ebook converter DEMO Watermarks*******

Modifying existing graphics: You might be modifying a template
from the jQuery UI project (see Book VII, Chapter 4) or from a CMS
(see Chapter 3 in this minibook). In both cases, you often have images
that are close to, but not exactly, what you need.
Changing colors: Frequently, you have the right pattern, but not the
right colors. Modifying colors with a modern graphical tool is
surprisingly easy.

Choosing an Editor
Fortunately, great programs that make all these tasks quite easy to perform
are available. Raster-based graphics editors are designed to solve exactly
this type of problem and many more. A number of important graphics tools
are used in web development:

Adobe Photoshop: The industry standard for web graphics, and indeed
for all digital imagery, Photoshop is powerful and capable but quite
expensive. A slightly cheaper and less powerful version called Adobe
Photoshop Elements is available.
Adobe Fireworks: Designed specifically for web developers,
Fireworks features the ability to slice an image to make a graphical
web page from an image — and it's relatively inexpensive.
Windows Paint: This simple image editor is available in all versions
of Microsoft Windows. Although easy to use and already available to
Windows users, Paint is relatively limited. It only supports a few image
formats and doesn't have full support for transparent images or layers.
Paint.net: A group of computer science students decided to create an
improvement to Microsoft Paint that evolved into a very robust image-
editing program. It is free (although, technically, not open source) and
has all the features you might need for editing web images. However,
the primary version is available only for Windows.
Gimp: A popular alternative to Photoshop, Gimp has all the features
you might need for web image editing. It is completely free, open
source, and available for all major operating systems. For these
reasons, I use Gimp throughout this chapter (and indeed throughout the

******ebook converter DEMO Watermarks*******

book — nearly every graphic was created using Gimp).

 People are passionate about their graphics programs. If you love
Photoshop, you might find the Gimp interface strange and unfamiliar. I
think learning how Gimp works is worth the time, but if you prefer, you
can download GimpShop, a version of Gimp modified to use the same
menus and keyboard shortcuts as Photoshop.

Note that in this list I'm only considering full-blown graphics editors. I
describe image manipulation programs, such as IrfanView (which is
simpler and has fewer features), in Book II, Chapter 4.
I'm also confining the conversation to raster-based image editors, which
use a different mechanism for managing images than vector-based image
editors. The vector-based approach is slowly gaining popularity on the
web, especially with the support for SVG in HTML5. However, most web
graphics are in a raster format, even those that were originally created in a
vector format. If you are interested in playing with vector graphics, I
recommend looking into the excellent free program Inkscape. It has native
support for SVG, which is the most universal vector standard for web
browsers.

Introducing Gimp
If you haven't already installed Gimp, get a recent copy from this book's
website or www.gimp.org. Install the program and take a look at it. The
Gimp interface's multiple windows are shown in Figure 4-1.

******ebook converter DEMO Watermarks*******

http://www.gimp.org

Figure 4-1: Gimp uses a multiple window model.

Gimp sure seems cluttered . . .
Gimp doesn't reside in a single window like most programs. Instead, it uses a number of
windows. Some find this jarring, but after you get used to it, this can be a useful feature.
You can make any window as large or as small as you wish and combine windows to get
less screen clutter. I configure Gimp in a way that combines the most common windows
into the Toolbox, so I have one window showing the Toolbox and most of the dialog boxes
and a separate window showing each picture I'm working on.

If you click the Configure Tab button (a small arrow at the top right of the tabs section), you
can add new tabs to the main Toolbox window. I normally add my favorite tools
(Navigation, Layers, Tool Options, and Brushes) to the Toolbox so the features are readily
available and appear here instead of in separate windows.

Recent versions of Gimp have a single-window mode you can use if you prefer. Just select
Single Window Mode from the Windows menu.

 I have the Change Foreground Color dialog open in Figure 4-1,
and I simply double-clicked the foreground color in the main toolbox to
open this dialog. Gimp tends to open a lot of dialogs, which might
bother some people. Also, I want to illustrate how powerful the color
chooser is. Like most features in Gimp, it has a lot of options.

The Toolbox is Gimp's main control panel. It manages all the tools you use

******ebook converter DEMO Watermarks*******

to create images. Gimp also creates an image window, which contains the
menu elements, but no image (by default). You can load an image into the
image window or create a new image.

Creating an image
You choose the File ⇒ New menu command to create a new image. After
you specify the size of your image, a new, blank image appears, as shown
in Figure 4-2.

Figure 4-2: It's easy to create a new, blank image.

Of course, you can also load an existing image into Gimp. Gimp accepts all
major image formats (and dozens more with optional plug-ins). Use the
File ⇒ Open menu command to open an image, or simply drag an image
file onto the Gimp Toolbox.

Working with existing images
It's very common in web development to work with images that already exist. For example,
I've built a couple of sites for office supply companies. It's nice to sprinkle the site with
colorful images of staplers, Post-it notes, and the like. The question is, how do you get
these graphics? If you're a skilled photographer or artist, you can create them yourself, but
this takes more time and talent than I typically have. You could reuse images you find on
the web, but this is not respectful of these elements’ owners.

The best solution is to use an image-supply site like www.freedigitalphotos.net or
www.istockphoto.com. Be sure to search for royalty-free artwork, and check the license
to ensure you can use and modify the work. I'm a big fan of stock art. Typically, I can find a
dozen images to spruce up a site for less than $20, and I have the satisfaction of knowing

******ebook converter DEMO Watermarks*******

http://www.freedigitalphotos.net
http://www.istockphoto.com

I'm completely legal. Often, stock art is designed for both print and digital use. Generally,
you can purchase the smallest size for digital work, which is economical and perfectly fine
for use on the web. (Note: Monitors have much less resolution than printed paper, so you
can get away with a smaller image.)

To reuse an image in a legitimate way, consider the following:

Acknowledge the source: Generally, this acknowledgment isn't necessary for
images you purchase, but it is polite if you receive an image for free. You can place
the acknowledgment in the source code.
Get permission if needed: It's always best to get permission from the original
developer. Sometimes this isn't possible or necessary, but you should always try.
Of course if you've purchased a stock photo, you're also purchasing permission to
use it.
Make the image your own: Do something to modify the image. If it's a stock
photo, this isn't necessary, but you might want to change the colors, move things
around, and make the image fit the theme of your project a little better. Modifying
an image does not make it legal if you did not have permission.

Painting tools
Gimp includes a number of useful tools to create or modify an image.
Figure 4-3 shows a few of these tools.

******ebook converter DEMO Watermarks*******

Figure 4-3: These tools are used to draw or modify an image.

Pencil: The Pencil tool is the standard drawing tool. It draws hard
edges in the exact shape of the pen. You can choose from many pen
shapes in the Tool Options panel (described in the next section).
Paintbrush: The Paintbrush tool is similar to the Pencil tool, but it
uses a technique called anti-aliasing to make smoother edges. Like the
Pencil tool, the Brush tool can use many different pen shapes.
Eraser: The Eraser tool is used to remove color from a drawing. If the
current layer has transparency enabled, the Eraser tool makes things
transparent. If transparency is not turned on, the Eraser tool “draws” in
the background color.
Airbrush: The Airbrush tool allows you to paint with a virtual
airbrush. You can modify the flow and size of the paint. This tool is
especially effective with a pressure-sensitive drawing tablet.
Ink: The Ink tool simulates a calligraphy brush. The speed of drawing
indicates the width of the stroke. It seems quite realistic because
everything I draw with it looks just as bad as what I create when I try

******ebook converter DEMO Watermarks*******

real calligraphy.
Clone: The powerful Clone tool allows you to grab content from one
part of an image and copy it to another part of the image. This tool is
often used in photo retouching to remove scars and blemishes.
Fill: The Fill tool is used to fill an area with a color or pattern. It has
multiple options that allow you to pick the pattern, the color, and the
method of filling. (You can fill the current selection or all areas with
the same color, for example.)
Blend: This Blend tool allows you to fill an area with color patterns,
similar to the Fill tool. There are numerous options that allow you to
determine what pattern is used and how it is distributed. (Many
programs call this the Gradient tool.)

 A complex program like Gimp deserves (and has) entire books
written about it. There's no way I can describe everything in this brief
introductory chapter. Still, this should give you an indication of what
you can do. Check the many excellent user tutorials at
www.gimp.org/tutorials and the manual at
www.gimp.org/docs.

Selection tools
Often, you'll be working on specific parts of an image. It's critical to have
tools to help you grab a particular part of an image and work with it in
isolation. Gimp (like any high-quality graphics tool) has a number of useful
selection tools. Figure 4-4 shows where they are in the Toolbox.

******ebook converter DEMO Watermarks*******

http://www.gimp.org/tutorials
http://www.gimp.org/docs

Figure 4-4: These tools are used for selecting parts of an image.

Rectangle Select: The Rectangle Select tool is used to (wait for it . . .)
select rectangles. Rectangle selections are easy, and they're pretty
common, so this is a good, basic selection tool.
Ellipse Select: The Ellipse Select tool is like the Rectangle Select tool,
but (you're catching on here) it selects ellipses. You can set the aspect
ratio to 1:1 to select perfect circles.
Free Select: Also called the Lasso tool, the Free Select tool allows you
to draw a selection by hand. It takes an incredibly steady hand to use
well, so it's usually only used for rough selections that are fine-tuned
using other techniques.
Magic Select: Also called the Fuzzy Select, the Magic Wand tool
allows you to grab contiguous sections of similar colors. It's handy
when you have a large section of a single color that you want to select.
(You might want to select a white background and replace it with a
pattern, for example.) Hold down the Shift key and make further
selections if you want to select more than one color.
Select by Color: Similar to the Fuzzy Select tool, the Select by Color
tool grabs all the pixels of a chosen color, whether they're touching the

******ebook converter DEMO Watermarks*******

selected pixel or not, and removes them. (It's ideal for use with a green
screen, for example.)
Scissors Select: The Scissors Select tool uses image-processing
techniques to automatically select part of an image. Click along the
edge of an element you want to select, and (if you're lucky) the
selection will follow the edge. This works fine for high-contrast
elements, but conditions have to be perfect.
Foreground Select: The Foreground Select tool is a multipass tool that
simplifies pulling part of an image from the rest. On the first pass, use
the Lasso tool to choose the general part of the image you want to
select. The image will show a selection mask with selected parts in
white and nonselected parts blue. Click the colors you want to keep and
then press Enter to commit the selection.
Bezier Select: The Bezier Select tool is my favorite. Click an image to
create a general outline of the selection. (You're actually making a
Bezier path, which uses math formulas to draw a curved shape.)
Modify the path until it's exactly how you want it and then you can
convert it to a selection.

Modification tools
A number of tools are used to modify parts of an image. Figure 4-5
illustrates the main modification tools:

Move: This tool allows you to move a selection, a layer, or some other
element.
Rotate, Scale, Shear, Perspective, and Flip: These tools all apply
transformations to a selection. Use them to rotate or resize a part of
your image, or to change the perspective of a section so it appears to be
on an angled surface, for example.
Heal: This tool takes a sample area and applies it to other parts of an
image (much like the Clone tool). It is often used in photo retouching
to give skin a clean, unblemished look. It's great for fixing the
rectangular artifacts that often appear in JPG images.
Blur/Sharpen: This tool is used to blur (reduce contrast) or sharpen

******ebook converter DEMO Watermarks*******

(increase contrast) a small part of the image selectively with the current
pen. This tool is often used for quick touch-ups to remove scratches or
other blemishes.
Smudge: This allows you to push a color into adjacent pixels to clean
up an image. I frequently use this tool when trying to build a tiled
background to help line pixels up in a seamless way.
Dodge/Burn: This tool is named after a photography darkroom tool.
It's used to darken or lighten parts of an image and to remove unwanted
shadows.

Figure 4-5: These tools modify the existing picture.

Managing tool options
Most tools have options available. For example, when you choose the
Pencil or Brush tool, you can select which brush tip to use. When you use
the Fill tool, you can determine whether the tool fills with the current color
or the current selection. You can also determine whether the tool fills with
a color or a pattern.
You can see the Tool Options dialog box for any tool by double-clicking
the tool in the Toolbox. Generally, I dock the Tool Options dialog box to
the main Toolbox tabs because it's so frequently used.

******ebook converter DEMO Watermarks*******

Utilities
Gimp also comes with a number of handy utilities. The tools highlighted in
Figure 4-6 have a variety of uses:

Color Selector: The two overlapping rectangles show the current
foreground and background color. Click one of the rectangles to pick a
new color to work with. You can choose colors in a number of ways,
using RGB and HSV schemes, as well as prefilled color palettes and a
very cool watercolor tool.
Color Picker: Allows you to determine the RGB value of any pixel on
the image and pick that color as the current drawing color. It's very
handy when you want to match colors precisely.
Zoom: Allows you to quickly zoom in and out of your image. Drag
around an area, and the selected area will fill the entire window. Hold
down the Ctrl key while dragging to zoom out. Hold the center mouse
button (often also the scroll wheel) to pan your zoomed-in view in any
direction. It's very helpful to zoom in close when you're doing detail
work.
Measure: Drag the mouse on an image, and you can find the distance
and angle between any two points. The Move tool is useful for precise
placement.
Move: Allows you to move a selection or layer.
Align: The Align tool simplifies lining up various elements with each
other.
Crop: Used to crop unwanted border areas from an image.
Text: Adds editable text to the image. The Text tool works with layers,
so check the upcoming “Understanding Layers” section for more
detail.
Perspective Clone: This tool combines the Perspective tool and the
Clone tool. Although it's cool, the applications are a bit rare, so I don't
use it often in web development.

******ebook converter DEMO Watermarks*******

Figure 4-6: These tools often come in handy.

Understanding Layers
Gimp has an astonishing variety of tools, but most of the interesting things
you can do with a raster graphics tool involve a concept called layers.
Layers are really pretty simple: Imagine the old animated movies (before
digital animation was possible). Painters would create a large background,
but the characters were drawn on transparent sheets (called cels in
animation). A single frame of an animation might contain a single opaque
background with a large number of mainly transparent layers on top. Each
layer could be manipulated individually, providing a great deal of
flexibility.
Any high-end graphics editor will support some form of layer mechanism.
(In fact, support for layers is a primary differentiator between basic and
advanced graphics tools.) Figure 4-7 shows the Layers panel in Gimp.

******ebook converter DEMO Watermarks*******

Figure 4-7: The Layers panel allows you to manipulate layers.

The primary area of the Layers panel is the window, showing a stack of
layers. The background is on the bottom of the stack, and any other layers
are on top. Anything on an upper layer obscures a lower layer. Imagine a
camera at the top of the stack pointing down at the stack of layers. If a
higher layer has transparency (as it usually does) the lower layer will show
through any transparent pixels.

 The Opacity slider in the Layers panel allows you to adjust the
overall transparency of the layer. This can be useful for quickly
lightening or darkening a layer, and for other effects, such as shadows.

Only one layer is active at a time. The current layer is highlighted in the
window at the bottom of the Layers panel. Most operations will occur on

******ebook converter DEMO Watermarks*******

the active layer only. Click a layer in the layers window to make that layer
active.

 Be sure you know which layer is active. Many times I try to draw
on a layer and nothing happens. I then typically scribble harder,
thinking that will help. Almost always when this happens, I've selected
the wrong layer and made a big mess somewhere. It's possible (and
common) to have a layer active which is not visible. Fortunately, the
Undo command (Ctrl+Z) is quite powerful. If in doubt, keep the Layers
panel visible so you can tell which layer is active.

Each layer has two icons next to it that you can activate. The eye icon
toggles the layer's visibility. The link icon allows you to link two or more
layers together. Each layer also has a name. You can double-click the layer
name to change it. This is especially useful when you have a complex
image with many layers.
The bottom of the Layers panel has the following buttons to help you
manage various layers:

New Layer: This button creates a new layer. The default type is
transparent, but you can also choose to have the layer appear in the
foreground or background color.
Up and down buttons: Allow you to move a layer up or down in the
stack. The position of a layer in the stack is important because higher
layers have precedence.
Duplicate Layer: Makes a copy of the currently active layer. If you're
modifying a layer, working on a duplicate is a great idea because if you
mess up, you still have a backup.
Anchor: When you copy and paste a part of an image, the pasted
segment is placed into a temporary layer. Use the anchor button to nail
down the selection to the current layer.
Delete: Allows you to delete the currently active layer. Be careful you
delete the correct layer.

******ebook converter DEMO Watermarks*******

Introducing Filters
Digital editors include a number of other very useful tools. Generally, these
tools apply mathematical filters to an image to change the image in some
way. The standard installation of Gimp comes with dozens of filters, but
here are a few most common to web developers:

Blur filters: Blur filters reduce the contrast between adjacent pixels to
make the image less defined, and can often be used to hide
imperfections or scratches. The most common blur is Gaussian blur,
but there are many others, including Motion blur, which simulates the
blur seen in a slow camera taking a picture of something moving
quickly.
Unsharp mask: A class of filters called sharpen filters are the opposite
of blur filters. They increase contrast between adjacent pixels. I don't
know why the sharpen filter is called the “Unsharp mask,” but it is.
Note: There is no “enhance” filter like the ones so common on crime
dramas. Sadly, you can't just “zoom and enhance” endlessly to see the
killer's eye color on the reflection of a spoon.
Colorize: This marvelous tool allows you to keep the contrast of a
layer and change the color, which can be perfect for changing the color
of hair, eyes, or clothing.
Brightness/Contrast: Lets you adjust the brightness (overall value)
and contrast of a particular layer.
Color balance: Allows you to adjust the relative amounts of red,
green, and blue in a layer, which can be used to improve pictures with
poor lighting.

Solving Common Web Graphics
Problems

Gimp, and tools like it, can be used in many ways. The rest of this chapter
is a cookbook of sorts, showing how to build a number of graphics

******ebook converter DEMO Watermarks*******

commonly used in web development.

Changing a color
Frequently, you'll have an image that's good, but not the right color. For
example, you may want to change the color of a person's clothing, or make
part of a logo fit the color scheme of the rest of your site. Gimp makes
performing this effect quite easy:

1. Load your starting image into Gimp and make any other
adaptations you wish to the original image.

2. Use the Fuzzy Select tool to select the part you want to modify.

You might need to use the Shift key to add several variants of the color
to the selection.

3. Use the Copy command (Ctrl+C) to copy the section of the image
you just selected.

4. Use the Paste command (Ctrl+V) to paste the selected area into a
new layer.

The pasted area goes into a new “pseudo-layer” by default. In the
Layers panel you'll see a layer called Floating Selection – Pasted
Layer. Click the New Layer button and you'll create a new layer
containing only the section you need.

5. Colorize the new layer by applying the Colorize filter (Colors ⇒
Colorize).

Play with the color sliders until you get the color you want. Because
you made the changes on a new layer, you can always remove or hide
the layer to return to the original. (Or have several different color
layers so you can play with various options.)

Figure 4-8 shows an example of this technique using an image of a glass of
orange juice by Graur Razvan Ionut I found at FreeDigitalPhotos.net. The
original image contained only the picture of orange juice, but I duplicated
the juice glass and changed the color of the second glass to look like

******ebook converter DEMO Watermarks*******

coffee. Of course you'll need to see this effect online at the companion
website because the color change will not be apparent in this black-and-
white book. See the book's Introduction for more on the companion site.

Figure 4-8: You can use the Colorize filter to change orange juice into coffee.

Building a banner graphic
Nearly every commercial website has a banner graphic — a special
graphic, usually with a set size (900×100 is common), that appears on
every page. Normally, if you're modifying a CSS template, you have a
default banner graphic. You'll want to copy this graphic in order to start
with the right size and shape.
You can build a banner many ways, but here's a simple technique you can
modify (Figure 4-9 shows the banner's progression):

1. Load or create the basic shape.

If you have a starting graphic to use, load it into Gimp. If not, create a
new image of the size you need. Mine is 100 pixels tall by 900 pixels
wide.

2. Create a plasma background.

Use the Plasma filter (Filters ⇒ Render ⇒ Clouds ⇒ Plasma) to create
a semi-random pattern. Use the New Seed and Turbulence buttons to
change the overall feel. Don't worry about the colors; you remove them
in the next step.

3. After the plasma background is in place, use the Colorize filter to
apply a color to the background.

Pick a color consistent with your theme. For this example, go for a
******ebook converter DEMO Watermarks*******

lighter color because you're using shadows, which require a light
background. Use the Lightness slider to make a relatively light color.
(I'm going for a cloudy sky look, so I set Hue to 215, Saturation to 100,
and Lightness to 75.)

4. Create a text layer using the Text tool.

Text in a graphic should be large and bold. The Text tool automatically
creates a new layer. After you type your text, specify the font and size.

5. Duplicate the text layer.

In the Layers panel, make a copy of the text layer. Select the lower of
the two text layers (which will become a shadow).

6. Blur the shadow.

With the shadow layer selected, apply the Gaussian blur (Filters ⇒
Blur ⇒ Gaussian Blur).

7. Move the shadow.

Use the Move tool to move the relative positions of the text and the
shadow. Typically, users expect a shadow to be slightly lower and right
of the text (simulating light coming from the top left). The farther the
shadow is from the text, the higher the text appears to be floating.

8. Make the shadow semitransparent.

With the shadow layer still selected, adjust the Opacity slider to about
50 percent. This will make the shadows less pronounced and allow part
of the background to appear through the shadow layer.

9. Season to taste; make additions based on your needs.

For example, one client wanted a picture of his sign to appear on the
banner. I took a photo of the sign, brought it in as a layer, cleaned it up,
and rotated and scaled the image until it fit in place.

******ebook converter DEMO Watermarks*******

10. Save in a reusable format.

The native format for images in Gimp is XCF. (I have no clue what
XCF stands for, but every time I try to make up an acronym, it comes
out dirty. There must be something wrong with me.) XCF stores
everything — layers, settings, and all. If you need to modify the banner
later (and you will), you'll have a good version to work from.

Choose File ⇒ Save As to save the file. If you specify the .xcf
extension, Gimp automatically saves in the full format.

11. Export to a web-friendly format.

Generally, I save banner graphics as PNG or GIF files. (Gimp supports
both formats.) I prefer PNG unless the bottom layer has transparency
(because some browsers still don't support the advanced transparency
features of the PNG format). Do not save images containing text in
JPG format. The JPG compression scheme is notorious for adding
artifacts to text.

Figure 4-9: The steps for building a banner.

******ebook converter DEMO Watermarks*******

 Normally, when you save to another format, a dialog box of
options appears. If in doubt, go with the default values.

Figure 4-10 shows the final banner image. I included the XCF and PNG
files on the website. Feel free to open my files in Gimp and experiment.

Figure 4-10: This is a simple but reasonably cool banner.

Building a tiled background
Often, you want a background image to cover the entire page. This can be
harder than it seems because you don't know how large the page will be in
the user's browser. Worse, large images can take a huge amount of space
and slow down the user's experience. The common solution is to use a tiled
image that's designed to repeat in the background. Gimp has some very
useful tools for building tiled images.
Recall that the background-repeat CSS property allows you to
specify how a background repeats. The default setting repeats the
background infinitely in both the X and Y axes. You can also set the
background to repeat horizontally (repeat-x), vertically (repeat-y),
or not at all (no-repeat).
The goal of a tiled background is to make a relatively small graphic fill the
entire page and look like a larger image. The secret is to create the image
so it's difficult to see where the image repeats. Here's one way to make a
tiled background in Gimp (Figure 4-11 shows the background's
progression). Of course, you can adapt this technique for your own
purposes.

******ebook converter DEMO Watermarks*******

Figure 4-11: Building a tiled background image.

1. Create a new image.

The size of your image is important. Smaller images are much more
efficient to download, but the pattern is much more obvious. Start with
256 by 256 pixels.

2. Build a random pattern.

You can use the Plasma filter technique described in the previous
section or try a similar technique by choosing Filters ⇒ Render ⇒
Clouds ⇒ Difference Clouds. The Difference Clouds filter creates a
grayscale image but with a number of interesting options. The Tileable
option creates a pattern that's ready to tile. Play with these options until
you get something interesting.

3. Adjust the contrast.

For the best effect, you want a relatively even distribution of values
from light to dark. The easiest way to do this is through the automatic
normalization tool (Colors ⇒ Auto ⇒ Normalize).

4. Pick a gradient.

You'll add colors to your pattern using a technique called gradient
******ebook converter DEMO Watermarks*******

mapping. Use the Gradient dialog box (Windows ⇒ Dockable Dialogs
⇒ Gradients) to pick a gradient. Darker colors on your image map to
colors on the left of the gradient, and lighter colors map to the left. You
can adjust colors, so don't worry if the colors aren't exactly what you
want. (If you want, you can make your own gradient with the gradient
editor by clicking the Gradient dialog box's New Gradient button.)

5. Use the Gradient Map tool (Colors ⇒ Map ⇒ Gradient Map) to
map the colors of the gradient to your cloud pattern.

6. Offset the image to check for tiling.

The easiest way to see whether the image tiles well is to offset the
image. This puts the edges in the center so you can see how the image
will look when multiple copies are next to each other. Open the Offset
dialog by choosing Layer ⇒ Transform ⇒ Offset. The Offset dialog
has a handy x/2, y/2 button. Click the button to see how your image
looks.

7. Clean the image if necessary.

If you chose the Tileable option when you built the cloud image, the
new image will look fine. If not, you may have some visible seams.
Use the Smudge and Clone tools to clean up these seams if necessary.
Apply the Offset tool a second time to check whether your seams look
good.

8. Apply filters to get the effect you want.

You may want to colorize your image or blur it a bit to cover any
artifacts of your cleanup. Remember that background images should be
extremely dark or extremely light with very low contrast if you want
readable text.

9. Test the image by saving the image in XCF format and a web-
friendly format (like PNG), build a simple page using the image as
a background, and load the page into your browser to ensure it
tiles the way you expect.

******ebook converter DEMO Watermarks*******

Figure 4-12 shows a sample page containing my tiled image as the
background.

Figure 4-12: This page features my new tiled background.

******ebook converter DEMO Watermarks*******

Chapter 5
Taking Control of Content

In This Chapter
 Approximating CMS with Server Side Includes (SSI)
 Reviewing client-side includes using AJAX
 Using PHP includes to build a basic CMS-style system
 Building a data-based CMS
 Creating a form for modifying content

Commercial sites today combine many skills and tools: HTML, CSS,
JavaScript, AJAX, databases, and PHP. This book covers many of these
techniques. In this chapter you combine all these techniques to build your
own content management systems. Some are very simple to build, and
some are quite sophisticated.

Building a “Poor Man's CMS” with
Your Own Code

The benefits of using a CMS are very real, but you may not want to make
the commitment to a full-blown CMS. For one thing, you have to learn
each CMS's particular way of doing things, and most CMSs force you into
a particular mindset. For example, you think differently about pages in
Drupal than you do in WebsiteBaker (both described in Chapter 3 of this
minibook). You can still get some of the benefits of a CMS with some
simpler development tricks, as described in the following sections.

 The examples in this chapter build on information from
throughout the entire book. All of the CMSs (and pseudo-CMSs) built
in this chapter use the design developed in Chapter 2 of this minibook.

******ebook converter DEMO Watermarks*******

Using Server Side Includes (SSIs)
Web developers have long used the simple SSI (Server Side Include) trick
as a quick and easy way to manage content. It involves breaking the code
into smaller code segments and a framework that can be copied. For
example, Figure 5-1 shows a variation of the website developed in Chapter
2 of this minibook.

Figure 5-1: This web page appears to be a standard page.

Even if you view the source code in the browser, you don't find anything
unusual about the page.
However, if you look at the code in a text editor, you find some interesting
discoveries:

<!DOCTYPE html>
<html lang = "en-US">

 <head>
 <meta charset = "UTF-8">
 <title>csSSI.shtml</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->

******ebook converter DEMO Watermarks*******

 <div id = "heading">
 <!--#include virtual = "head.html" -->
 </div><!-- end heading div -->

 <div id = "menu">
 <!--#include virtual = "menu.html" -->
 </div> <!-- end menu div -->

 <div class = "content">
 <!--#include virtual = "story1.html" -->
 </div> <!-- end content div -->

 <div class = "content">
 <!--#include virtual = "story2.html" -->
 </div> <!-- end content div -->

 <div id = "footer">
 <!--#include virtual = "footer.html" -->
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Some interesting things are happening in this code snippet:

The page has no content! All the actual content (the menus and the
book information) are gone. This page, which contains only structural
information, is the heart of any kind of CSS — the structure is divorced
from the content.
A funky new tag is in place of the content. In each place that you
expect to see text, you see an <!–#include –> directive, instead.
This special instruction tells the server to go find the specified file and
put it here.
The filename is unusual. The server doesn't normally look for include
tags (because most pages don't have them). Typically, you have to save
the file with the special extension .shtml to request that the server look
for include directives and perform them. (It's possible to use special
server configurations to allow SSI with normal .html extensions.)
Servers don't always allow SSI technologies. Not every server is
configured for Server Side Includes. You may have to check with your

******ebook converter DEMO Watermarks*******

server administrator to make this work.

The nice thing about Server Side Includes is the way that it separates the
content from the structure. For example, look at the code for the first
content block:

<!--#include virtual = "story1.html" -->

This code notifies the server to look for the file story1.html in the current
directory and place the contents of the file there. The file is a vastly
simplified HTML fragment:

<h2>Book I - Creating the HTML Foundation</h2>

 Sound HTML Foundations
 It's All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating Forms

This approach makes it very easy to modify the page. If I want a new story,
I simply make a new file, story1.html, and put it in the directory. Writing a
program to do this automatically is easy.

 Like PHP code, SSI code doesn't work if you simply open the file
in the browser or drag the file to the window. SSI requires active
participation from the server; to run an SSI page on your machine,
therefore, you need to use localhost, as you do for PHP code.

 If you view the source code of csSSI.shtml you won't see the
include lines; they'll be replaced with the included HTML snippets. I've
placed a special source view of this program on the website so you can
see the source code as I do for PHP programs.

Using AJAX and jQuery for client-side
******ebook converter DEMO Watermarks*******

inclusion
If you don't have access to Server Side Includes, you can use AJAX to get
the same effect.
Figure 5-2 shows what appears to be the same page, but all is not what it
appears to be.

Figure 5-2: This time, I grabbed content from the client side using AJAX.

 Figures 5-1 and 5-2 look identical, but they're not. I used totally
different means to achieve exactly the same output, from the user's
point of view.

The code reveals what's going on:
<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>csAJAX.html</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 <script type = "text/javascript"

******ebook converter DEMO Watermarks*******

 src = "jquery-1.10.2.min.js"></script>
 <script type = "text/javascript">
 $(document).ready(function() {
 $("#heading").load("head.html");
 $("#menu").load("menu.html");
 $("#content1").load("story1.html");
 $("#content2").load("story2.html");
 $("#footer").load("footer.html");
 });
 </script>
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 </div><!-- end heading div -->
 <div id = "menu">
 </div> <!-- end menu div -->
 <div class = "content"
 id = "content1">
 </div> <!-- end content div -->
 <div class = "content"
 id = "content2">
 </div> <!-- end content div -->
 <div id = "footer">
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Once again, the page content is empty. All the contents are available in the
same text files as they were for the Server Side Includes example. This
time, though, I used a jQuery AJAX call to load each text file into the
appropriate element.
Here's the plan:

1. Import the jQuery library.

The jQuery library is by far the easiest way to work with AJAX, so
import jQuery any time you want to work with AJAX. See Book VII,
Chapter 2 for more on importing the jQuery library.

2. Add an initialization function.

There are many ways to call initial functions in jQuery (discussed in

******ebook converter DEMO Watermarks*******

Book VII, Chapter 2). It doesn't matter which mechanism you use as
long as it occurs after the page has loaded but before any other
JavaScript. I use the standard $(document).ready mechanism in
this example.

3. Load each div with the load() method.

The jQuery library has a load() method that allows you to make an
AJAX call and place the document in the indicated element. Use this
mechanism on each element in your page.

The same document structure can be used with very different content by
changing the JavaScript. If you can't create a full-blown CMS (because the
server doesn't allow SSI, for example) but you can do AJAX, this is an
easy way to separate content from layout. See Book VII, Chapter 2 for
more information on using jQuery and AJAX for page includes.

Building a page with PHP includes
Of course, if you have access to PHP, it's quite easy to build pages
dynamically.
The csInclude.php program shows how this is done:

<!DOCTYPE html>
<html lang = "en-US">

<head>
 <meta charset = "UTF-8">
 <title>CS PHP Includes</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
 <body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <?php include("head.html"); ?>
 </div><!-- end heading div -->
 <div id = "menu">
 <?php include("menu.html"); ?>
 </div> <!-- end menu div -->
 <div class = "content">

******ebook converter DEMO Watermarks*******

 <?php include("story1.html"); ?>
 </div> <!-- end content div -->
 <div class = "content">
 <?php include("story2.html"); ?>
 </div> <!-- end content div -->
 <div id = "footer">
 <?php include("footer.html"); ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

As you can see, using PHP is almost the same as using the SSI and AJAX
approaches from the last two sections of this chapter:

1. Start by building a template.

The general template for all three styles of page inclusion is the same.
There's no need to change the general design or the CSS.

2. Create a small PHP segment for each inclusion.

In this particular situation, it's easiest to write HTML code for the main
site and write a small PHP section for each segment that needs to be
included.

3. Include the HTML file.

Each PHP snippet does nothing more than include the appropriate
HTML.

Creating Your Own Data-Based CMS
If you've come this far in the chapter, you ought to go all the way and see
how a relational database can add flexibility to a page-serving system. If
you really want to turn the corner and make a real CMS, you need a system
that stores all the data in a data structure and compiles the pages from that
structure dynamically. That sounds like a project. Actually, creating your
own CMS neatly ties together most of the skills used throughout this book:
HTML, CSS, PHP, and SQL. It's not nearly as intimidating as it sounds,

******ebook converter DEMO Watermarks*******

though.

Using a database to manage content
The first step is to move from storing data in files to storing in a relational
database. Each page in a content management system is often the same
structure, and only the data is different. What happens if you move away
from text files altogether and store all the content in a database?
The data structure might be defined like this in SQL:

DROP TABLE IF EXISTS cmsPage;
CREATE TABLE cmsPage (
 cmsPageID INTEGER PRIMARY KEY AUTO_INCREMENT,
 title VARCHAR(30)
);

DROP TABLE IF EXISTS cmsBlock;
CREATE TABLE cmsBlock (
 cmsBlockID INTEGER PRIMARY KEY AUTO_INCREMENT,
 blockTypeID INTEGER,
 title VARCHAR(50),
 content TEXT,
 pageID INTEGER

);

DROP TABLE IF EXISTS blockType;
CREATE TABLE blockType (
 blockTypeID INTEGER PRIMARY KEY AUTO_INCREMENT,
 name VARCHAR(30)
);

DROP VIEW IF EXISTS pageView;
CREATE VIEW pageView AS
 SELECT
 blockType.name as 'block',
 cmsBlock.title as 'title',
 cmsBlock.content as 'content',
 cmsBlock.pageID as 'pageID',
 cmsPage.title as 'page'
 FROM
 cmsBlock, blockType, cmsPage
 WHERE
 cmsBlock.blockTypeID = blockType.blockTypeID;

******ebook converter DEMO Watermarks*******

INSERT INTO cmsPage VALUES (
 null,
 'main page'
);

INSERT into blockType VALUES (null, 'head');
INSERT into blockType VALUES (null, 'menu');
INSERT into blockType VALUES (null, 'content1');
INSERT into blockType VALUES (null, 'content2');
INSERT into blockType VALUES (null, 'footer');

INSERT INTO cmsBlock VALUES (
 null,
 1,
 'it\'s a binary thing',
 null,
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 2,
 'menu',
 '

 one
 two
 three

 ',
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 3,
 'Book I - Creating the HTML Foundation',
 '

 Sound HTML Foundations
 It\'s All About Validation
 Choosing your Tools
 Managing Information with Lists and Tables
 Making Connections with Links
 Adding Images
 Creating forms

******ebook converter DEMO Watermarks*******

 ',
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 4,
 'Book II - Styling with CSS',
 '

 Coloring Your World
 Styling Text
 Selectors, Class, and Style
 Borders and Backgrounds
 Levels of CSS

 ',
 1
);

INSERT INTO cmsBlock VALUES (
 null,
 5,
 null,
 'see <a href =
"http://www.aharrisbooks.net">aharrisbooks.net for more
information',
 1
);

This structure has three tables and a view:

The cmsPage table: Represents the data about a page, which
currently isn't much. A fuller version might put menu information in
the page data so that the page would “know” where it lives in a menu
structure.
The cmsBlock table: Represents a block of information. Each block
is the element that would be in a miniature HTML page in the other
systems described in this chapter. This table is the key table in this
structure because most of the content in the CMS is stored in this table.
The blockType table: Lists the block types. This simple table
describes the various block types.
The pageView view: Ties together all the other information. After all

******ebook converter DEMO Watermarks*******

the data is loaded, the pageView view ties it all together, as shown in
Figure 5-3.

Figure 5-3: This view describes all the data needed to build a page.

 Most of the data is being read as HTML, but it's still text data. I
included the entire SQL file, including the INSERT statements, on the
companion website as buildCMS.sql.

Writing a PHP page to read from the table
The advantage of using a data-based approach is scalability. In using all the
other models in this chapter, I had to keep copying the template page. If
you decide to make a change in the template, you have to change hundreds
of pages. If you use data, you can write one PHP program that can produce
any page in the system. All this page needs is a page-number parameter.
Using that information, it can query the system, extract all the information
needed for the current page, and then display the page. Here's the
(simplified) PHP code for such a system:

<!DOCTYPE html>
<html lang = "en-US">

<head>

******ebook converter DEMO Watermarks*******

 <meta charset = "UTF-8">
 <title>CS Basic CMS</title>
 <link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />
 </head>
<?php
//get pageID from request if possible
$pageID = filter_input(INPUT_POST, "pageID");

if ($pageID == ""){
 $pageID = 1;
} // end if

try {
 //connect to database
 $con= new PDO('mysql:host=host;dbname=dbName', "user", "pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

//read current page information from the db
 $stmt = $con->prepare("SELECT * FROM pageView WHERE PageID =
?");
 $stmt->execute(array($pageID));
 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);

//make page variables based on the current record
 foreach ($result as $row){
 if ($row["block"] == "head"){
 $head = $row["title"];
 } else if ($row["block"] == "menu"){
 $menu = $row["content"];
 } else if ($row["block"] == "content1"){
 $c1Title = $row["title"];
 $c1Text = $row["content"];
 } else if ($row["block"] == "content2"){
 $c2Title = $row["title"];
 $c2Text = $row["content"];
 } else if ($row["block"] == "footer"){
 $footer = $row["content"];
 } // end if

} // end foreach
} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
} // end try
?>

******ebook converter DEMO Watermarks*******

<body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <h1>
 <?php print $head; ?>
 </h1>
 </div><!-- end heading div -->
 <div id = "menu">
 <?php print $menu; ?>
 </div> <!-- end menu div -->
 <div class = "content">
 <h2>
 <?php print $c1Title; ?>
 </h2>
 <div>
 <?php print $c1Text; ?>
 </div>
 </div> <!-- end content div -->
 <div class = "content">
 <h2>
 <?php print $c2Title; ?>
 </h2>
 <div>
 <?php print $c2Text; ?>
 </div>
 </div> <!-- end content div -->
 <div id = "footer">
 <?php print $footer; ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>
</html>

Here's the cool thing about dbCMS. This page is all you need! You won't
have to copy it ever. The same PHP script is used to generate every page in
the system. If you want to change the style or layout, you do it in this one
script, and it works automatically in all the pages. This is exactly how
CMS systems work their magic!
Looking at all the code at one time may seem intimidating, but it's quite
easy when you break it down, as explained in these steps:

1. Pull the pageID number from the request.

If possible, extract the pageID number from the GET request. If the
******ebook converter DEMO Watermarks*******

user has sent a particular page request, it has a value. If there's no
value, get page number 1:

//get pageID from request if possible
//note this is a GET request, for flexibility
$pageID = filter_input(INPUT_GET, "pageID");

if ($pageID == ""){
 $pageID = 1;
} // end if

Note that I'm using a sneaky trick to indicate the page. The menu links
will all call the same program, but with a different pageID:

 one
 two
 three

2. Query pageView to get all the data for this page.

The pageView view was designed to give you everything you need to
build a page with one query.

3. Make a data connection.

Build a standard PDO connection to the database. (Check Book VI,
Chapter 5 if you need more on building a PDO connection.) Don't
forget to set up an exception handler and the appropriate error
constants.

try {
 //connect to database
 $con= new PDO('mysql:host=localhost;dbname=haio',
"haio", "haio");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

// OTHER CODE WILL GO HERE

******ebook converter DEMO Watermarks*******

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
} // end try

4. Form and execute the query.

Use the prepared statement mechanism to build a statement that will
return all records for the current page. Execute the statement and fetch
all the results in a variable called $results.

//read current page information from the db
 $stmt = $con->prepare("SELECT * FROM pageView WHERE
PageID = ?");
 $stmt->execute(array($pageID));
 $result = $stmt->fetchAll(PDO::FETCH_ASSOC);<Warning>

Don't simply interpolate the $pageID variable into the SQL query.
Doing so would open yourself up to SQL injection attacks. Use the
prepare/execute mechanism to prevent this type of attack.

5. Use the entry to populate page variables.

Each entry contains two fields: block and content. The block
field determines the type of content, and the content field shows
what content is there. Use this data to populate the variables used to
build the page:

//make page variables based on the current record
 foreach ($result as $row){
 if ($row["block"] == "head"){
 $head = $row["title"];
 } else if ($row["block"] == "menu"){
 $menu = $row["content"];
 } else if ($row["block"] == "content1"){
 $c1Title = $row["title"];
 $c1Text = $row["content"];
 } else if ($row["block"] == "content2"){
 $c2Title = $row["title"];
 $c2Text = $row["content"];
 } else if ($row["block"] == "footer"){
 $footer = $row["content"];
 } // end if

} // end foreach

******ebook converter DEMO Watermarks*******

6. Write out the page.

Go back to HTML and generate the page, skipping into PHP to print
the necessary variables.

<body>
 <div id = "all">
 <!-- This div centers a fixed-width layout -->
 <div id = "heading">
 <h1>
 <?php print $head; ?>
 </h1>
 </div><!-- end heading div -->
 <div id = "menu">
 <?php print $menu; ?>
 </div> <!-- end menu div -->
 <div class = "content">
 <h2>
 <?php print $c1Title; ?>
 </h2>
 <div>
 <?php print $c1Text; ?>
 </div>
 </div> <!-- end content div -->
 <div class = "content">
 <h2>
 <?php print $c2Title; ?>
 </h2>
 <div>
 <?php print $c2Text; ?>
 </div>
 </div> <!-- end content div -->
 <div id = "footer">
 <?php print $footer; ?>
 </div> <!-- end footer div -->
 </div> <!-- end all div -->
 </body>

Allowing user-generated content
The hallmark of a CMS is the ability of users with limited technical
knowledge to add content to the system. My very simple CMS illustrates a
limited way to add data to the CMS. Figure 5-4 shows the buildBlock.html
page. This page allows authorized users to add new blocks to the system
and produces the output shown in Figure 5-5.

******ebook converter DEMO Watermarks*******

Figure 5-4: A user can add content, which updates the database.

Figure 5-5: The result of a successful page update.

After a few entries, a user can build a complete second page, which might
look similar to Figure 5-6.

******ebook converter DEMO Watermarks*******

Figure 5-6: This page is simply another set of page blocks added by the user.

The system is simple but effective. The user builds blocks, and these
blocks are constructed into pages. First, look over the buildBlock.html
page.

<!doctype html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Build new block</title>

<link rel = "stylesheet"
 type = "text/css"
 href = "csStd.css" />

<style type = "text/css">
 label {
 float: left;
 width: 10em;

******ebook converter DEMO Watermarks*******

 clear: left;
 text-align: right;
 padding-right: 1em;
 }

input, select, textarea {
 float: left;
 width: 20em;
 }

button {
 display: block;
 clear: both;
 margin: auto;
 }

</style>
</head>
<body>
 <div id = "all">
 <div id = "heading">
 <h1>Build a new block</h1>
 </div>

<div class = "content">
 <form action = "buildBlock.php"
 method = "post">
 <fieldset>

<label>
 password
 </label>
 <input type = "password"
 name = "password" />

<label>block type</label>
 <select name = "blockType">
 <option value = "1">head</option>
 <option value = "2">menu</option>
 <option value = "3">content1</option>
 <option value = "4">content2</option>
 <option value = "5">footer</option>
 </select>

<label>title</label>

******ebook converter DEMO Watermarks*******

 <input type = "text"
 name = "title" />

<label>content</label>
 <textarea name = "content"
 rows = "10"
 cols = "40"></textarea>

<label>page</label>
 <select name = "pageID">
 <option value = "1">main page</option>
 <option value = "2">page 2</option>
 </select>

<button type = "submit">
 submit
 </button>
 </fieldset>
 </form>
 </div>
 </div>
</body>
</html>

This code is a reasonably standard HTML form. Here are the highlights:

Add CSS for consistency: It's important that the user understands she
is still in a part of the system, so I include the same CSS used to
display the output. I also add local CSS to improve the form display.
Build a form that calls buildBlock.php: The purpose of this form is
to generate the information needed to build an SQL INSERT
statement. The buildBlock.php program provides this vital service.
Ask for a password: You don't want just anybody modifying your
forms. Include a password to make sure only those who are authorized
add data.
Get other data needed to build a block: Think about the INSERT
query you'll be building. You'll need to get all the data necessary to add
a new record to the cmsBlock table.

******ebook converter DEMO Watermarks*******

 Honestly, this page is a bit sloppy. I hard-coded the block types
and page IDs. In a real system, this data would be pulled from the
database (ideally through AJAX). However, I decided to go with this
expedient to save space.

Adding a new block
When the page owner submits the buildBlock.html form, control is passed
to buildBlock.php. This program reads the data from the form, checks the
password, creates an INSERT statement, and passes the query to the
database.
Here's the code and then the details:

<!doctype html>
<html lang="en">
<head>
 <title>buildBlock.php</title>
 <meta charset="UTF-8">
</head>
<body>
 <?php
 //retrieve data from form
 $password = filter_input(INPUT_POST, "password");
 $blockType = filter_input(INPUT_POST, "blockType");
 $title = filter_input(INPUT_POST, "title");
 $content = filter_input(INPUT_POST, "content");
 $pageID = filter_input(INPUT_POST, "pageID");

//check password
 if ($password == "allInOne"){
 manageResults();
 } else {
 print "<h2>Unauthorized access...</h2>";
 } // end if

function manageResults(){
 global $blockType, $title, $content, $pageID;

//return output
 print <<<HERE
 <h2>Page input:</h2>

******ebook converter DEMO Watermarks*******

 <p>
 blockType: $blockType

 title: $title

 content: $content

 pageID: $pageID
 </p>
HERE;

try {
 //connect to database
 $con= new PDO('mysql:host=host;dbname=dbName', "user",
"pwd");
 $con->setAttribute(PDO::ATTR_ERRMODE,
PDO::ERRMODE_EXCEPTION);

//create an INSERT statement based on input
 $stmt = $con->prepare('INSERT INTO cmsBlock VALUES(null, ?,
?, ?, ?)');
 $result = $stmt->execute(array($blockType, $title, $content,
$pageID));

//provide feedback
 if ($result){
 print "System updated";
 } else {
 print "There was an error";
 } // end if

} catch(PDOException $e) {
 echo 'ERROR: ' . $e->getMessage();
 } // end try
} // end function

?>
 <p>
 return to the CMS
 </p>
</body>
</html>

Here's how you use the PHP code with the HTML form to update the
database:

******ebook converter DEMO Watermarks*******

1. Retrieve data from the form.

Use the filter_input or $_REQUEST mechanism to extract all
data from the previous form.

2. Filter all input that's used in the query.

All form variables except the password are used in an SQL query, so
pass each variable through the mysql_filter_input() function
to prevent SQL injection attacks. (See Book VI, Chapter 5 for
information about SQL injection attacks and how to prevent them.)

3. Check the password.

You obviously don't want just anybody to change your system. Check
the password and continue only if the user is authorized

4. Print the form contents.

Ensure the form contents are what you expect before passing data to a
database.

5. Connect to the database.

Build a standard database connection so you can pass the query to the
database.

6. Build and execute the query.

Send the query to the database with the prepare/execute mechanism.
Note that an INSERT command doesn't return a data result, so there's
no need to do a fetch command. However, the $result variable
will still contain a true or false value, so compare this value to
ensure the insertion worked correctly.

Improving the dbCMS design
Although the simple PHP/MySQL combination described in the last

******ebook converter DEMO Watermarks*******

section is a suitable starting point, you probably want to do a bit more to
make a complete CMS because a better CMS might have the following
features:

Automatic menu generation: The menu system in dbCMS is too
static as it is. Your database should keep track of where each page is
located in the system, and your menu code should be dynamically
generated based on this information.
Better flexibility: To keep the code simple, I made only one page type,
and the page always has exactly two content blocks. You'll want a
much more flexible design.
Error-checking: This program isn't nearly robust enough for real use
(yet). It crashes if the data isn't complete. Before you can use this
system in a real application, you need a way to improve its “crash-
worthiness.”
Improved data input: The very basic input form described in this
chapter is fine, but it could certainly be improved. Loading the block
type and page data directly from the database would be better. It would
also be nice if the user could create new block types. Still, this basic
CMS shows how you can start building your own content systems.

******ebook converter DEMO Watermarks*******

About the Author
Andy Harris began his teaching life as a special education teacher. As he
was teaching young adults with severe disabilities, he taught himself
enough computer programming to support his teaching habit with freelance
programming. Those were the exciting days when computers started to
have hard drives, and some computers began communicating with each
other over an arcane mechanism some were calling the Internet.
All this time Andy was teaching computer science part time. He joined the
faculty of the Indiana University-Purdue University Indianapolis Computer
Science department in 1995. He serves as a Senior Lecturer, teaching the
introductory course to freshmen as well as numerous courses on web
development, general programming, and game programming. As manager
of the Streaming Media Laboratory, he developed a number of online
video-based courses, and worked on a number of international distance
education projects including helping to start a computer science program in
Tetevo, Macedonia FYR, and collaboration with Sun-Yat-Sen University
in Guangzhou, China.
Andy is active in home schooling, and is the technology columnist for a
national homeschool magazine.
Andy is the author of several other computing books including HTML5
Game Development For Dummies, JavaScript/AJAX for Dummies, and
Game Programming: The L Line. He invites your comments and questions
at andy@aharrisbooks.net. You can visit his main site and find a
blog, forum, and links to other books at www.aharrisbooks.net.

Dedication
I dedicate this book to Jesus Christ, my personal savior, and to Heather, the
joy in my life. I also dedicate this project to Elizabeth, Matthew, Jacob, and
Benjamin. I love each of you.

Author’s Acknowledgments
Thank you first to Heather. Even though I type all the words, this book is a

******ebook converter DEMO Watermarks*******

mailto:andy@aharrisbooks.net
http://www.aharrisbooks.net

real partnership, like the rest of our life. Thanks for being my best friend
and companion. Thanks also for doing all the work it takes for us to sustain
a family when I’m in writing mode.
Thank you to Connie Santisteban. I’ve really enjoyed working with you on
this project.
Thank you to the copy and development editor, Linda Morris. I appreciate
your efforts to make my geeky mush turn into something readable. Thanks
for improving my writing.
A special thanks to Claudia Snell for technical editing. I appreciate your
vigilance. You have helped to make this book as technically accurate as
possible.
Thank you to the many people at Wiley who contribute to a project like
this. The author only gets to meet a few people, but so many more are
involved in the process. Thank you very much for all you’ve done to help
make this project a reality.
A big thank you to the open-source community which has created so many
incredible tools and made them available to all. I’d especially like to thank
the creators of Firefox, Firebug, Aptana, HTML Validator, Komodo Edit,
Notepad++, PHP, Apache, jQuery, and the various jQuery plug-ins. This is
an amazing and generous community effort.
Thanks to those I’ve gotten to learn and teach with, from the graduate
students, to the math homework girls: Graciela and Vanesa.
I’d finally like to thank the IUPUI computer science family for years of
support on various projects. Thank you especially to all my students,
current and past. I’ve learned far more from you than the small amount I’ve
taught. Thank you for letting me be a part of your education.

******ebook converter DEMO Watermarks*******

Publisher’s Acknowledgments
Acquisitions Editor: Constance Santisteban
Project Editor: Linda Morris
Copy Editor: Linda Morris
Technical Editor: Claudia Snell
Editorial Assistant: Annie Sullivan
Sr. Editorial Assistant: Cherie Case
Project Coordinator: Sheree Montgomery
Cover Image: © iStockphoto.com/Marina Strizhak

******ebook converter DEMO Watermarks*******

To access the cheat sheet specifically for this book, go to
www.dummies.com/cheatsheet/html5css3aio.

******ebook converter DEMO Watermarks*******

http://www.dummies.com/cheatsheet/html5css3aio

Find out ”HOW” at Dummies.com

******ebook converter DEMO Watermarks*******

http://www.dummies.com

Take Dummies with you
everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

******ebook converter DEMO Watermarks*******

http://www.dummies.com
http://www.dummies.com
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/

Pin us on Pinterest

Circle us on google+

Subscribe to our newsletter

Create your own Dummies book cover

Shop Online

******ebook converter DEMO Watermarks*******

http://pinterest.com/fordummies/
https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com
http://dummiesmerchandise.com

	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Use Any Computer
	Don't Buy Any Software
	How This Book Is Organized
	New for the Third Edition
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Book I: Creating the HTML Foundation
	Chapter 1: Sound HTML Foundations
	Creating a Basic Page
	Understanding the HTML in the Basic Page
	Meeting Your New Friends, the Tags
	Setting Up Your System
	Displaying file extensions
	Setting up your software

	Chapter 2: It's All About Validation
	Somebody Stop the HTML Madness!
	XHTML had some great ideas

	Validating Your Page
	Aesop visits W3C

	Using Tidy to repair pages

	Chapter 3: Choosing Your Tools
	What's Wrong with the Big Boys: Expression Web and Adobe Dreamweaver
	How About Online Site Builders?
	Alternative Web Development Tools
	Picking a Text Editor
	Tools to avoid unless you have nothing else
	Suggested programmer's editors
	My personal choice: Komodo Edit
	Other text editors
	The bottom line on editors

	Finding a Good Web Developer's Browser
	A little ancient history
	Overview of the prominent browsers
	Other notable browsers
	The bottom line in browsers

	Chapter 4: Managing Information with Lists and Tables
	Making a List and Checking It Twice
	Creating an unordered list
	Creating ordered lists
	Making nested lists
	Building the definition list

	Building Tables
	Defining the table
	Spanning rows and columns
	Avoiding the table-based layout trap

	Chapter 5: Making Connections with Links
	Making Your Text Hyper
	Introducing the anchor tag
	Comparing block-level and inline elements
	Analyzing an anchor
	Introducing URLs

	Making Lists of Links
	Working with Absolute and Relative References
	Understanding absolute references
	Introducing relative references

	Chapter 6: Adding Images, Sound, and Video
	Adding Images to Your Pages
	Linking to an image
	Adding inline images using the tag
	src (source)
	height and width
	alt (alternate text)

	Choosing an Image Manipulation Tool
	An image is worth 3.4 million words
	Introducing IrfanView

	Choosing an Image Format
	BMP
	JPG/JPEG
	GIF
	PNG
	SVG
	Summary of web image formats

	Manipulating Your Images
	Changing formats in IrfanView
	Resizing your images
	Enhancing image colors
	Using built-in effects
	Other effects you can use
	Batch processing

	Working with Audio
	Adding Video

	Chapter 7: Creating Forms
	You Have Great Form
	Forms must have some form

	Building Text-Style Inputs
	Making a standard text field
	Building a password field
	Making multi-line text input

	Creating Multiple Selection Elements
	Making selections
	Building check boxes
	Creating radio buttons

	Pressing Your Buttons
	Making input-style buttons
	Building a Submit button
	It's a do-over: The Reset button
	Introducing the <button> tag

	New Form Input Types
	date
	time
	datetime
	datetime-local
	week
	month
	color
	number
	range
	search
	email
	tel
	url

	Book II: Styling with CSS
	Chapter 1: Coloring Your World
	Now You Have an Element of Style
	Setting up a style sheet
	Changing the colors

	Specifying Colors in CSS
	Using color names
	Putting a hex on your colors
	Coloring by number
	Hex education
	Using the web-safe color palette

	Choosing Your Colors
	Starting with web-safe colors
	Modifying your colors
	Doing it on your own pages
	Changing CSS on the fly

	Creating Your Own Color Scheme
	Understanding hue, saturation, and lightness
	Using HSL colors in your pages
	Using the Color Scheme Designer
	Selecting a base hue
	Picking a color scheme

	Chapter 2: Styling Text
	Setting the Font Family
	Applying the font-family style attribute
	Using generic fonts
	Making a list of fonts

	The Curse of Web-Based Fonts
	Understanding the problem
	Using embedded fonts
	Using images for headlines

	Specifying the Font Size
	Size is only a suggestion!
	Using the font-size style attribute
	Absolute measurement units

	Relative measurement units
	Determining Other Font Characteristics
	Using font-style for italics
	Using font-weight for bold
	Using text-decoration
	Using text-align for basic alignment
	Other text attributes
	Using the font shortcut
	Working with subscripts and superscripts

	Chapter 3: Selectors: Coding with Class and Style
	Selecting Particular Segments
	Defining more than one kind of paragraph
	Styling identified paragraphs

	Using Emphasis and Strong Emphasis
	Modifying the Display of em and strong
	Defining Classes
	Adding classes to the page
	Using classes
	Combining classes

	Introducing div and span
	Organizing the page by meaning
	Why not make a table?

	Using Pseudo-Classes to Style Links
	Styling a standard link
	Styling the link states
	Best link practices

	Selecting in Context
	Defining Styles for Multiple Elements
	Using New CSS3 Selectors
	Attribute selection
	not
	nth-child
	Other new pseudo-classes

	Chapter 4: Borders and Backgrounds
	Joining the Border Patrol
	Using the border attributes
	Defining border styles
	Using the border shortcut
	Creating partial borders

	Introducing the Box Model
	Border, margin, and padding
	Positioning elements with margins and padding

	New CSS3 Border Techniques
	Image borders
	Adding Rounded Corners
	Adding a box shadow

	Changing the Background Image
	Getting a background check
	Solutions to the background conundrum

	Manipulating Background Images
	Turning off the repeat
	Using CSS3 Gradients

	Using Images in Lists

	Chapter 5: Levels of CSS
	Managing Levels of Style
	Using local styles
	Using an external style sheet

	Understanding the Cascading Part of Cascading Style Sheets
	Inheriting styles
	Hierarchy of styles
	Overriding styles
	Precedence of style definitions

	Managing Browser Incompatibility
	Coping with incompatibility
	Making Internet Explorer–specific code
	Using a conditional comment with CSS
	Checking the Internet Explorer version
	Using a CSS reset

	Chapter 6: CSS Special Effects
	Image Effects
	Transparency
	Reflections

	Text Effects
	Text stroke
	Text-shadow

	Transformations and Transitions
	Transformations
	Three-dimensional transformations
	Transition animation
	Animations

	Book III: Building Layouts with CSS
	Chapter 1: Fun with the Fabulous Float
	Avoiding Old-School Layout Pitfalls
	Problems with frames
	Problems with tables
	Problems with huge images
	Problems with Flash

	Introducing the Floating Layout Mechanism
	Using float with images
	Adding the float property

	Using Float with Block-Level Elements
	Floating a paragraph
	Adjusting the width
	Setting the next margin

	Using Float to Style Forms
	Using float to beautify the form
	Adjusting the fieldset width
	Using the clear attribute to control page layout

	Chapter 2: Building Floating Page Layouts
	Creating a Basic Two-Column Design
	Designing the page
	Building the HTML
	Using temporary background colors
	Setting up the floating columns
	Tuning up the borders
	Advantages of a fluid layout
	Using semantic tags

	Building a Three-Column Design
	Styling the three-column page
	Problems with the floating layout
	Specifying a min-height
	Using height and overflow

	Building a Fixed-Width Layout
	Setting up the HTML
	Fixing the width with CSS

	Building a Centered Fixed-Width Layout
	Making a surrogate body with an all div
	How the jello layout works
	Limitations of the jello layout

	Chapter 3: Styling Lists and Menus
	Revisiting List Styles
	Defining navigation as a list of links
	Turning links into buttons
	Building horizontal lists

	Creating Dynamic Lists
	Building a nested list
	Hiding the inner lists
	Getting the inner lists to appear on cue

	Building a Basic Menu System
	Building a vertical menu with CSS
	Building a horizontal menu

	Chapter 4: Using Alternative Positioning
	Working with Absolute Positioning
	Setting up the HTML
	Adding position guidelines
	Making absolute positioning work

	Managing z-index
	Handling depth
	Working with z-index

	Building a Page Layout with Absolute Positioning
	Overview of absolute layout
	Writing the HTML
	Adding the CSS

	Creating a More Flexible Layout
	Designing with percentages
	Building the layout

	Exploring Other Types of Positioning
	Creating a fixed menu system
	Setting up the HTML
	Setting the CSS values

	Flexible Box Layout Model
	Creating a flexible box layout
	Viewing a flexible box layout
	… And now for a little reality

	Determining Your Layout Scheme

	Book IV: Client-Side Programming with JavaScript
	Chapter 1: Getting Started with JavaScript
	Working in JavaScript
	Choosing a JavaScript editor
	Picking your test browser

	Writing Your First JavaScript Program
	Embedding your JavaScript code
	Creating comments
	Using the alert() method for output
	Adding the semicolon

	Introducing Variables
	Creating a variable for data storage
	Asking the user for information
	Responding to the user

	Using Concatenation to Build Better Greetings
	Comparing literals and variables
	Including spaces in your concatenated phrases

	Understanding the String Object
	Introducing object-based programming (and cows)
	Investigating the length of a string
	Using string methods to manipulate text

	Understanding Variable Types
	Adding numbers
	Adding the user's numbers
	The trouble with dynamic data
	The pesky plus sign

	Changing Variables to the Desired Type
	Using variable conversion tools
	Fixing the addInput code

	Chapter 2: Talking to the Page
	Understanding the Document Object Model
	Previewing the DOM
	Getting the blues, JavaScript-style
	Writing JavaScript code to change colors

	Managing Button Events
	Adding a function for more … functionality
	Making a more flexible function
	Embedding quotes within quotes
	Writing the changeColor function

	Managing Text Input and Output
	Introducing event-driven programming
	Creating the HTML form
	Using getElementById to get access to the page
	Manipulating the text fields

	Writing to the Document
	Preparing the HTML framework
	Writing the JavaScript
	Finding your innerHTML

	Working with Other Text Elements
	Building the form
	Writing the function
	Understanding generated source
	What if you're not in Chrome?

	Chapter 3: Decisions and Debugging
	Making Choices with if
	Changing the greeting with if
	The different flavors of if
	Conditional operators
	Nesting your if statements
	Making decisions with switch

	Managing Repetition with for Loops
	Setting up the web page
	Initializing the output
	Creating the basic for loop
	Introducing shortcut operators
	Counting backwards
	Counting by fives
	Understanding the Zen of for loops

	Building while Loops
	Making a basic while loop
	Getting your loops to behave
	Managing more complex loops

	Managing Errors with a Debugger
	Debugging with the interactive console
	Debugging strategies
	Resolving syntax errors
	Squashing logic bugs

	Chapter 4: Functions, Arrays, and Objects
	Breaking Code into Functions
	Thinking about structure
	Building the antsFunction.html program

	Passing Data to and from Functions
	Examining the makeSong code
	Looking at the chorus
	Handling the verses

	Managing Scope
	Introducing local and global variables
	Examining variable scope

	Building a Basic Array
	Accessing array data
	Using arrays with for loops
	Revisiting the ants song

	Working with Two-Dimension Arrays
	Setting up the arrays
	Getting a city
	Creating a main() function

	Creating Your Own Objects
	Building a basic object
	Adding methods to an object
	Building a reusable object
	Using your shiny new objects

	Introducing JSON
	Storing data in JSON format
	Building a more complex JSON structure

	Chapter 5: Getting Valid Input
	Getting Input from a Drop-Down List
	Building the form
	Reading the list box

	Managing Multiple Selections
	Coding a multiple selection select object
	Writing the JavaScript code

	Check, Please: Reading Check Boxes
	Building the check box page
	Responding to the check boxes

	Working with Radio Buttons
	Interpreting Radio Buttons
	Working with Regular Expressions
	Introducing regular expressions
	Using characters in regular expressions
	Marking the beginning and end of the line
	Working with special characters
	Conducting repetition operations
	Working with pattern memory

	New HTML5/CSS3 Tricks for Validation
	Adding a pattern
	Marking a field as required
	Adding placeholder text

	Chapter 6: Drawing on the Canvas
	Canvas Basics
	Setting up the canvas
	How <canvas> works

	Fill and Stroke Styles
	Colors
	Gradients
	Patterns

	Drawing Essential Shapes
	Rectangle functions
	Drawing text
	Adding shadows

	Working with Paths
	Line-drawing options
	Drawing arcs and circles
	Drawing quadratic curves
	Building a Bézier curve

	Images
	Drawing an image on the canvas
	Drawing part of an image

	Manipulating Pixels

	Chapter 7: Animation with the Canvas
	Transformations
	Building a transformed image
	A few thoughts about transformations

	Animation
	Overview of the animation loop
	Setting up the constants
	Initializing the animation
	Animate the current frame
	Moving an element
	Bouncing off the walls

	Reading the Keyboard
	Managing basic keyboard input
	Moving an image with the keyboard

	Book V: Server-Side Programming with PHP
	Chapter 1: Getting Started on the Server
	Introducing Server-Side Programming
	Programming on the server
	Serving your programs
	Picking a language

	Installing Your Web Server
	Inspecting phpinfo()
	Building HTML with PHP
	Coding with Quotation Marks
	Working with Variables PHP-Style
	Concatenation
	Interpolating variables into text

	Building HTML Output
	Using double quote interpolation
	Generating output with heredocs
	Switching from PHP to HTML

	Chapter 2: PHP and HTML Forms
	Exploring the Relationship between PHP and HTML
	Embedding PHP inside HTML
	Viewing the results

	Sending Data to a PHP Program
	Creating a form for PHP processing
	Receiving data in PHP

	Choosing the Method of Your Madness
	Using get to send data
	Using the post method to transmit form data
	Getting data from the form

	Retrieving Data from Other Form Elements
	Building a form with complex elements
	Responding to a complex form

	Chapter 3: Using Control Structures
	Introducing Conditions (Again)
	Building the Classic if Statement
	Rolling dice the PHP way
	Checking your six
	Understanding comparison operators
	Taking the middle road
	Building a program that makes its own form

	Making a switch
	Looping with for
	Looping with while

	Chapter 4: Working with Arrays
	Using One-Dimensional Arrays
	Creating an array
	Filling an array
	Viewing the elements of an array
	Preloading an array

	Using Loops with Arrays
	Simplifying loops with foreach
	Arrays and HTML

	Introducing Associative Arrays
	Using foreach with associative arrays

	Introducing Multidimensional Arrays
	We're going on a trip
	Looking up the distance

	Breaking a String into an Array
	Creating arrays with explode
	Creating arrays with preg_split

	Chapter 5: Using Functions and Session Variables
	Creating Your Own Functions
	Rolling dice the old-fashioned way
	Improving code with functions
	Managing variable scope
	Returning data from functions

	Managing Persistence with Session Variables
	Understanding session variables
	Adding session variables to your code

	Chapter 6: Working with Files and Directories
	Text File Manipulation
	Writing text to files
	Writing a basic text file
	Reading from the file

	Using Delimited Data
	Storing data in a CSV file
	Viewing CSV data directly
	Reading the CSV data in PHP

	Working with File and Directory Functions
	opendir()
	readdir()
	chdir()
	Generating the list of file links

	Chapter 7: Exceptions and Objects
	Object-Oriented Programming in PHP
	Building a basic object
	Using your brand-new class
	Protecting your data with access modifiers
	Using access modifiers

	You've Got Your Momma's Eyes: Inheritance
	Building a critter based on another critter
	How to inherit the wind (and anything else)

	Catching Exceptions
	Introducing exception handling
	Knowing when to trap for exceptions

	Book VI: Managing Data with MySQL
	Chapter 1: Getting Started with Data
	Examining the Basic Structure of Data
	Determining the fields in a record
	Introducing SQL data types
	Specifying the length of a record
	Defining a primary key
	Defining the table structure

	Introducing MySQL
	Why use MySQL?
	Understanding the three-tier architecture
	Practicing with MySQL

	Setting Up phpMyAdmin
	Changing the root password
	Adding a user
	Using phpMyAdmin on a remote server

	Implementing a Database with phpMyAdmin

	Chapter 2: Managing Data with MySQL
	Writing SQL Code by Hand
	Understanding SQL syntax rules
	Examining the buildContact.sql script
	Dropping a table
	Creating a table
	Adding records to the table
	Viewing the sample data

	Running a Script with phpMyAdmin
	Using AUTO_INCREMENT for Primary Keys
	Selecting Data from Your Tables
	Selecting only a few fields
	Selecting a subset of records
	Searching with partial information
	Searching for the ending value of a field
	Searching for any text in a field
	Searching with regular expressions
	Sorting your responses

	Editing Records
	Updating a record
	Deleting a record

	Exporting Your Data and Structure
	Exporting SQL code
	Creating XML data

	Chapter 3: Normalizing Your Data
	Recognizing Problems with Single-Table Data
	The identity crisis
	The listed powers
	Repetition and reliability
	Fields with changeable data
	Deletion problems

	Introducing Entity-Relationship Diagrams
	Using MySQL Workbench to draw ER diagrams
	Creating a table definition in Workbench

	Introducing Normalization
	First normal form
	Second normal form
	Third normal form

	Identifying Relationships in Your Data

	Chapter 4: Putting Data Together with Joins
	Calculating Virtual Fields
	Introducing SQL functions
	Knowing when to calculate virtual fields

	Calculating Date Values
	Using DATEDIFF to determine age
	Adding a calculation to get years
	Converting the days integer into a date
	Using YEAR() and MONTH() to get readable values
	Concatenating to make one field

	Creating a View
	Using an Inner Join to Combine Tables
	Building a Cartesian join and an inner join
	Enforcing one-to-many relationships
	Counting the advantages of inner joins
	Building a view to encapsulate the join

	Managing Many-to-Many Joins
	Understanding link tables
	Using link tables to make many-to-many joins

	Chapter 5: Connecting PHP to a MySQL Database
	PHP and MySQL: A Perfect (but Geeky) Romance
	Understanding data connections
	Introducing PDO
	Building a connection
	Retrieving data from the database
	Using HTML tables for output

	Allowing User Interaction
	Building an HTML search form
	Responding to the search request

	Book VII: Integrating the Client and Server with AJAX
	Chapter 1: AJAX Essentials
	AJAX Spelled Out
	A is for asynchronous
	J is for JavaScript
	A is for . . . and?
	And X is for . . . data

	Making a Basic AJAX Connection
	Building the HTML form
	Creating an XMLHttpRequest object
	Opening a connection to the server
	Sending the request and parameters
	Checking the status

	All Together Now — Making the Connection Asynchronous
	Setting up the program
	Building the getAJAX() function
	Reading the response

	Chapter 2: Improving JavaScript and AJAX with jQuery
	Introducing jQuery
	Installing jQuery
	Importing jQuery from Google

	Your First jQuery App
	Setting up the page
	Meet the jQuery node object

	Creating an Initialization Function
	Using $(document).ready()
	Alternatives to document.ready

	Investigating the jQuery Object
	Changing the style of an element
	Selecting jQuery objects
	Modifying the style

	Adding Events to Objects
	Adding a hover event
	Changing classes on the fly

	Making an AJAX Request with jQuery
	Including a text file with AJAX
	Building a poor man's CMS with AJAX

	Chapter 3: Animating jQuery
	Playing Hide and Seek
	Getting transition support
	Writing the HTML and CSS foundation
	Initializing the page
	Hiding and showing the content
	Toggling visibility
	Sliding an element
	Fading an element in and out

	Changing Position with jQuery
	Creating the framework
	Setting up the events
	Building the move() function with chaining
	Building time-based animation with animate()
	Move a little bit: Relative motion

	Modifying Elements on the Fly
	Building the basic page
	Initializing the code
	Adding text
	Attack of the clones
	It's a wrap
	Alternating styles
	Resetting the page
	More fun with selectors and filters

	Chapter 4: Using the jQuery User Interface Toolkit
	What the jQuery User Interface Brings to the Table
	It's a theme park
	Using the themeRoller to get an overview of jQuery
	Wanna drag? Making components draggable
	Downloading the library
	Writing the program

	Resizing on a Theme
	Examining the HTML and standard CSS
	Importing the files
	Making a resizable element
	Adding themes to your elements
	Adding an icon

	Dragging, Dropping, and Calling Back
	Building the basic page
	Initializing the page
	Handling the drop
	Beauty school dropout events
	Cloning the elements

	Chapter 5: Improving Usability with jQuery
	Multi-Element Designs
	Playing the accordion widget
	Building a tabbed interface
	Using tabs with AJAX

	Improving Usability
	Playing the dating game
	Picking numbers with the slider
	Selectable elements
	Building a sortable list
	Creating a custom dialog box

	Chapter 6: Working with AJAX Data
	Sending Requests AJAX Style
	Sending the data

	Building a Multipass Application
	Setting up the HTML framework
	Loading the select element
	Writing the loadList.php program
	Responding to selections
	Writing the showHero.php script

	Working with XML Data
	Review of XML
	Manipulating XML with jQuery
	Creating the HTML
	Retrieving the data
	Processing the results
	Printing the pet name

	Working with JSON Data
	Knowing JSON's pros
	Reading JSON data with jQuery
	Managing the framework
	Retrieving the JSON data
	Processing the results

	Chapter 7: Going Mobile
	Thinking in Mobile
	Building a Responsive Site
	Specifying a media type
	Adding a qualifier

	Making Your Page Responsive
	Building the wide layout
	Adding the narrow CSS

	Using jQuery Mobile to Build Mobile Interfaces
	Building a basic jQuery mobile page
	Working with collapsible content
	Building a multi-page document

	Going from Site to App
	Adding an icon to your program
	Removing the Safari toolbar
	Storing your program offline

	Book VIII: Moving from Pages to Sites
	Chapter 1: Managing Your Servers
	Understanding Clients and Servers
	Parts of a client-side development system
	Parts of a server-side system

	Creating Your Own Server with XAMPP
	Running XAMPP
	Testing your XAMPP configuration
	Adding your own files
	Setting the security level
	Compromising between functionality and security

	Choosing a Web Host
	Finding a hosting service
	Connecting to a hosting service

	Managing a Remote Site
	Using web-based file tools
	Understanding file permissions
	Using FTP to manage your site
	Using an FTP client

	Naming Your Site
	Understanding domain names
	Registering a domain name

	Managing Data Remotely
	Creating your database
	Finding the MySQL server name

	Chapter 2: Planning Your Sites
	Creating a Multipage Website
	Planning a Larger Site
	Understanding the Client
	Ensuring that the client's expectations are clear
	Delineating the tasks

	Understanding the Audience
	Determining whom you want to reach
	Finding out the user's technical expertise

	Building a Site Plan
	Creating a site overview
	Building the site diagram

	Creating Page Templates
	Sketching the page design
	Building the HTML template framework
	Creating page styles
	Building a data framework

	Fleshing Out the Project
	Making the site live
	Contemplating efficiency

	Chapter 3: Introducing Content Management Systems
	Overview of Content Management Systems
	Previewing Common CMSs
	Moodle
	WordPress
	Drupal
	Building a CMS site with WebsiteBaker
	Installing your CMS
	Getting an overview of WebsiteBaker
	Adding your content
	Using the WYSIWYG editor
	Changing the template
	Adding additional templates
	Adding new functionality

	Building Custom Themes
	Starting with a prebuilt template
	Changing the info.php file
	Modifying index.php
	Modifying the CSS files
	Packaging your template

	Chapter 4: Editing Graphics
	Using a Graphics Editor
	Choosing an Editor
	Introducing Gimp
	Creating an image
	Painting tools
	Selection tools
	Modification tools
	Managing tool options
	Utilities

	Understanding Layers
	Introducing Filters
	Solving Common Web Graphics Problems
	Changing a color
	Building a banner graphic
	Building a tiled background

	Chapter 5: Taking Control of Content
	Building a “Poor Man's CMS” with Your Own Code
	Using Server Side Includes (SSIs)
	Using AJAX and jQuery for client-side inclusion
	Building a page with PHP includes

	Creating Your Own Data-Based CMS
	Using a database to manage content
	Writing a PHP page to read from the table
	Allowing user-generated content
	Adding a new block
	Improving the dbCMS design

	About the Author
	Cheat Sheet
	More Dummies Products

